Validation of an Accelerometer to Quantify a Comprehe Characteristics in Healthy Older Adults and Parkinson's Home Use

IEEE Journal of Biomedical and Health Informatics 20, 838-847 DOI: 10.1109/jbhi.2015.2419317

Citation Report

#	Article	IF	CITATIONS
1	Body-worn sensors-the brave new world of clinical measurement?. Movement Disorders, 2015, 30, 1203-1205.	3.9	25
2	The Parkinsonian Gait Spatiotemporal Parameters Quantified by a Single Inertial Sensor before and after Automated Mechanical Peripheral Stimulation Treatment. Parkinson's Disease, 2015, 2015, 1-6.	1.1	33
3	Technology in Parkinson's disease: Challenges and opportunities. Movement Disorders, 2016, 31, 1272-1282.	3.9	464
4	Accelerometer-based gait assessment: Pragmatic deployment on an international scale. , 2016, , .		8
5	A Wearable Inertial Measurement System With Complementary Filter for Gait Analysis of Patients With Stroke or Parkinson's Disease. IEEE Access, 2016, 4, 8442-8453.	4.2	88
6	Measuring gait with an accelerometer-based wearable: influence of device location, testing protocol and age. Physiological Measurement, 2016, 37, 1785-1797.	2.1	51
7	Free-living gait characteristics in ageing and Parkinson's disease: impact of environment and ambulatory bout length. Journal of NeuroEngineering and Rehabilitation, 2016, 13, 46.	4.6	228
8	Free-living monitoring of Parkinson's disease: Lessons from the field. Movement Disorders, 2016, 31, 1293-1313.	3.9	252
9	Beyond the front end: Investigating a thigh worn accelerometer device for step count and bout detection in Parkinson's disease. Medical Engineering and Physics, 2016, 38, 1524-1529.	1.7	13
10	A systematic review of the characteristics and validity of monitoring technologies to assess Parkinson's disease. Journal of NeuroEngineering and Rehabilitation, 2016, 13, 24.	4.6	155
11	Potential of APDM mobility lab for the monitoring of the progression of Parkinson's disease. Expert Review of Medical Devices, 2016, 13, 455-462.	2.8	87
12	Wearable sensor-based objective assessment of motor symptoms in Parkinson's disease. Journal of Neural Transmission, 2016, 123, 57-64.	2.8	117
13	Stride variability measures derived from wrist- and hip-worn accelerometers. Gait and Posture, 2017, 52, 217-223.	1.4	19
14	Automatic Prediction of Health Status Using Smartphone-Derived Behavior Profiles. IEEE Journal of Biomedical and Health Informatics, 2017, 21, 1750-1760.	6.3	24
15	Wearables for independent living in older adults: Gait and falls. Maturitas, 2017, 100, 16-26.	2.4	75
16	Monitoring of Gait Quality in Patients With Chronic Pain of Lower Limbs. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 1843-1852.	4.9	16
17	Detecting free-living steps and walking bouts: validating an algorithm for macro gait analysis. Physiological Measurement, 2017, 38, N1-N15.	2.1	109
18	Is the Assessment of 5 Meters of Gait with a Single Body-Fixed-Sensor Enough to Recognize Idiopathic Parkinson's Disease-Associated Gait?. Annals of Biomedical Engineering, 2017, 45, 1266-1278.	2.5	23

#	Article	IF	CITATIONS
19	Move the Neighbourhood: Study design of a community-based participatory public open space intervention in a Danish deprived neighbourhood to promote active living. BMC Public Health, 2017, 17, 481.	2.9	21
20	Auto detection and segmentation of daily living activities during a Timed Up and Go task in people with Parkinson's disease using multiple inertial sensors. Journal of NeuroEngineering and Rehabilitation, 2017, 14, 26.	4.6	44
21	A model of free-living gait: A factor analysis in Parkinson's disease. Gait and Posture, 2017, 52, 68-71.	1.4	63
22	Gait analysis based on an inertial measurement unit sensor: Validation of spatiotemporal parameters calculation in healthy young and older adults. , 2017, , .		1
23	Gait speed estimation using Kalman Filtering on inertial measurement unit data. , 2017, 2017, 2406-2409.		8
24	Achieving ecological validity in mobility assessment: Validating a wearable sensor technology for comprehensive gait assessment. , 2017, , .		1
25	A Review of Activity Trackers for Senior Citizens: Research Perspectives, Commercial Landscape and the Role of the Insurance Industry. Sensors, 2017, 17, 1277.	3.8	99
26	Inertial Sensor-Based Robust Gait Analysis in Non-Hospital Settings for Neurological Disorders. Sensors, 2017, 17, 825.	3.8	107
27	Measurement of Walking Ground Reactions in Real-Life Environments: A Systematic Review of Techniques and Technologies. Sensors, 2017, 17, 2085.	3.8	50
28	Developing Fine-Grained Actigraphies for Rheumatoid Arthritis Patients from a Single Accelerometer Using Machine Learning. Sensors, 2017, 17, 2113.	3.8	18
29	Validation of a Step Detection Algorithm during Straight Walking and Turning in Patients with Parkinson's Disease and Older Adults Using an Inertial Measurement Unit at the Lower Back. Frontiers in Neurology, 2017, 8, 457.	2.4	79
30	How Wearable Sensors Can Support Parkinson's Disease Diagnosis and Treatment: A Systematic Review. Frontiers in Neuroscience, 2017, 11, 555.	2.8	273
31	Quantitative Analysis of Motor Status in Parkinson's Disease Using Wearable Devices: From Methodological Considerations to Problems in Clinical Applications. Parkinson's Disease, 2017, 2017, 1-9.	1.1	28
32	An Acceleration-Based Gait Assessment Method for Children with Cerebral Palsy. Sensors, 2017, 17, 1002.	3.8	13
33	A text mining approach to identify the relationship between gait-Parkinson's disease (PD) from PD based research articles. , 2017, , .		8
34	Comprehensive measurement of stroke gait characteristics with a single accelerometer in the laboratory and community: a feasibility, validity and reliability study. Journal of NeuroEngineering and Rehabilitation, 2017, 14, 130.	4.6	35
35	Correlation between the Oswestry Disability Index and objective measurements of walking capacity and performance in patients with lumbar spinal stenosis: a systematic literature review. European Spine Journal, 2018, 27, 1604-1613.	2.2	24
36	Gait Parameters Estimated Using Inertial Measurement Units. , 2018, , 245-265.		5

#	Article	IF	CITATIONS
37	Using Inertial Sensors to Automatically Detect and Segment Activities of Daily Living in People With Parkinson's Disease. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 197-204.	4.9	48
38	Impact of motor fluctuations on real-life gait in Parkinson's patients. Gait and Posture, 2018, 62, 388-394.	1.4	25
39	Quantification of gait parameters with inertial sensors and inverse kinematics. Journal of Biomechanics, 2018, 72, 207-214.	2.1	15
40	Mobility monitoring using smart technologies for Parkinson's disease in free-living environment. Collegian, 2018, 25, 549-560.	1.3	16
41	Step Length and Step Width Estimation using Wearable Sensors. , 2018, , .		4
42	A Validation Study of Freezing of Gait (FoG) Detection and Machine-Learning-Based FoG Prediction Using Estimated Gait Characteristics with a Wearable Accelerometer. Sensors, 2018, 18, 3287.	3.8	56
43	Multiple-Wearable-Sensor-Based Gait Classification and Analysis in Patients with Neurological Disorders. Sensors, 2018, 18, 3397.	3.8	65
44	Developing a toolkit for the assessment and monitoring of musculoskeletal ageing. Age and Ageing, 2018, 47, iv1-iv19.	1.6	25
45	Validation of a Lower Back "Wearable―Based Sit-to-Stand and Stand-to-Sit Algorithm for Patients With Parkinson's Disease and Older Adults in a Home-Like Environment. Frontiers in Neurology, 2018, 9, 652.	2.4	28
46	Wearables for gait and balance assessment in the neurological ward - study design and first results of a prospective cross-sectional feasibility study with 384 inpatients. BMC Neurology, 2018, 18, 114.	1.8	41
47	Free-living and laboratory gait characteristics in patients with multiple sclerosis. PLoS ONE, 2018, 13, e0196463.	2.5	79
48	A comprehensive comparison of simple step counting techniques using wrist- and ankle-mounted accelerometer and gyroscope signals. Journal of Medical Engineering and Technology, 2018, 42, 236-243.	1.4	26
49	Gait Variability Can Predict the Risk of Cognitive Decline in Cognitively Normal Older People. Dementia and Geriatric Cognitive Disorders, 2018, 45, 251-261.	1.5	32
50	Parkinson's disease monitoring from gait analysis via foot-worn sensors. Biocybernetics and Biomedical Engineering, 2018, 38, 760-772.	5.9	43
51	Validity of shoe-type inertial measurement units for Parkinson's disease patients during treadmill walking. Journal of NeuroEngineering and Rehabilitation, 2018, 15, 38.	4.6	28
52	Development of a wireless CPS for gait parameters measurement and analysis. , 2018, , .		6
53	Implementation of Wi-Fi Signal Sampling on an Android Smartphone for Indoor Positioning Systems. Sensors, 2018, 18, 3.	3.8	41
54	From A to Z: Wearable technology explained. Maturitas, 2018, 113, 40-47.	2.4	126

#	Article	IF	CITATIONS
55	Active aging – resilience and external support as modifiers of the disablement outcome: AGNES cohort study protocol. BMC Public Health, 2018, 18, 565.	2.9	62
56	Estimation of spatio-temporal parameters of gait from magneto-inertial measurement units: multicenter validation among Parkinson, mildly cognitively impaired and healthy older adults. BioMedical Engineering OnLine, 2018, 17, 58.	2.7	56
57	Human gait symmetry assessment using a depth camera and mirrors. Computers in Biology and Medicine, 2018, 101, 174-183.	7.0	6
58	Measuring Parkinson's disease over time: The realâ€world withinâ€subject reliability of the MDSâ€UPDRS. Movement Disorders, 2019, 34, 1480-1487.	3.9	100
59	Gait analysis with wearables predicts conversion to Parkinson disease. Annals of Neurology, 2019, 86, 357-367.	5.3	137
60	Sensing body motions based on charges generated on the body. Nano Energy, 2019, 63, 103842.	16.0	39
61	Validity of Mobility Lab (version 2) for gait assessment in young adults, older adults and Parkinson's disease. Physiological Measurement, 2019, 40, 095003.	2.1	122
62	Mobility Deficits Assessed With Mobile Technology: What Can We Learn From Brain Iron-Altered Animal Models?. Frontiers in Neurology, 2019, 10, 833.	2.4	1
63	Effects of augmenting cholinergic neurotransmission on balance in Parkinson's disease. Parkinsonism and Related Disorders, 2019, 69, 40-47.	2.2	18
64	Augmenting Clinical Outcome Measures of Gait and Balance with a Single Inertial Sensor in Age-Ranged Healthy Adults. Sensors, 2019, 19, 4537.	3.8	28
65	Next Steps in Wearable Technology and Community Ambulation in Multiple Sclerosis. Current Neurology and Neuroscience Reports, 2019, 19, 80.	4.2	43
66	Mobile Gait Analysis Using Foot-Mounted UWB Sensors. , 2019, 3, 1-22.		16
67	Vision Optical-Based Evaluation of Senshand Accuracy for Parkinson's Disease Motor Assessment. , 2019, , .		3
68	Cyber-Physical System Framework for Measurement and Analysis of Physical Activities. Electronics (Switzerland), 2019, 8, 248.	3.1	13
69	Is every-day walking in older adults more analogous to dual-task walking or to usual walking? Elucidating the gaps between gait performance in the lab and during 24/7 monitoring. European Review of Aging and Physical Activity, 2019, 16, 6.	2.9	151
70	A Pilot Study to Test the Feasibility of a Home Mobility Monitoring System in Community-Dwelling Older Adults. International Journal of Environmental Research and Public Health, 2019, 16, 1512.	2.6	12
71	An Exploratory Factor Analysis of Sensor-Based Physical Capability Assessment. Sensors, 2019, 19, 2227.	3.8	7
72	Clinical and methodological challenges for assessing freezing of gait: Future perspectives. Movement Disorders, 2019, 34, 783-790.	3.9	97

#	Article	IF	CITATIONS
73	Wearable Sensors System for an Improved Analysis of Freezing of Gait in Parkinson's Disease Using Electromyography and Inertial Signals. Sensors, 2019, 19, 948.	3.8	51
74	Potential Markers of Progression in Idiopathic Parkinson's Disease Derived From Assessment of Circular Gait With a Single Body-Fixed-Sensor: A 5 Year Longitudinal Study. Frontiers in Human Neuroscience, 2019, 13, 59.	2.0	27
75	Locomotion and cadence detection using a single trunk-fixed accelerometer: validity for children with cerebral palsy in daily life-like conditions. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 24.	4.6	29
76	The Role of Movement Analysis in Diagnosing and Monitoring Neurodegenerative Conditions: Insights from Gait and Postural Control. Brain Sciences, 2019, 9, 34.	2.3	109
77	Assessing Gait in Parkinson's Disease Using Wearable Motion Sensors: A Systematic Review. Diseases (Basel, Switzerland), 2019, 7, 18.	2.5	109
78	Overview of the cholinergic contribution to gait, balance and falls in Parkinson's disease. Parkinsonism and Related Disorders, 2019, 63, 20-30.	2.2	49
79	Glidar3DJ: a View-Invariant Gait Identification via Flash Lidar Data Correction. , 2019, , .		2
80	Deep Learning Techniques for Improving Digital Gait Segmentation. , 2019, 2019, 1834-1837.		22
81	Commercial Postural Devices: A Review. Sensors, 2019, 19, 5128.	3.8	31
82	Selecting Clinically Relevant Gait Characteristics for Classification of Early Parkinson's Disease: A Comprehensive Machine Learning Approach. Scientific Reports, 2019, 9, 17269.	3.3	76
83	Comparison of Walking Protocols and Gait Assessment Systems for Machine Learning-Based Classification of Parkinson's Disease. Sensors, 2019, 19, 5363.	3.8	35
84	Gait Nonlinear Patterns Related to Parkinson's Disease and Age. IEEE Transactions on Instrumentation and Measurement, 2019, 68, 2545-2551.	4.7	30
85	Inertial sensors versus standard systems in gait analysis: a systematic review and meta-analysis. European Journal of Physical and Rehabilitation Medicine, 2019, 55, 265-280.	2.2	56
86	Computer model for leg agility quantification and assessment for Parkinson's disease patients. Medical and Biological Engineering and Computing, 2019, 57, 463-476.	2.8	10
87	Analysis of Free-Living Gait in Older Adults With and Without Parkinson's Disease and With and Without a History of Falls: Identifying Generic and Disease-Specific Characteristics. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 500-506.	3.6	132
88	Real-World Gait Speed Estimation Using Wrist Sensor: A Personalized Approach. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 658-668.	6.3	41
89	Gait Event Detection From Accelerometry Using the Teager–Kaiser Energy Operator. IEEE Transactions on Biomedical Engineering, 2020, 67, 658-666.	4.2	20
90	Smartphone-Based Assessment of Gait During Straight Walking, Turning, and Walking Speed Modulation in Laboratory and Free-Living Environments. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 1188-1195.	6.3	21

#	Article	IF	CITATIONS
91	A multimodal smartphone sensor system for behaviour measurement and health status inference. Information Fusion, 2020, 53, 43-54.	19.1	15
92	Different Combinations of Mobility Metrics Derived From a Wearable Sensor Are Associated With Distinct Health Outcomes in Older Adults. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 1176-1183.	3.6	31
93	What happens before the first step? A New Approach to Quantifying Gait Initiation Using a Wearable Sensor. Gait and Posture, 2020, 76, 128-135.	1.4	13
94	A Framework for Interpretable Full-Body Kinematic Description Using Geometric and Functional Analysis. IEEE Transactions on Biomedical Engineering, 2020, 67, 1761-1774.	4.2	3
95	Use of Wearable Sensor Technology in Gait, Balance, and Range of Motion Analysis. Applied Sciences (Switzerland), 2020, 10, 234.	2.5	75
96	Evaluating the effects of an exercise program (Staying UpRight) for older adults in long-term care on rates of falls: study protocol for a randomised controlled trial. Trials, 2020, 21, 46.	1.6	12
97	Differentiating dementia disease subtypes with gait analysis: feasibility of wearable sensors?. Gait and Posture, 2020, 76, 372-376.	1.4	68
98	Continuous Real-World Gait Monitoring in Idiopathic REM Sleep Behavior Disorder. Journal of Parkinson's Disease, 2020, 10, 283-299.	2.8	27
99	Gait measurement in chronic mild traumatic brain injury: A model approach. Human Movement Science, 2020, 69, 102557.	1.4	25
100	Are Accelerometer-based Functional Outcome Assessments Feasible and Valid After Treatment for Lower Extremity Sarcomas?. Clinical Orthopaedics and Related Research, 2020, 478, 482-503.	1.5	12
101	Gait Asymmetry Post-Stroke: Determining Valid and Reliable Methods Using a Single Accelerometer Located on the Trunk. Sensors, 2020, 20, 37.	3.8	29
102	Evaluation of Wearable Sensor Devices in Parkinson's Disease: A Review of Current Status and Future Prospects. Parkinson's Disease, 2020, 2020, 1-8.	1.1	28
103	Gait Characteristics Harvested during a Smartphone-Based Self-Administered 2-Minute Walk Test in People with Multiple Sclerosis: Test-Retest Reliability and Minimum Detectable Change. Sensors, 2020, 20, 5906.	3.8	22
104	Walking-related digital mobility outcomes as clinical trial endpoint measures: protocol for a scoping review. BMJ Open, 2020, 10, e038704.	1.9	29
105	Quantitative clinical assessment of motor function during and following LSVT-BIG® therapy. Journal of NeuroEngineering and Rehabilitation, 2020, 17, 92.	4.6	15
106	Pelvic Symmetry Is Influenced by Asymmetrical Tonic Neck Reflex during Young Children's Gait. International Journal of Environmental Research and Public Health, 2020, 17, 4759.	2.6	12
107	Feasibility of Smartphone-Based Gait Assessment for Parkinson's Disease. Journal of Medical and Biological Engineering, 2020, 40, 582-591.	1.8	4
108	Monitoring Walking Activity with Wearable Technology in Rural-dwelling Older Adults in Tanzania: A Feasibility Study Nested within a Frailty Prevalence Study. Experimental Aging Research, 2020, 46, 367-381.	1.2	10

#	Article	IF	CITATIONS
109	A Wearable Sensor System to Measure Step-Based Gait Parameters for Parkinson's Disease Rehabilitation. Sensors, 2020, 20, 6417.	3.8	12
110	Foot-Worn Inertial Sensors Are Reliable to Assess Spatiotemporal Gait Parameters in Axial Spondyloarthritis under Single and Dual Task Walking in Axial Spondyloarthritis. Sensors, 2020, 20, 6453.	3.8	10
111	Gait Analysis with Wearables Can Accurately Classify Fallers from Non-Fallers: A Step toward Better Management of Neurological Disorders. Sensors, 2020, 20, 6992.	3.8	24
112	Toward a Regulatory Qualification of Real-World Mobility Performance Biomarkers in Parkinson's Patients Using Digital Mobility Outcomes. Sensors, 2020, 20, 5920.	3.8	42
113	Age and environment-related differences in gait in healthy adults using wearables. Npj Digital Medicine, 2020, 3, 127.	10.9	25
114	Quantitative Gait Assessment With Feature-Rich Diversity Using Two IMU Sensors. IEEE Transactions on Medical Robotics and Bionics, 2020, 2, 639-648.	3.2	13
115	Optimization of a wearable speed monitoring device for welding applications. International Journal of Advanced Manufacturing Technology, 2020, 110, 1285-1293.	3.0	3
116	Accuracy and Acceptability of Wearable Motion Tracking for Inpatient Monitoring Using Smartwatches. Sensors, 2020, 20, 7313.	3.8	14
117	Towards remote healthcare monitoring using accessible IoT technology: state-of-the-art, insights and experimental design. BioMedical Engineering OnLine, 2020, 19, 80.	2.7	26
118	Gait Kinematic Parameters in Parkinson's Disease: A Systematic Review. Journal of Parkinson's Disease, 2020, 10, 843-853.	2.8	29
119	Entropy of Real-World Gait in Parkinson's Disease Determined from Wearable Sensors as a Digital Marker of Altered Ambulatory Behavior. Sensors, 2020, 20, 2631.	3.8	23
120	Validity and reliability of wearable inertial sensors in healthy adult walking: a systematic review and meta-analysis. Journal of NeuroEngineering and Rehabilitation, 2020, 17, 62.	4.6	125
121	Design of a Machine Learning-Assisted Wearable Accelerometer-Based Automated System for Studying the Effect of Dopaminergic Medicine on Gait Characteristics of Parkinson's Patients. Journal of Healthcare Engineering, 2020, 2020, 1-11.	1.9	21
122	Comparison of gait speeds from wearable camera and accelerometer in structured and semiâ€structured environments. Healthcare Technology Letters, 2020, 7, 25-28.	3.3	8
123	Gait Disturbances are Associated with Increased Cognitive Impairment and Cerebrospinal Fluid Tau Levels in a Memory Clinic Cohort. Journal of Alzheimer's Disease, 2020, 76, 1061-1070.	2.6	13
124	A Supervised Machine Learning Approach to Detect the On/Off State in Parkinson's Disease Using Wearable Based Gait Signals. Diagnostics, 2020, 10, 421.	2.6	30
125	Motor, cognitive and mobility deficits in 1000 geriatric patients: protocol of a quantitative observational study before and after routine clinical geriatric treatment – the ComOn-study. BMC Geriatrics, 2020, 20, 45.	2.7	19
126	Nanoscale dynamic chemical, biological sensor material designs for control monitoring and early detection of advanced diseases. Materials Today Bio, 2020, 5, 100044.	5.5	18

#	Article	IF	CITATIONS
127	Falls Risk in Relation to Activity Exposure in High-Risk Older Adults. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 1198-1205.	3.6	40
128	Accelerometry-Based Digital Gait Characteristics for Classification of Parkinson's Disease: What Counts?. IEEE Open Journal of Engineering in Medicine and Biology, 2020, 1, 65-73.	2.3	34
129	Using an unbiased symbolic movement representation to characterize Parkinson's disease states. Scientific Reports, 2020, 10, 7377.	3.3	13
130	Gait Characteristics Based on Shoe-Type Inertial Measurement Units in Healthy Young Adults during Treadmill Walking. Sensors, 2020, 20, 2095.	3.8	9
131	Systematic Review Looking at the Use of Technology to Measure Free-Living Symptom and Activity Outcomes in Parkinson's Disease in the Home or a Home-like Environment. Journal of Parkinson's Disease, 2020, 10, 429-454.	2.8	43
132	A Robust Step Detection and Stride Length Estimation for Pedestrian Dead Reckoning Using a Smartphone. IEEE Sensors Journal, 2020, 20, 9685-9697.	4.7	55
133	Fitâ€forâ€Purpose Biometric Monitoring Technologies: Leveraging the Laboratory Biomarker Experience. Clinical and Translational Science, 2021, 14, 62-74.	3.1	28
134	Improved Gait Speed Calculation via Modulation Spectral Analysis of Noisy Accelerometer Data. IEEE Sensors Journal, 2021, 21, 520-528.	4.7	2
135	Gait analysis in neurological populations: Progression in the use of wearables. Medical Engineering and Physics, 2021, 87, 9-29.	1.7	79
136	Probabilistic Modelling of Gait for Robust Passive Monitoring in Daily Life. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 2293-2304.	6.3	8
137	Is Cortical Activation During Walking Different Between Parkinson's Disease Motor Subtypes?. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, 561-567.	3.6	19
138	Smart Sensor Control for Rehabilitation in Parkinson's Patients. IEEE Transactions on Emerging Topics in Computational Intelligence, 2022, 6, 267-275.	4.9	6
139	Algorithms for Walking Speed Estimation Using a Lower-Back-Worn Inertial Sensor: A Cross-Validation on Speed Ranges. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 1955-1964.	4.9	23
140	Mobility Performance in Community-Dwelling Older Adults: Potential Digital Biomarkers of Concern about Falling. Gerontology, 2021, 67, 365-373.	2.8	10
141	The Impact of Environment on Gait Assessment: Considerations from Real-World Gait Analysis in Dementia Subtypes. Sensors, 2021, 21, 813.	3.8	31
142	Human Gait Analysis in Neurodegenerative Diseases: A Review. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 229-242.	6.3	56
143	Toward a Remote Assessment of Walking Bout and Speed: Application in Patients With Multiple Sclerosis. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 4217-4228.	6.3	16
144	Can Trunk Acceleration Differentiate Stroke Patient Gait Patterns Using Time- and Frequency-Domain Features?. Applied Sciences (Switzerland), 2021, 11, 1541.	2.5	3

#	Article	IF	CITATIONS
145	Validation of IMU-based gait event detection during curved walking and turning in older adults and Parkinson's Disease patients. Journal of NeuroEngineering and Rehabilitation, 2021, 18, 28.	4.6	39
146	Parkinson's disease medication state and severity assessment based on coordination during walking. PLoS ONE, 2021, 16, e0244842.	2.5	5
147	Cortical Activity Underlying Gait Improvements Achieved With Dopaminergic Medication During Usual Walking and Obstacle Avoidance in Parkinson Disease. Neurorehabilitation and Neural Repair, 2021, 35, 406-418.	2.9	14
148	Gait speed in clinical and daily living assessments in Parkinson's disease patients: performance versus capacity. Npj Parkinson's Disease, 2021, 7, 24.	5.3	44
149	Lumbopelvic Biomechanics in Patients with Lumbar Disc Herniation—Prospective Cohort Study. Symmetry, 2021, 13, 602.	2.2	3
150	Changes in Trunk Variability and Stability of Gait in Patients with Chronic Low Back Pain: Impact of Laboratory versus Daily-Living Environments. Journal of Pain Research, 2021, Volume 14, 1675-1686.	2.0	8
151	Body-Worn Sensors for Remote Monitoring of Parkinson's Disease Motor Symptoms: Vision, State of the Art, and Challenges Ahead. Journal of Parkinson's Disease, 2021, 11, S35-S47.	2.8	47
152	Inertial Measurement Units for Gait Analysis of Parkinson's Disease Patients. Series in Bioengineering, 2022, , 79-104.	0.6	0
153	Consensus based framework for digital mobility monitoring. PLoS ONE, 2021, 16, e0256541.	2.5	31
154	Wearable Inertial Gait Algorithms: Impact of Wear Location and Environment in Healthy and Parkinson's Populations. Sensors, 2021, 21, 6476.	3.8	13
155	Gait Parameters in Healthy Preschool and School Children Assessed Using Wireless Inertial Sensor. Sensors, 2021, 21, 6423.	3.8	10
156	Gait monitoring system for patients with Parkinson's disease. Expert Systems With Applications, 2021, 185, 115653.	7.6	8
157	Measurement of Gait and Postural Control in Aging. Handbooks in Health, Work, and Disability, 2018, , 85-121.	0.0	1
158	Smart and Assistive Walker– ASBGo: Rehabilitation Robotics: A Smart–Walker to Assist Ataxic Patients. Advances in Experimental Medicine and Biology, 2019, 1170, 37-68.	1.6	14
159	Gait Parameters Estimated Using Inertial Measurement Units. , 2017, , 1-21.		3
160	Portable accelerometers for the evaluation of spatio-temporal gait parameters in people with Parkinson's disease: an integrative review. Archives of Gerontology and Geriatrics, 2020, 90, 104097.	3.0	13
163	Instrumented gait assessment with a single wearable: an introductory tutorial. F1000Research, 0, 5, 2323.	1.6	24
164	Test-Retest Reliability and Concurrent Validity of a Single Tri-Axial Accelerometer-Based Gait Analysis in Older Adults with Normal Cognition. PLoS ONE, 2016, 11, e0158956.	2.5	40

#	Article	IF	CITATIONS
π 165	Correlation of Quantitative Motor State Assessment Using a Kinetograph and Patient Diaries in	2.5	52
105	Advanced PD: Data from an Observational Study. PLoS ONE, 2016, 11, e0161559.	2.0	52
166	GaitPy: An Open-Source Python Package for Gait Analysis Using an Accelerometer on the Lower Back. Journal of Open Source Software, 2019, 4, 1778.	4.6	28
167	The Impact of Reducing the Number of Wearable Devices on Measuring Gait in Parkinson Disease: Noninterventional Exploratory Study. JMIR Rehabilitation and Assistive Technologies, 2020, 7, e17986.	2.2	13
168	Recent Advances in Quantitative Gait Analysis Using Wearable Sensors: A Review. IEEE Sensors Journal, 2021, 21, 26470-26487.	4.7	13
169	A Transparent Method for Step Detection Using an Acceleration Threshold. Journal for the Measurement of Physical Behaviour, 2021, 4, 311-320.	0.8	8
170	Wearable devices for tracking physical activity in the community after an acquired brain injury: A systematic review. PM and R, 2022, 14, 1207-1218.	1.6	8
171	Surrogates for rigidity and PIGD MDS-UPDRS subscores using wearable sensors. Gait and Posture, 2022, 91, 186-191.	1.4	10
173	Investigating the AX6 inertial-based wearable for instrumented physical capability assessment of young adults in a low-resource setting. Smart Health, 2021, 22, 100220.	3.2	4
175	Towards Fuzzy Context-Aware Automatic Gait Assessments in Free-Living Environments. Advances in Intelligent Systems and Computing, 2022, , 463-474.	0.6	2
176	Bi-Anodal Transcranial Direct Current Stimulation Combined With Treadmill Walking Decreases Motor Cortical Activity in Young and Older Adults. Frontiers in Aging Neuroscience, 2021, 13, 739998.	3.4	5
177	Seamless Temporal Gait Evaluation during Walking and Running Using Two IMU Sensors. , 2021, 2021, 6835-6840.		5
178	Predicting the Progression of Parkinson's Disease MDS-UPDRS-III Motor Severity Score from Gait Data using Deep Learning. , 2021, 2021, 249-252.		1
179	Free-Living Gait Cadence Measured by Wearable Accelerometer: AÂPromising Alternative to Traditional Measures of Mobility for Assessing Fall Risk. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2023, 78, 802-810.	3.6	7
180	A Deep Learning Method to Detect Parkinson's Disease from MRI Slices. SN Computer Science, 2022, 3, 1.	3.6	1
181	Factors Influencing Habitual Physical Activity in Parkinson's Disease: Considering the Psychosocial State and Wellbeing of People with Parkinson's and Their Carers. Sensors, 2022, 22, 871.	3.8	5
183	Gait Impairment in Traumatic Brain Injury: A Systematic Review. Sensors, 2022, 22, 1480.	3.8	20
185	Primitive Reflex Factors Influence Walking Gait in Young Children: An Observational Study. International Journal of Environmental Research and Public Health, 2022, 19, 4070.	2.6	4
186	Investigating the Impact of Environment and Data Aggregation by Walking Bout Duration on Parkinson's Disease Classification Using Machine Learning. Frontiers in Aging Neuroscience, 2022, 14, 808518.	3.4	9

ARTICLE IF CITATIONS # Using Skeleton Correction to Improve Flash Lidar-based Gait Recognition. Applied Artificial 187 3.2 2 Intelligence, 2022, 36, . Parkinson's disease diagnosis using neural networks: Survey and comprehensive evaluation. 188 8.6 Information Processing and Management, 2022, 59, 102909. Comprehensive validation of a wearable foot sensor system for estimating spatiotemporal gait 189 parameters by simultaneous three-dimensional optical motion analysis. BMC Sports Science, Medicine 1.7 3 and Rehabilitation, 2022, 14, 71. mVEGAS – Mobile Smartphone-Based Spatiotemporal Gait Analysis in Healthy and Ataxic Gait Disorders. SSRN Electronic Journal, 0, , . Sensor Integration for Gait Analysis., 2022,,. 194 1 The Acute Influence of Whole-Body Cryotherapy on Electromyographic Signals and Jumping Tasks. Applied Sciences (Switzerland), 2022, 12, 5020. 2.5 Acceptability of an In-home Multimodal Sensor Platform for Parkinson Disease: Nonrandomized 196 2.0 6 Qualitative Study. JMIR Human Factors, 2022, 9, e36370. Personalised Gait Recognition for People with Neurological Conditions. Sensors, 2022, 22, 3980. 3.8 A Single Wearable Sensor for Gait Analysis in Parkinson's Disease: A Preliminary Study. Applied 198 2.5 3 Sciences (Switzerland), 2022, 12, 5486. Free-living monitoring of ambulatory activity after treatments for lower extremity musculoskeletal 199 cancers using an accelerometer-based wearable – a new paradigm to outcome assessment in 1.8 musculoskeletal oncology?. Disability and Rehabilitation, 0, , 1-10. Identifying and characterising sources of variability in digital outcome measures in Parkinson's 200 10.9 5 disease. Npj Digital Medicine, 2022, 5, . mVEGAS – mobile smartphone-based spatiotemporal gait analysis in healthy and ataxic gait disorders. 1.4 Gait and Posture, 2022, 97, 80-85. Parkinson's disease multimodal complex treatment improves gait performance: an exploratory wearable digital device-supported study. Journal of Neurology, 2022, 269, 6067-6085. 202 3.6 3 Stable Sparse Classifiers predict cognitive impairment from gait patterns. Frontiers in Psychology, 0, 2.1 Sensor technology with gait as a diagnostic tool for assessment of Parkinson's disease: a survey. 204 3.9 1 Multimedia Tools and Applications, 2023, 82, 10211-10247. Deep Learning for Daily Monitoring of Parkinson's Disease Outside the Clinic Using Wearable Sensors. 3.8 Sensors, 2022, 22, 6831. Field based assessment of a tri-axial accelerometers validity to identify steps and reliability to 206 2.8 1 quantify external load. Frontiers in Physiology, 0, 13, . Temporal Variation Quantification During Cognitive Dual-Task Gait Using Two IMU Sensors., 2022, , .

#	Article	IF	CITATIONS
208	Towards personalized environmentâ€aware outdoor gait analysis using a smartphone. Expert Systems, 2023, 40, .	4.5	2
209	Walking parameters of older adults from a lower back inertial measurement unit, a 6-year longitudinal observational study. Frontiers in Aging Neuroscience, 0, 14, .	3.4	5
211	Orang Asli Health and Lifeways Project (OA HeLP): a cross-sectional cohort study protocol. BMJ Open, 2022, 12, e058660.	1.9	0
212	Validity of the Baiobit Inertial Measurements Unit for the Assessment of Vertical Double- and Single-Leg Countermovement Jumps in Athletes. International Journal of Environmental Research and Public Health, 2022, 19, 14720.	2.6	2
213	Smartphone-based gait and balance accelerometry is sensitive to age and correlates with clinical and kinematic data. Gait and Posture, 2023, 100, 57-64.	1.4	9
214	Data Analytics of Gait Monitoring from Parkinson's Disease Patients. , 2022, , .		0
215	Mobility recorded by wearable devices and gold standards: the Mobilise-D procedure for data standardization. Scientific Data, 2023, 10, .	5.3	8
216	Daily Posture Behavior Patterns Derived From Multitime-Scale Topic Models Using Wearable Triaxial Acceleration for Assessment of Concern About Falling. IEEE Sensors Journal, 2023, 23, 6350-6359.	4.7	0
217	Validity and reliability of the Apple Health app on iPhone for measuring gait parameters in children, adults, and seniors. Scientific Reports, 2023, 13, .	3.3	4
218	Safety and tolerability of adjunct non-invasive vagus nerve stimulation in people with parkinson's: a study protocol. BMC Neurology, 2023, 23, .	1.8	3
219	Feasibility and usability of a digital health technology system to monitor mobility and assess medication adherence in mild-to-moderate Parkinson's disease. Frontiers in Neurology, 0, 14, .	2.4	5
220	A scoping review of neurodegenerative manifestations in explainable digital phenotyping. Npj Parkinson's Disease, 2023, 9, .	5.3	5
221	IoT-Enabled Gait Assessment: The Next Step for Habitual Monitoring. Sensors, 2023, 23, 4100.	3.8	5
222	Wearable systems in movement disorders. International Review of Movement Disorders, 2023, , 93-113.	0.1	1
223	Assessing real-world gait with digital technology? Validation, insights and recommendations from the Mobilise-D consortium. Journal of NeuroEngineering and Rehabilitation, 2023, 20, .	4.6	11
225	Enhancing remote monitoring and classification of motor state in Parkinson's disease using Wearable Technology and Machine Learning. , 2023, , .		1
226	An Exploration of Wearable Device Features Used in UK Hospital Parkinson Disease Care: Scoping Review. Journal of Medical Internet Research, 0, 25, e42950.	4.3	1
227	Translating digital healthcare to enhance clinical management: a protocol for an observational study using a digital health technology system to monitor medication adherence and its effect on mobility in people with Parkinson's. BMJ Open, 2023, 13, e073388.	1.9	3

#	Article	IF	CITATIONS
228	Can Digital Mobility Assessment Enhance the Clinical Assessment of Disease Severity in Parkinson's Disease?. Journal of Parkinson's Disease, 2023, 13, 999-1009.	2.8	0
229	Relationship between gait parameters and cognitive indexes in adult aging. PLoS ONE, 2023, 18, e0291963.	2.5	0
230	The Role of Multi-Sensor Measurement in the Assessment of Movement Quality: A Systematic Review. Sports Medicine, 0, , .	6.5	0
231	Ecological validity of a deep learning algorithm to detect gait events from real-life walking bouts in mobility-limiting diseases. Frontiers in Neurology, 0, 14, .	2.4	0
232	Walking Bout Detection for People Living in Long Residential Care: A Computationally Efficient Algorithm for a 3-Axis Accelerometer on the Lower Back. Sensors, 2023, 23, 8973.	3.8	0
233	Impaired night-time mobility in patients with Parkinson's disease: a systematic review. Frontiers in Aging Neuroscience, 0, 15, .	3.4	0
234	Gait on the Edge: A Proposed Wearable for Continuous Real-Time Monitoring Beyond the Laboratory. IEEE Sensors Journal, 2023, 23, 29656-29666.	4.7	0
235	Effects of an Exercise Program to Reduce Falls in Older People Living in Long-Term Care: A Randomized Controlled Trial. Journal of the American Medical Directors Association, 2023, , .	2.5	1
236	Validation of algorithms for calculating spatiotemporal gait parameters during continuous turning using lumbar and foot mounted inertial measurement units. Journal of Biomechanics, 2024, 162, 111907.	2.1	0
237	Spatial-Temporal Analysis of Gait in Amyotrophic Lateral Sclerosis Using Foot-Worn Inertial Sensors: An Observational Study. Digital Biomarkers, 0, , 1-1.	4.4	0
238	Identification of Fatigue and Sleepiness in Immune and Neurodegenerative Disorders from Measures of Real-World Gait Variability. , 2023, , .		0
239	Real-world characterization of vestibular contributions during locomotion. Frontiers in Human Neuroscience, 0, 17, .	2.0	0
240	Characterization of Walking in Mild Parkinson's Disease: Reliability, Validity and Discriminant Ability of the Six-Minute Walk Test Instrumented with a Single Inertial Sensor. Sensors, 2024, 24, 662.	3.8	0
241	Mobilise-D insights to estimate real-world walking speed in multiple conditions with a wearable device. Scientific Reports, 2024, 14, .	3.3	1
242	Novel analytics in the management of movement disorders. , 2024, , 67-88.		0
243	Developing a novel dual-injection FDG-PET imaging methodology to study the functional neuroanatomy of gait. NeuroImage, 2024, 288, 120531.	4.2	0
244	Jumping Motor Skills in Typically Developing Preschool Children Assessed Using a Battery of Tests. Sensors, 2024, 24, 1344.	3.8	0
245	Considering and understanding developmental and deployment barriers for wearable technologies in neurosciences. Frontiers in Neuroscience, 0, 18, .	2.8	0

#	Article	IF	CITATIONS
246	Gait Analysis in Patients with Symptomatic Pes Planovalgus Following Subtalar Arthroereisis with the Talus Screw. Indian Journal of Orthopaedics, 0, , .	1.1	0