Laboratory evaluation of electrostatic spray wet scrubb emissions from poultry facilities

Environmental Technology (United Kingdom)

38, 23-33

DOI: 10.1080/09593330.2016.1184319

Citation Report

#	Article	IF	CITATIONS
1	Mitigating airborne bacteria generations from cage-free layer litter by spraying acidic electrolysed water. Biosystems Engineering, 2018, 170, 61-71.	1.9	16
2	Study of the pressure drop in dust scrubber affected by liquid flowability. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2019, 233, 1066-1073.	1.4	1
3	Moisture Effect on Particulate Matter Filtration Performance using Electro-Spun Nanofibers including Density Functional Theory Analysis. Scientific Reports, 2019, 9, 7015.	1.6	26
4	Column Dust Scrubber Based on an Orifice Plate to Intensify Gas‣iquid Mixing. Chemical Engineering and Technology, 2019, 42, 2302-2309.	0.9	6
5	Spatial and Seasonal Variations of PM Concentration and Size Distribution in Manure-Belt Poultry Layer Houses. Transactions of the ASABE, 2019, 62, 415-427.	1.1	13
6	Simulation and experimental investigation of dust-collecting performances of different dust exhaust hoods. Journal of the Air and Waste Management Association, 2020, 70, 1367-1377.	0.9	3
7	An experimental study on the removal of submicron fly ash and black carbon in a gravitational wet scrubber with electrostatic enhancement. RSC Advances, 2020, 10, 5905-5912.	1.7	14
8	Spray scrubber for nanoparticle removal from incineration fumes from the incineration of waste containing nanomaterials: Theoretical and experimental investigations. Aerosol Science and Technology, 2022, 56, 75-91.	1.5	5
9	Modelling and optimisation of a wire-plate ESP for mitigation of poultry PM emission using COMSOL. Biosystems Engineering, 2021, 211, 35-49.	1.9	9
10	Recovery of nitrogen and phosphorus from livestock slurry with treatment technologies: A meta-analysis. Waste Management, 2022, 144, 313-323.	3.7	6
11	Reduction of airborne particulate matter from pig and poultry rearing facilities using engineered water nanostructures. Biosystems Engineering, 2022, 218, 1-9.	1.9	3
12	Short-sea shipping contributions to particle concentration in coastal areas: Impact and mitigation. Transportation Research, Part D: Transport and Environment, 2022, 109, 103342.	3.2	3
13	Designing a grain dust simulator for dusty environments in typical grain bins in the Midwestern United States. Biosystems Engineering, 2022, 220, 203-213.	1.9	0
14	Effects of Electrode Materials and Dimensions of an Electrostatic Spray Scrubber on Water Droplet Charging for Dust Removal. Journal of the Air and Waste Management Association, 0, , .	0.9	0
15	Wet Scrubber. , 2022, , 589-620.		0
16	Advanced Strategies for Mitigating Particulate Matter Generations in Poultry Houses. Applied Sciences (Switzerland), 2022, 12, 11323.	1.3	11