A combined experimental and computational study of t dehydration to 5-hydroxymethylfurfural in dimethylsu PO43â^'/niobic acid, or sulfuric acid catalysts

Applied Catalysis B: Environmental 181, 874-887 DOI: 10.1016/j.apcatb.2014.10.056

Citation Report

#	Article	IF	CITATIONS
1	Valorization of food waste into hydroxymethylfurfural: Dual role of metal ions in successive conversion steps. Bioresource Technology, 2016, 219, 338-347.	4.8	98
2	One-pot synthesis of 2,5-diformylfuran from fructose using a magnetic bi-functional catalyst. RSC Advances, 2016, 6, 25678-25688.	1.7	41
3	Microwave-assisted dehydration of fructose and inulin to HMF catalyzed by niobium and zirconium phosphate catalysts. Applied Catalysis B: Environmental, 2017, 206, 364-377.	10.8	101
4	Acidic Zeoliteâ€L as a Highly Efficient Catalyst for Dehydration of Fructose to 5â€Hydroxymethylfurfural in Ionic Liquid. ChemSusChem, 2017, 10, 1669-1674.	3.6	52
5	Catalytic Dehydration of Fructose into 5â€Hydroxymethylfurfural by a DMSOâ€like Polymeric Solid Organocatalyst. ChemCatChem, 2017, 9, 3218-3225.	1.8	25
6	Conversion of biomass to hydroxymethylfurfural: A review of catalytic systems and underlying mechanisms. Bioresource Technology, 2017, 238, 716-732.	4.8	400
7	The catalytic effect of Al-KIT-5 and KIT-5-SO3H on the conversion of fructose to 5-hydroxymethylfurfural. Research on Chemical Intermediates, 2017, 43, 5507-5521.	1.3	15
8	Synthesis of flake-like mesoporous silicate having multiple metal centers and catalytic application for conversion of D-(-)-fructose into fine chemicals. Materials Chemistry and Physics, 2017, 200, 295-307.	2.0	5
9	Ordered mesoporous Nb–W oxides for the conversion of glucose to fructose, mannose and 5-hydroxymethylfurfural. Applied Catalysis B: Environmental, 2017, 200, 611-619.	10.8	93
10	Solvent-enabled control of reactivity for liquid-phase reactions of biomass-derived compounds. Nature Catalysis, 2018, 1, 199-207.	16.1	211
11	Synthesis of HMF from fructose using Purolite® strong acid catalyst: Comparison between BTR and PBR reactor type for kinetics data acquisition. Molecular Catalysis, 2018, 458, 180-188.	1.0	21
12	Universal kinetic solvent effects in acid-catalyzed reactions of biomass-derived oxygenates. Energy and Environmental Science, 2018, 11, 617-628.	15.6	122
13	Tin phosphate as a heterogeneous catalyst for efficient dehydration of glucose into 5-hydroxymethylfurfural in ionic liquid. Applied Catalysis B: Environmental, 2018, 224, 183-193.	10.8	142
14	Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability. Chemical Reviews, 2018, 118, 505-613.	23.0	898
15	Synthesis of a Homogeneous Propyl Sulfobetaine-Tungstophosphoric Acid Catalyst with Tunable Acidic Strength and Its Application to Waste Wood Hydrolysis. Catalysis Letters, 2018, 148, 3269-3279.	1.4	0
16	Unifying Mechanistic Analysis of Factors Controlling Selectivity in Fructose Dehydration to 5-Hydroxymethylfurfural by Homogeneous Acid Catalysts in Aprotic Solvents. ACS Catalysis, 2018, 8, 5591-5600.	5.5	73
17	Highly Selective Conversion of HMF to 1â€hydroxy―2,5â€hexanedione on Pd/MILâ€101(Cr). ChemistrySelect, 2019, 4, 11165-11171.	0.7	17
18	Condensed Phase Deactivation of Solid BrÃ,nsted Acids in the Dehydration of Fructose to Hydroxymethylfurfural. ACS Catalysis, 2019, 9, 11568-11578.	5.5	19

#	ARTICLE Highly active niobium-loaded montmorillonite catalysts for the production of	IF	Citations
19	5-hydroxymethylfurfural from glucose. Green Chemistry, 2019, 21, 3930-3939.	4.6	60
20	Efficient conversion of fructose to 5â€hydroxymethylfurfural by functionalized γâ€Al ₂ O ₃ beads. Applied Organometallic Chemistry, 2019, 33, e4821.	1.7	8
21	Examining Acid Formation During the Selective Dehydration of Fructose to 5â€Hydroxymethylfurfural in Dimethyl Sulfoxide and Water. ChemSusChem, 2019, 12, 2211-2219.	3.6	35
22	Efficient catalytic conversion of glucose into 5-hydroxymethylfurfural by aluminum oxide in ionic liquid. Applied Catalysis B: Environmental, 2019, 253, 1-10.	10.8	85
23	Dehydration of fructose into 5-hydroxymethylfurfural in a biphasic system using EDTA as a temperature-responsive catalyst. Applied Catalysis A: General, 2019, 569, 93-100.	2.2	23
24	Controlling the Reaction Networks for Efficient Conversion of Glucose into 5â€Hydroxymethylfurfural. ChemSusChem, 2020, 13, 4812-4832.	3.6	73
25	Efficacy of clay catalysts for the dehydration of fructose to 5-hydroxymethyl furfural in biphasic medium. Journal of Porous Materials, 2020, 27, 1691-1700.	1.3	12
26	Recent advances in catalytic and autocatalytic production of biomass-derived 5-hydroxymethylfurfural. Renewable and Sustainable Energy Reviews, 2020, 134, 110317.	8.2	69
27	Self-assembled tetramethyl cucurbit[6]uril–polyoxometalate nanocubes as efficient and recyclable catalysts for the preparation of propyl gallate. New Journal of Chemistry, 2020, 44, 11895-11900.	1.4	9
28	Influence of Dimethylsulfoxide and Dioxygen in the Fructose Conversion to 5-Hydroxymethylfurfural Mediated by Glycerol's Acidic Carbon. Frontiers in Chemistry, 2020, 8, 263.	1.8	22
29	Mechanistic aspects of saccharide dehydration to furan derivatives for reaction media design. RSC Advances, 2020, 10, 23720-23742.	1.7	24
30	Preparation of 1-Hydroxy-2,5-hexanedione from HMF by the Combination of Commercial Pd/C and Acetic Acid. Molecules, 2020, 25, 2475.	1.7	17
31	Achieving effective fructose-to-5-hydroxymethylfurfural conversion via facile synthesis of large surface phosphate-functionalized porous organic polymers. Applied Catalysis B: Environmental, 2020, 271, 118942.	10.8	43
32	5-Hydroxymethylfurfural Synthesis from Monosaccharides by a Biphasic Reaction–Extraction System Using a Microreactor and Extractor. ACS Omega, 2020, 5, 9384-9390.	1.6	26
33	Ultra-Fast Selective Fructose Dehydration Promoted by a Kraft Lignin Sulfonated Carbon Under Microwave Heating. Catalysis Letters, 2021, 151, 398-408.	1.4	5
34	Biorefinery roadmap based on catalytic production and upgrading 5-hydroxymethylfurfural. Green Chemistry, 2021, 23, 119-231.	4.6	223
35	Lattice-water-induced acid sites in tungsten oxide hydrate for catalyzing fructose dehydration. Catalysis Communications, 2021, 149, 106254.	1.6	9
36	Emerging heterogeneous catalysts for biomass conversion: studies of the reaction mechanism. Chemical Society Reviews, 2021, 50, 11270-11292.	18.7	102

CITATION REPORT

#	Article	IF	CITATIONS
37	Waste PolyethyleneÂterephthalate Derived Carbon Dots for Separable Production of 5-Hydroxymethylfurfural at Low Temperature. Catalysis Letters, 2021, 151, 2436-2444.	1.4	14
38	Insight into Fructose Dehydration over Lewis Acid α u ₂ P ₂ O ₇ Catalyst. ChemNanoMat, 2021, 7, 292-298.	1.5	6
39	Mechanistic studies on the formation of 5-hydroxymethylfurfural from the sugars fructose and glucose. Pure and Applied Chemistry, 2021, 93, 463-478.	0.9	10
40	Efficient Conversion of Carbohydrates to 5-Hydroxymethylfurfural Over Poly(4-Styrenesulfonic Acid) Catalyst. Catalysis Letters, 0, , 1.	1.4	3
41	Leaf-derived sulfonated carbon dots: efficient and recoverable catalysts to synthesize 5-hydroxymethylfurfural from fructose. Materials Today Chemistry, 2021, 20, 100423.	1.7	8
42	Conversion of plant biomass to furan derivatives and sustainable access to the new generation of polymers, functional materials and fuels. Russian Chemical Reviews, 2017, 86, 357-387.	2.5	85
44	Hafnium-tin composite oxides as effective synergistic catalysts for the conversion of glucose into 5-hydroxymethylfurfural. Fuel, 2022, 311, 122628.	3.4	14
45	Cellulose interunit linkages and model compounds. , 2022, , 41-52.		Ο
46	Efficient 5-Hydroxymethylfurfural Synthesis from Carbohydrates and Food Wastes in Aqueous-Natural Deep Eutectic Solvent (A-Nades) with Robust Al2o3 or Al(Oh)3. SSRN Electronic Journal, 0, , .	0.4	0
47	Efficient 5-hydroxymethylfurfural synthesis from carbohydrates and food wastes in aqueous-natural deep eutectic solvent (A-NADES) with robust Al2O3 or Al(OH)3. Fuel, 2022, 326, 125062.	3.4	7
48	Insights into pathways and solvent effects of fructose dehydration to 5-hydroxymethylfurfural in acetone–water solvent. Chemical Engineering Science, 2023, 267, 118352.	1.9	5
49	One Pot Synthesis of Cubic Mesoporous Silica KITâ€6 Functionalized with Sulfonic Acid for Catalytic Dehydration of Fructose to 5â€Hydroxymethylfurfural. ChemistrySelect, 2022, 7, .	0.7	1
50	Bioderived furanic compounds as replacements for BTX in chemical intermediate applications. , 2023, 1, 698-745.		1
51	Hybrid organic–inorganic nanoparticles with associated functionality for catalytic transformation of biomass substrates. RSC Advances, 2023, 13, 10144-10156.	1.7	0
52	How intermediate analysis inspires selectivity control for the catalytic reductive amination of carbohydrates toward ethylene polyamines. Chem Catalysis, 2023, , 100602.	2.9	0

CITATION REPORT