Cyclic Di-GMP-Regulated Periplasmic Proteolysis of a F Secretion System Substrate

Journal of Bacteriology 198, 66-76 DOI: 10.1128/jb.00369-15

Citation Report

#	Article	IF	CITATIONS
1	Contribution of Physical Interactions to Signaling Specificity between a Diguanylate Cyclase and Its Effector. MBio, 2015, 6, e01978-15.	1.8	65
2	Iron oxide nanoparticle-mediated hyperthermia stimulates dispersal in bacterial biofilms and enhances antibiotic efficacy. Scientific Reports, 2015, 5, 18385.	1.6	97
3	Controlling the Connections of Cells to the Biofilm Matrix. Journal of Bacteriology, 2016, 198, 12-14.	1.0	14
4	Computational and Experimental Evaluation of Designed Î ² -Cap Hairpins Using Molecular Simulations and Kinetic Network Models. Journal of Chemical Information and Modeling, 2017, 57, 1609-1620.	2.5	9
5	Versatile modes of cellular regulation via cyclic dinucleotides. Nature Chemical Biology, 2017, 13, 350-359.	3.9	99
6	Probing Protein–Protein Interactions with Genetically Encoded Photoactivatable Cross-Linkers. Methods in Molecular Biology, 2017, 1657, 331-345.	0.4	2
7	Stable Signal Peptides and the Response to Secretion Stress in <i>Staphylococcus aureus</i> . MBio, 2017, 8, .	1.8	5
8	Two-Partner Secretion: Combining Efficiency and Simplicity in the Secretion of Large Proteins for Bacteria-Host and Bacteria-Bacteria Interactions. Frontiers in Cellular and Infection Microbiology, 2017, 7, 148.	1.8	92
9	The EAL-domain protein FcsR regulates flagella, chemotaxis and type III secretion system in Pseudomonas aeruginosa by a phosphodiesterase independent mechanism. Scientific Reports, 2017, 7, 10281.	1.6	19
10	An N-Terminal Retention Module Anchors the Giant Adhesin LapA of Pseudomonas fluorescens at the Cell Surface: a Novel Subfamily of Type I Secretion Systems. Journal of Bacteriology, 2018, 200, .	1.0	44
11	CdrA Interactions within the Pseudomonas aeruginosa Biofilm Matrix Safeguard It from Proteolysis and Promote Cellular Packing. MBio, 2018, 9, .	1.8	76
12	Type 1 Does the Two-Step: Type 1 Secretion Substrates with a Functional Periplasmic Intermediate. Journal of Bacteriology, 2018, 200, .	1.0	44
13	Regulation of Protein Secretion Systems Mediated by Cyclic Diguanylate in Plant-Interacting Bacteria. Frontiers in Microbiology, 2019, 10, 1289.	1.5	11
14	Multiple Roles of c-di-GMP Signaling in Bacterial Pathogenesis. Annual Review of Microbiology, 2019, 73, 387-406.	2.9	101
15	Confocal Laser Scanning Microscopy for Analysis of Pseudomonas aeruginosa Biofilm Architecture and Matrix Localization. Frontiers in Microbiology, 2019, 10, 677.	1.5	81
16	A Conserved Regulatory Circuit Controls Large Adhesins in Vibrio cholerae. MBio, 2019, 10, .	1.8	29
17	RTX Adhesins are Key Bacterial Surface Megaproteins in the Formation of Biofilms. Trends in Microbiology, 2019, 27, 453-467.	3.5	30
18	Untethering and Degradation of the Polysaccharide Matrix Are Essential Steps in the Dispersion Response of <i>Pseudomonas aeruginosaclia Biofilms, Journal of Bacteriology, 2020, 202</i>	1.0	33

#	Article	IF	CITATIONS
19	The Versatile Pseudomonas aeruginosa Biofilm Matrix Protein CdrA Promotes Aggregation through Different Extracellular Exopolysaccharide Interactions. Journal of Bacteriology, 2020, 202, .	1.0	53
20	From Input to Output: The Lap/c-di-GMP Biofilm Regulatory Circuit. Annual Review of Microbiology, 2020, 74, 607-631.	2.9	39
21	Surface Sensing and Adaptation in Bacteria. Annual Review of Microbiology, 2020, 74, 735-760.	2.9	49
22	Biofilm dispersion: The key to biofilm eradication or opening Pandora's box?. Biofilm, 2020, 2, 100027.	1.5	76
23	MapA, a Second Large RTX Adhesin Conserved across the Pseudomonads, Contributes to Biofilm Formation by Pseudomonas fluorescens. Journal of Bacteriology, 2020, 202, .	1.0	18
25	Searching for the Secret of Stickiness: How Biofilms Adhere to Surfaces. Frontiers in Microbiology, 2021, 12, 686793.	1.5	24
26	Architecture of cell–cell junctions in situ reveals a mechanism for bacterial biofilm inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	22
27	ExlA Pore-Forming Toxin: Localization at the Bacterial Membrane, Regulation of Secretion by Cyclic-Di-GMP, and Detection In Vivo. Toxins, 2021, 13, 645.	1.5	2
28	The anti-cancerous drug doxorubicin decreases the c-di-GMP content in Pseudomonas aeruginosa but promotes biofilm formation. Microbiology (United Kingdom), 2016, 162, 1797-1807.	0.7	17
29	Pseudomonas aeruginosa cells attached to a surface display a typical proteome early as 20 minutes of incubation. PLoS ONE, 2017, 12, e0180341.	1.1	32
30	Coincidence detection and bi-directional transmembrane signaling control a bacterial second messenger receptor. ELife, 2016, 5, .	2.8	23
33	ExlA: A New Contributor to Pseudomonas aeruginosa Virulence. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	1
34	Phenotypic and integrated analysis of a comprehensive Pseudomonas aeruginosa PAO1 library of mutants lacking cyclic-di-GMP-related genes. Frontiers in Microbiology, 0, 13, .	1.5	5
35	Identification of Cyclic-di-GMP-Modulating Protein Residues by Bidirectionally Evolving a Social Behavior in Pseudomonas fluorescens. MSystems, 2022, 7, .	1.7	1
36	Controlling Biofilm Development Through Cyclic di-GMP Signaling. Advances in Experimental Medicine and Biology, 2022, , 69-94.	0.8	11
37	Biofilm Detachment and Its Implication in Spreading Biofilm-Related Infections. , 2023, , 3-13.		1
38	Impact of c-di-GMP on the Extracellular Proteome of Rhizobium etli. Biology, 2023, 12, 44.	1.3	3
42	Exploring Innovative Approaches to Isolate a One-Component c-di-GMP Transducer: A Pilot Study. Advances in Experimental Medicine and Biology, 2023, , .	0.8	ο

CITATION REPORT

ARTICLE

IF CITATIONS