Evaluation of Ag nanoparticle coated air filter against ac efficiency with dust loading

Journal of Hazardous Materials 301, 547-553

DOI: 10.1016/j.jhazmat.2015.09.017

Citation Report

#	Article	IF	CITATIONS
1	Application of corona discharge-generated air ions for filtration of aerosolized virus and inactivation of filtered virus. Journal of Aerosol Science, 2017, 107, 31-40.	1.8	57
2	Iron oxide nanowire-based filter for inactivation of airborne bacteria. Environmental Science: Nano, 2018, 5, 1096-1106.	2.2	30
3	Bacteria Elimination and SO ₂ Filtration Using Spacer Fabric Loaded With Natural Zeoliteâ€Nanosilver Composites. Clean - Soil, Air, Water, 2018, 46, 1700240.	0.7	1
4	Microbial Nanobionics. Nanotechnology in the Life Sciences, 2019, , .	0.4	15
5	Silver nanoparticles as an effective disinfectant: A review. Materials Science and Engineering C, 2019, 97, 954-965.	3.8	473
6	A review on coronavirus survivability on material's surfaces: present research scenarios, technologies and future directions. Surface Engineering, 2020, 36, 1226-1239.	1.1	14
7	Antimicrobial Nanomaterials and Coatings: Current Mechanisms and Future Perspectives to Control the Spread of Viruses Including SARS-CoV-2. ACS Nano, 2020, 14, 12341-12369.	7.3	268
8	Advanced Design of Fiber-Based Particulate Filters: Materials, Morphology, and Construction of Fibrous Assembly. Polymers, 2020, 12, 1714.	2.0	44
9	Nanotechnology as an Alternative to Reduce the Spread of COVID-19. Challenges, 2020, 11, 15.	0.9	59
11	Nanotechnology Responses to COVIDâ€19. Advanced Healthcare Materials, 2020, 9, e2000979.	3.9	128
12	Comprehensive study of stability of copper oxide nanoparticles in complex biological media. Journal of Molecular Liquids, 2020, 319, 114086.	2.3	8
13	Advances in Antiviral Material Development. ChemPlusChem, 2020, 85, 2105-2128.	1.3	27
14	Toward Nanotechnology-Enabled Approaches against the COVID-19 Pandemic. ACS Nano, 2020, 14, 6383-6406.	7.3	455
15	Covid-19: Protecting Worker Health. Annals of Work Exposures and Health, 2020, 64, 461-464.	0.6	75
16	Determination of Air Filter Anti-Viral Efficiency against an Airborne Infectious Virus. Journal of Hazardous Materials, 2020, 396, 122640.	6.5	21
17	Nanomaterials for Airborne Virus Inactivation: A Short Review. Aerosol Science and Engineering, 2021, 5, 1-11.	1.1	39
18	Reduction of silver ions to form silver nanoparticles by redox-active organic molecules: coupled impact of the redox state and environmental factors. Environmental Science: Nano, 2021, 8, 269-281.	2.2	13
19	Application of Nanotechnology in the COVID-19 Pandemic. International Journal of Nanomedicine, 2021, Volume 16, 623-649.	3.3	60

#	Article	IF	CITATIONS
20	Novel silver-based nanomaterials for control of mycobiota and biocide analytical regulations in agri-food sector., 2021,, 187-216.		0
21	The Nanotechnology-COVID-19 Interface. SpringerBriefs in Applied Sciences and Technology, 2021, , 31-58.	0.2	0
22	Supraparticles for Sustainability. Advanced Functional Materials, 2021, 31, 2011089.	7.8	31
23	Recent Advances on Nanomaterials to COVIDâ€19 Management: A Systematic Review on Antiviral/Virucidal Agents and Mechanisms of SARSâ€CoVâ€2 Inhibition/Inactivation. Global Challenges, 2021, 5, 2000115.	1.8	47
24	Risk assessment of corona virus: Implementing hierarchy of hazard control in workplaces. Archives of Preventive Medicine, 2021, , 003-006.	0.0	0
25	Nanostructured composite coating endowed with antiviral activity against human respiratory viruses deposited on fibre-based air filters. Surface and Coatings Technology, 2021, 409, 126873.	2.2	41
26	COVID-19 infection and nanomedicine applications for development of vaccines and therapeutics: An overview and future perspectives based on polymersomes. European Journal of Pharmacology, 2021, 896, 173930.	1.7	23
27	Fabrication of aerosol-based nanoparticles and their applications in biomedical fields. Journal of Pharmaceutical Investigation, 2021, 51, 361-375.	2.7	28
28	Using circular economy principles to recycle materials in guiding the design of a wet scrubber-reactor for indoor air disinfection from coronavirus and other pathogens. Environmental Technology and Innovation, 2021, 22, 101429.	3.0	10
29	Make it clean, make it safe: A review on virus elimination via adsorption. Chemical Engineering Journal, 2021, 412, 128682.	6.6	40
30	Are photocatalytic processes effective for removal of airborne viruses from indoor air? A narrative review. Environmental Science and Pollution Research, 2021, 28, 43007-43020.	2.7	22
31	Face masks against COVID-19: Standards, efficacy, testing and decontamination methods. Advances in Colloid and Interface Science, 2021, 292, 102435.	7.0	74
32	Fabrication of silver nanowire coated fibrous air filter medium via a two-step process of electrospinning and electrospray for anti-bioaerosol treatment. Journal of Hazardous Materials, 2021, 411, 125043.	6.5	51
33	Innovative Nanotechnology a Boon for Fight Against Pandemic COVID–19. Frontiers in Nanotechnology, 2021, 3, .	2.4	4
34	Bumpy structured nanofibrous membrane as a highly efficient air filter with antibacterial and antiviral property. Science of the Total Environment, 2021, 777, 145768.	3.9	57
35	Biomedical Applications of Antiviral Nanohybrid Materials Relating to the COVID-19 Pandemic and Other Viral Crises. Polymers, 2021, 13, 2833.	2.0	8
36	Production of antimicrobial paper using nanosilver, nanocellulose, and chitosan from a coronavirus perspective. Tappi Journal, 2021, 20, 455-463.	0.2	0
37	Could Nanotechnology Help to End the Fight Against COVID-19? Review of Current Findings, Challenges and Future Perspectives. International Journal of Nanomedicine, 2021, Volume 16, 5713-5743.	3.3	26

#	ARTICLE	IF	Citations
38	Enhanced Medical and Community Face Masks with Antimicrobial Properties: A Systematic Review. Journal of Clinical Medicine, 2021, 10, 4066.	1.0	8
39	Effectiveness of the Nanosilver/TiO ₂ -Chitosan Antiviral Filter on the Removal of Viral Aerosols. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2021, 34, 293-302.	0.7	14
40	Role of different types of nanomaterials against diagnosis, prevention and therapy of COVID-19. Sustainable Cities and Society, 2021, 72, 103046.	5.1	25
41	Silver Nanoparticles - Preparation Methods and Anti-Bacterial/Viral Remedy Impacts against COVID $19.,0,.$		1
43	Antibacterial and anti-viral effects of silver nanoparticles in medicine against COVID-19—a review. Laser Physics, 2021, 31, 013001.	0.6	21
44	Smart textiles and wearable technologies – opportunities offered in the fight against pandemics in relation to current COVID-19 state. Reviews on Advanced Materials Science, 2020, 59, 487-505.	1.4	39
45	Research and Patents on Coronavirus and COVID-19: A Review. Recent Patents on Nanotechnology, 2020, 14, 328-350.	0.7	6
46	Dry Aerosol Coating of Anti-viral Particles on Commercial Air Filters Using a High-volume Flow Atomizer. Aerosol and Air Quality Research, 2019, 19, 1636-1644.	0.9	15
47	Biocide effect against SARS-CoV-2 and ESKAPE pathogens of a noncytotoxic silver-copper nanofilm. Biomedical Materials (Bristol), 2021, 17, .	1.7	9
48	Antimicrobial Nanocomposites for Improving Indoor Air Quality. Nanotechnology in the Life Sciences, 2019, , 253-267.	0.4	0
49	El papel de la nanociencia y la nanotecnologÃa en el marco de la pandemia de COVID-19. Mundo Nano Revista Interdisciplinaria En Nanociencia Y NanotecnologÃa, 2020, 14, 1e-29e.	0.1	0
50	Application of Nanotechnology in Detection and Prevention of COVID-19. Disaster Resilience and Green Growth, 2020, , 361-395.	0.2	1
51	Improving professional skills in a multidisciplinary team of undergraduate engineering students through project-based learning. Journal of Physics: Conference Series, 2021, 2102, 012001.	0.3	0
52	Nanotechnology: A Potential Weapon to Fight against COVIDâ€19. Particle and Particle Systems Characterization, 2022, 39, 2100159.	1.2	9
54	Recent advances on therapeutic potentials of gold and silver nanobiomaterials for human viral diseases. Current Research in Chemical Biology, 2022, 2, 100021.	1.4	8
55	COVIDâ€19: A systematic review and update on prevention, diagnosis, and treatment. MedComm, 2022, 3, e115.	3.1	30
56	Fabrication of air filters with advanced filtration performance for removal of viral aerosols and control the spread of COVID-19. Advances in Colloid and Interface Science, 2022, 303, 102653.	7.0	28
57	Nanoscience versus Viruses: The SARSâ€CoVâ€2 Case. Advanced Functional Materials, 2022, 32, 2107826.	7.8	8

#	ARTICLE	IF	Citations
58	Recent breakthroughs in nanostructured antiviral coating and filtration materials: a brief review. RSC Advances, 2022, 12, 16369-16385.	1.7	16
59	Nanofibers in Respiratory Masks: An Alternative to Prevent Pathogen Transmission. IEEE Transactions on Nanobioscience, 2023, 22, 685-701.	2.2	1
60	Application of nanotechnology in disaster prevention: An introduction. , 2022, , 3-17.		0
61	Nanotechnology-based approaches against COVID-19. , 2022, , 305-364.		O
62	Experimental and theoretical validation of nano filters fabricated through green synthesized silver nanoparticles. Polymers From Renewable Resources, 0, , 204124792211098.	0.8	0
63	A systemic review on liquid crystals, nanoformulations and its application for detection and treatment of SARS – CoV- 2 (COVID – 19). Journal of Molecular Liquids, 2022, 362, 119795.	2.3	4
64	Prussian Blue@Zeolitic imidazolate framework composite toward solar-triggered biodecontamination. Chemical Engineering Journal, 2023, 452, 138562.	6.6	0
65	Nano-treatment of HEPA filters in COVID-19 isolation rooms in an academic medical center in Saudi Arabia. Journal of Infection and Public Health, 2022, 15, 937-941.	1.9	1
66	Development of On-Demand Antiviral Electrostatic Precipitators with Electrothermal-Based Antiviral Surfaces against Airborne Virus Particles. Toxics, 2022, 10, 601.	1.6	2
67	Experimental studies of particle removal and probability of COVID-19 infection in passenger railcars. Journal of Occupational and Environmental Hygiene, 2023, 20, 1-13.	0.4	0
68	Electrothermal catalysis for heterogeneous reaction: Mechanisms and design strategies. Chemical Engineering Journal, 2023, 455, 140272.	6.6	5
69	An Overview of Diverse Strategies To Inactivate <i>Enterobacteriaceae</i> -Targeting Bacteriophages. EcoSal Plus, 2023, 11, .	2.1	2
70	Aspects of Nanotechnology for COVID-19 Vaccine Development and Its Delivery Applications. Pharmaceutics, 2023, 15, 451.	2.0	6
71	Current state-of-the-art review of nanotechnology-based therapeutics for viral pandemics: Special attention to COVID-19. Nanotechnology Reviews, 2023, 12, .	2.6	1
72	Virucidal activity of nanomaterials for the viruses: a SARS-CoV-2 case study., 2023,, 77-96.		0
73	Antimicrobial Nanomaterials as Advanced Coatings for Self-Sanitizing of Textile Clothing and Personal Protective Equipment. ACS Omega, 2023, 8, 8159-8171.	1.6	10
74	Silver Nanoparticles: Review of Antiviral Properties, Mechanism of Action and Applications. Microorganisms, 2023, 11, 629.	1.6	17
80	Recent Development and Importance of Nanoparticles in Disinfection and Pathogen Control. , 2023, , 83-106.		2

Article IF Citations