Synthesis of polyaniline nanoparticles and their application violet dye by ultrasonicated adsorption process based of

Ultrasonics Sonochemistry 34, 600-608 DOI: 10.1016/j.ultsonch.2016.06.022

Citation Report

#	Article	IF	CITATIONS
1	Preparation and characterization of hexagonal mesoporous silica/polyacrylamide nanocomposite capsule (PAM-HMS) for dye removal from aqueous solutioxns. Journal of Molecular Liquids, 2017, 238, 499-507.	4.9	24
3	Optimization by response surface methodology for vanadium (V) removal from aqueous solutions using PdO-MWCNTs nanocomposites. Journal of Molecular Liquids, 2017, 234, 117-123.	4.9	23
4	Green synthesis of Ag-Cr-AC nanocomposites by Azadirachta indica and its application for the simultaneous removal of binary mixture of dyes by ultrasonicated assisted adsorption process using Response Surface Methodology. Ultrasonics Sonochemistry, 2017, 38, 197-213.	8.2	44
5	Synthesis of carbon loaded Î ³ -Fe2O3 nanocomposite and their applicability for the selective removal of binary mixture of dyes by ultrasonic adsorption based on response surface methodology. Ultrasonics Sonochemistry, 2017, 36, 393-408.	8.2	33
6	Accurate investigation to determine the best conditions for using NiTiO3 for bromophenol blue degradation in the environment under UV–vis light based on concentration reduction and to compare it with TiO2. Environmental Nanotechnology, Monitoring and Management, 2017, 8, 244-253.	2.9	10
7	Amine rich functionalized mesoporous silica for the effective removal of alizarin yellow and phenol red dyes from waste waters based on response surface methodology. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 226, 188-198.	3.5	31
8	Mechanistic links between magnetic nanoparticles and recovery potential and enhanced capacity for crystal violet of nanoparticles-coated kaolin. Journal of Cleaner Production, 2017, 164, 695-702.	9.3	20
9	Synthesis of low-cost adsorbent from rice bran for the removal of reactive dye based on the response surface methodology. Applied Surface Science, 2017, 423, 800-809.	6.1	48
10	Polyaniline Nanoparticles: Synthesis, Dispersion and Biomedical Applications. Mini-Reviews in Organic Chemistry, 2017, 14, 56-64.	1.3	17
11	Sonocatalytic activity of a heterostructured β-Bi2O3/Bi2O2CO3 nanoplate in degradation of bisphenol A. Ultrasonics Sonochemistry, 2018, 44, 64-72.	8.2	33
12	The performance study on ultrasonic/Fe 3 O 4 /H 2 O 2 for degradation of azo dye and real textile wastewater treatment. Journal of Molecular Liquids, 2018, 256, 462-470.	4.9	118
13	Nanoparticle formation in a low pressure argon/aniline RF plasma. Applied Physics Letters, 2018, 112, .	3.3	14
14	Biochemical responses of Gammarus pulex to malachite green solutions decolorized by Coriolus versicolor as a biosorbent under batch adsorption conditions optimized with response surface methodology. Ecotoxicology and Environmental Safety, 2018, 156, 41-47.	6.0	24
15	Facile synthesis and characterisation of AlNs using Protein Rich Solution extracted from sewage sludge and its application for ultrasonic assisted dye adsorption: Isotherms, kinetics, mechanism and RSM design. Journal of Environmental Management, 2018, 206, 215-227.	7.8	37
16	Ultrasound-assisted surface treatment of ZrO2 with BSA and incorporating in PVC to improve the properties of the obtained nanocomposites: Fabrication and characterization. Ultrasonics Sonochemistry, 2018, 41, 350-360.	8.2	9
17	Preparation and characterization of Î ³ -Fe2O3 nanoparticles and investigation of its adsorption performance for sulfide, sulfite and thiosulfate from aqueous solutions using ultrasonic assisted method: Modeling and optimization. Ultrasonics Sonochemistry, 2018, 40, 1049-1058.	8.2	6
18	Fuzzy logic modeling of Pb (II) sorption onto mesoporous NiO/ZnCl2-Rosa Canina-L seeds activated carbon nanocomposite prepared by ultrasound-assisted co-precipitation technique. Ultrasonics Sonochemistry, 2018, 40, 748-762.	8.2	41
19	Adsorption properties and mechanisms of palygorskite for removal of various ionic dyes from water. Applied Clay Science, 2018, 151, 20-28.	5.2	137

#	Article	IF	CITATIONS
20	Modified Sugarcane Bagasse with Tartaric Acid for Removal of Diazonium Blue from Aqueous Solutions. Journal of Polymers and the Environment, 2018, 26, 2424-2433.	5.0	12
21	A conceptual study on the formulation of a permeable reactive pavement with activated carbon additives for controlling the fate of non-point source environmental organic contaminants. Chemosphere, 2018, 193, 438-446.	8.2	17
22	Synthesizing Zro2 Nanoparticle as a Catalyst Through Thermal Decomposition of Phenol-Zirconium Complexes in Order to Degradation of Harmful Organic Substances Under UV Light. International Journal of Engineering and Technology(UAE), 2018, 7, 472.	0.3	0
23	Optimization of Ultrasonication Process for the Degradation of Linear Alkyl Benzene Sulfonic Acid by Response Surface Methodology. Clean - Soil, Air, Water, 2018, 46, 1700508.	1.1	5
24	Facile preparation of hybrid porous polyanilines for highly efficient Cr(<scp>vi</scp>) removal. RSC Advances, 2018, 8, 33217-33227.	3.6	13
25	Facile synthesis, growth process, characterisation of a nanourchin-structured α-MnO2 and their application on ultrasonic-assisted adsorptive removal of cationic dyes: A half-life and half-capacity concentration approach. Ultrasonics Sonochemistry, 2018, 49, 175-189.	8.2	34
26	Sono-assisted adsorption of Cristal Violet dye onto Tunisian Smectite Clay: Characterization, kinetics and adsorption isotherms. Ecotoxicology and Environmental Safety, 2018, 163, 365-371.	6.0	77
27	Amine-modified silica surface applied as adsorbent in the phenol adsorption assisted by ultrasound. Chemical Engineering Communications, 2019, 206, 1554-1569.	2.6	5
28	Formation and behavior of negative ions in low pressure aniline-containing RF plasmas. Scientific Reports, 2019, 9, 10886.	3.3	5
29	Kinetic, isotherm and mechanism studies of organic dye adsorption on poly(4,4′-oxybisbenzenamine) and copolymer of poly(4,4′-oxybisbenzenamine-pyrrole) macro-nanoparticles synthesized by multifunctional carbon dots. New Journal of Chemistry, 2019, 43, 1926-1935.	2.8	39
30	Ultrasonic assisted enhanced adsorption of methyl orange dye onto polyaniline impregnated zinc oxide nanoparticles: Kinetic, isotherm and optimization of process parameters. Ultrasonics Sonochemistry, 2019, 54, 290-301.	8.2	117
31	Polymers and Polymer Composites for Adsorptive Removal of Dyes in Water Treatment. , 2019, , 519-556.		5
32	Empirical modelling and optimization of pressure-coupled infusion gyration parameters for the nanofibre fabrication. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475, 20190008.	2.1	6
33	Response Surface Methodology as a Powerful Tool for the Synthesis of Polypyrrole-Doped Organic Sulfonic Acid and the Optimization of its Thermoelectric Properties. Journal of Electronic Materials, 2019, 48, 3662-3675.	2.2	13
34	A critical review on ultrasonic-assisted dye adsorption: Mass transfer, half-life and half-capacity concentration approach with future industrial perspectives. Critical Reviews in Environmental Science and Technology, 2019, 49, 1959-2015.	12.8	52
35	Thermodynamic and kinetic investigation of heavy metals sorption in packed bed columns by recycled lignocellulosic materials from olive oil production. Chemical Engineering Communications, 2019, 206, 1715-1730.	2.6	13
36	Activated carbon prepared from pistachio waste for dye adsorption: experimental and CCD-based design. Pigment and Resin Technology, 2019, 49, 136-144.	0.9	9
37	Magnetic chitosan nanocomposite: Fabrication, properties, and optimization for adsorptive removal of crystal violet from aqueous solutions. Carbohydrate Polymers, 2019, 206, 844-853.	10.2	105

#	Article	IF	CITATIONS
38	Preparation of Magnetic Fe3O4/MIL-88A Nanocomposite and Its Adsorption Properties for Bromophenol Blue Dye in Aqueous Solution. Nanomaterials, 2019, 9, 51.	4.1	50
39	Application of polyaniline-based adsorbents for dye removal from water and wastewater—a review. Environmental Science and Pollution Research, 2019, 26, 5333-5356.	5.3	234
40	Sol–gel synthesis of gelatin–zirconium(IV) tungstophosphate nanocomposite ion exchanger and application for the estimation of Cd(II) ions. Journal of Sol-Gel Science and Technology, 2019, 89, 700-712.	2.4	15
41	Ultrasonic assisted synthesis of magnetic Ni-Ag bimetallic nanoparticles supported on reduced graphene oxide for sonochemical simultaneous removal of sunset yellow and tartrazine dyes by response surface optimization: Application of derivative spectrophotometry. Ultrasonics Sonochemistry. 2019. 50. 239-250.	8.2	44
42	Silver nanoparticle-embedded pectin-based hydrogel for adsorptive removal of dyes and metal ions. Polymer Bulletin, 2020, 77, 541-564.	3.3	29
43	A review on polyaniline-based materials applications in heavy metals removal and catalytic processes. Separation and Purification Technology, 2020, 231, 115901.	7.9	118
44	A new Schiff's base polymer for remediation of phenol, 2-chlorophenol and 2,4-dichlorophenol from contaminated aqueous systems. Polymer Bulletin, 2020, 77, 2367-2383.	3.3	7
45	Sonochemical preparation of polyaniline@TiO2 and polyaniline@SiO2 for the removal of anionic and cationic dyes. Ultrasonics Sonochemistry, 2020, 62, 104864.	8.2	33
46	Experimental investigation on the perfluorooctanoic and perfluorooctane sulfonic acids fate and behaviour in the activated sludge reactor. Chemical Engineering Research and Design, 2020, 134, 406-415.	5.6	25
47	Rice husk ash derived nanocrystalline ZSM-5 for highly efficient removal of a toxic textile dye. Journal of Materials Research and Technology, 2020, 9, 14853-14864.	5.8	28
48	L-Ascorbic Acid-g-Polyaniline Mesoporous Silica Nanocomposite for Efficient Removal of Crystal Violet: A Batch and Fixed Bed Breakthrough Studies. Nanomaterials, 2020, 10, 2402.	4.1	9
49	Bovine serum albumin adsorption by Bi-functionalized HMS, nitrilotriacetic acid -amine modified hexagonal mesoporous silicate. Solid State Sciences, 2020, 103, 106194.	3.2	11
50	Anionic dye uptake via composite using chitosan-polyacrylamide hydrogel as matrix containing TiO2 nanoparticles; comprehensive adsorption studies. International Journal of Biological Macromolecules, 2020, 162, 150-162.	7.5	61
51	Optimization of synergistic biosorption of oxytetracycline and cadmium from binary mixtures on reed-based beads: modeling study using Brouers-Sotolongo models. Environmental Science and Pollution Research, 2021, 28, 46431-46447.	5.3	18
52	Adsorptive Removal of Crystal Violet from Water by Chemically Modified Coconut Shell. Water Conservation Science and Engineering, 2020, 5, 159-168.	1.7	4
53	The Nanosized Dye Adsorbents for Water Treatment. Nanomaterials, 2020, 10, 295.	4.1	114
54	Calcined lotus leaf as a low-cost and highly efficient biosorbent for removal of methyl violet dye from aqueous media. International Journal of Environmental Analytical Chemistry, 2021, 101, 2761-2784.	3.3	27
55	Innovative sequential combination of fixed bed adsorption/desorption and photocatalysis cost-effective process to remove antibiotics in solution. Progress in Organic Coatings, 2021, 151, 106014.	3.9	11

#	Article	IF	CITATIONS
56	Recent advances on the removal of dyes from wastewater using various adsorbents: a critical review. Materials Advances, 2021, 2, 4497-4531.	5.4	421
57	Crystal violet dye removal from aqueous water using polyacrylonitrile precursor beads. Materials Today: Proceedings, 2021, 42, 2185-2192.	1.8	5
58	A Review on Polymer Nanocomposites and Their Effective Applications in Membranes and Adsorbents for Water Treatment and Gas Separation. Membranes, 2021, 11, 139.	3.0	89
60	Grafting of Acrylic Membrane Prepared from Fibers Waste for Dyes Removal: Methylene Blue and Congo Red. Separations, 2021, 8, 42.	2.4	13
61	Facile synthesis of Fe3O4 anchored polyaniline intercalated graphene oxide as an effective adsorbent for the removal of hexavalent chromium and phosphate ions. Chemosphere, 2021, 272, 129851.	8.2	28
62	Evaluation of textile wastewater treatment in sequential anaerobic moving bed bioreactor - aerobic membrane bioreactor. Process Biochemistry, 2021, 105, 62-71.	3.7	16
63	Ultrasound facilitates and improves removal of triphenylmethane (crystal violet) dye from aqueous solution by activated charcoal: A kinetic study. Journal of Saudi Chemical Society, 2021, 25, 101231.	5.2	9
64	Egg yolk/ZIF-8/CLPAA composite aerogel: Preparation, characterization and adsorption properties for organic dyes. Journal of Solid State Chemistry, 2021, 299, 122158.	2.9	12
65	Chitosan-graft-poly(N‑tert‑butylacrylamide) Copolymer: Synthesis, Characterization and Optimization of Tetracycline Removal Using RSM. Journal of Polymers and the Environment, 2022, 30, 752-764.	5.0	3
66	Understanding the removal of an anionic dye in textile wastewaters by adsorption on ZnCl2 activated carbons from rice and coffee husk wastes: A combined experimental and theoretical study. Journal of Environmental Chemical Engineering, 2021, 9, 105685.	6.7	68
67	The superior adsorption capacity of 2,4-Dinitrophenol under ultrasound-assisted magnetic adsorption system: Modeling and process optimization by central composite design. Journal of Hazardous Materials, 2021, 418, 126348.	12.4	78
68	Enhanced sono-assisted adsorptive uptake of malachite green dye onto magnesium ferrite nanoparticles: Kinetic, isotherm and cost analysis. Environmental Nanotechnology, Monitoring and Management, 2021, 16, 100506.	2.9	22
70	Conductive Polymers and Their Nanocomposites as Adsorbents in Environmental Applications. Polymers, 2021, 13, 3810.	4.5	33
71	A comprehensive review on the removal of noxious pollutants using carrageenan based advanced adsorbents. Chemosphere, 2022, 289, 133100.	8.2	29
72	Preparation of Magnetic Composite Polyaniline/Fe3O4â^'Hydrotalcite and Performance in Removal of Methyl Orange. Adsorption Science and Technology, 2021, 2021, 1-18.	3.2	3
73	Fabrication of polyaniline-coated porous and fibrous nanocomposite with granular morphology using tea waste carbon for effective removal of rhodamine B dye from water samples. Biomass Conversion and Biorefinery, 2024, 14, 1711-1730.	4.6	20
74	Anti-microbial and methylene blue dye adsorption properties of cotton fabrics modified with TiO ₂ , Fe, Ag-doped TiO ₂ , and graphene oxide nanomaterials. Textile Reseach Journal, 2022, 92, 3299-3315.	2.2	4
75	Sulfonatocalix[6]arene-decorated magnetite nanomaterials for the removal of organic pollutants from water. International Journal of Environmental Science and Technology, 0, , .	3.5	Ο

#	Article	IF	CITATIONS
76	Hierarchical graphite oxide decorated UiO-66 for ultrahigh adsorption of dye with synergistic effect of ultrasonication: Experimental and density functional theory study. Separation and Purification Technology, 2022, 294, 121217.	7.9	17
77	Novel acoustic-activated alkali-functionalized Trapa bispinosa peel biochar for green immobilization of chlorpyrifos from wastewater: artificial intelligence modelling and experimental validation. Biomass Conversion and Biorefinery, 0, , .	4.6	7
78	Adsorptive removal of crystal violet dye from aqueous solution onto coconut coir. Chemical Industry and Chemical Engineering Quarterly, 2023, 29, 11-22.	0.7	0
79	Fabrication, characterization, and photocatalytic degradation potential of chitosan-conjugated manganese magnetic nano-biocomposite for emerging dye pollutants. Chemosphere, 2022, 306, 135647.	8.2	21
80	Mycosynthesis of Hematite (α-Fe2O3) Nanoparticles Using Aspergillus niger and Their Antimicrobial and Photocatalytic Activities. Bioengineering, 2022, 9, 397.	3.5	47
81	Combining pH-triggered adsorption and photocatalysis for the remediation of complex water matrices. Journal of Environmental Chemical Engineering, 2022, 10, 108468.	6.7	12
82	Formation of Polyaniline (PANI) multilayer film using humic acid as the bridging agent: Screening on the fabrication technique. , 2022, 20, 16-23.		0
83	Unravelling the Methylene Blue Adsorption Mechanism on Doped and Nondoped Polyaniline: A Combined Molecular Modeling and Experimental Investigation. International Journal of Chemical Engineering, 2022, 2022, 1-18.	2.4	5
84	Sonophotocatalytic degradation of malachite green in aqueous solution using six competitive metal oxides as a benchmark. Photochemical and Photobiological Sciences, 2023, 22, 579-594.	2.9	4
85	Sustainable Synthesis of Iron–Zinc Nanocomposites by Azadirachta indica Leaves Extract for RSM-Optimized Sono-Adsorptive Removal of Crystal Violet Dye. Materials, 2023, 16, 1023.	2.9	5
86	Granite waste mediated synthesis of polyaniline nanofibers for the catalytic reduction of hazardous organic water toxins. Inorganic Chemistry Communication, 2023, 152, 110688.	3.9	4
87	Grafting the ferrites of cobalt and zinc on MWCNTs for adsorption of crystal violet. International Journal of Environmental Science and Technology, 2023, 20, 12465-12480.	3.5	1
88	Remarkable High Adsorption of Methylene Blue Dye from Aqueous Solutions Using Facilely Synthesized MgFe2O4 Nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 2023, 33, 2035-2045.	3.7	7
89	Polyvinyl Alcohol Assisted Iron–Zinc Nanocomposite for Enhanced Optimized Rapid Removal of Malachite Green Dye. Nanomaterials, 2023, 13, 1747.	4.1	3
90	Synthesis, Characterization and Potential Application of Functionalised Binary Metallic Sulphide for Water Reclamation. , 2023, 1, 100011.		2
91	Fabrication and characterization of organometallic nanocomposite for efficient abatement of dye laden wastewater: CCD optimization, adsorption mechanism, co-existing ions, and cost analysis. Chemical Physics Letters, 2023, 830, 140820.	2.6	6
92	Fabrication of Size-Controlled MOF-74-Derived Porous Nanospheres toward Efficient Water Treatment. Crystal Growth and Design, 2023, 23, 7345-7354.	3.0	1
93	Nanocomposites of PVA-PVP and l-ascorbic acid modified ZnO:Fe via ultrasonic irradiation as a green technique: Latent fingerprint detection, food packing and anti-bacterial applications. Inorganic Chemistry Communication, 2023, 156, 111161.	3.9	4

#	Article	IF	CITATIONS
94	Polyaniline-based adsorbents for water treatment: Roles of low-cost materials and 2D materials. Chemical Engineering Journal, 2023, 478, 147506.	12.7	4
95	Adsorptive performance of bentonite-chitosan nanocomposite as a dual antibacterial and reusable adsorbent for Reactive Red 195 and crystal violet removal: kinetic and thermodynamic studies. Biomass Conversion and Biorefinery, 0, , .	4.6	1
96	Synergistic adsorption/photodegradation effect for effective removal of crystal violet dye and acetamiprid pesticide using Fe3+ cross-linked ternary carboxymethyl cellulose/polyaniline/TiO2 photocomposites. Journal of Water Process Engineering, 2024, 57, 104670.	5.6	0
97	Fabrication of polyaniline based calcium ferrite nanocomposite and its application in sequestration of Victoria blue dye from wastewater. Journal of Dispersion Science and Technology, 0, , 1-15.	2.4	1
98	Synthesis of NFO-immobilized yeast nanobiocomposite for ultrasound-assisted photo-fenton degradation of methylene blue by using central composite design. Surfaces and Interfaces, 2024, 44, 103725.	3.0	0
99	Starch Grafted Pyrolusite Composite for Enhanced Removal of Malachite Green from Water and Wastewater. Water, Air, and Soil Pollution, 2024, 235, .	2.4	0
100	Surfactant-Assisted synthesis of α-and β-Ag2WO4 modified with Sulphur, Phosphorous, and boron and their applications in wastewater elimination. Journal of Photochemistry and Photobiology A: Chemistry, 2024, 450, 115458.	3.9	0