Clay minerals, iron/aluminum oxides, and their contrib soils $\hat{a} \varepsilon$ " A myth revisited

Geoderma 262, 213-226 DOI: 10.1016/j.geoderma.2015.08.036

Citation Report

#	Article	IF	CITATIONS
1	What is the P value of Siberian soils? Soil phosphorus status in south-western Siberia and comparison with a global data set. Biogeosciences, 2016, 13, 2493-2509.	1.3	16
2	Iron oxides and organic matter on soil phosphorus availability. Ciencia E Agrotecnologia, 2016, 40, 369-379.	1.5	193
3	Future challenges in coupled C–N–P cycle models for terrestrial ecosystems under global change: a review. Biogeochemistry, 2016, 131, 173-202.	1.7	75
4	Adsorption and desorption kinetics and phosphorus hysteresis in highly weathered soil by stirred flow chamber experiments. Soil and Tillage Research, 2016, 162, 46-54.	2.6	52
5	Fe–Al binary oxide nanosorbent: Synthesis, characterization and phosphate sorption property. Journal of Environmental Chemical Engineering, 2016, 4, 2458-2468.	3.3	49
6	XANES Demonstrates the Release of Calcium Phosphates from Alkaline Vertisols to Moderately Acidified Solution. Environmental Science & amp; Technology, 2016, 50, 4229-4237.	4.6	44
7	Evaluation of different approaches to describe the sorption and desorption of phosphorus in soils on experimental data. Science of the Total Environment, 2016, 571, 292-306.	3.9	11
8	Influence of loading rate and modes on infiltration of treated wastewater in soil-based constructed wetland. Environmental Technology (United Kingdom), 2017, 38, 163-174.	1.2	3
9	The effect of different pyrolysis temperatures on the speciation and availability in soil of P in biochar produced from the solid fraction of manure. Chemosphere, 2017, 169, 377-386.	4.2	80
10	Exploring the pathways of earthworm-induced phosphorus availability. Geoderma, 2017, 303, 99-109.	2.3	28
11	Chemical Distribution of Phosphorus in Soils used during the Development of Sorption Isotherms. Soil Science Society of America Journal, 2017, 81, 84-93.	1.2	16
12	Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition: A metaâ€analysis. Global Ecology and Biogeography, 2017, 26, 713-728.	2.7	196
13	Geochemical and microbial controls of the effect of citrate on phosphorus availability in a ferralsol. Geoderma, 2017, 291, 33-39.	2.3	18
14	Soil calcium significantly promotes uptake of inorganic arsenic by garland chrysanthemum (ChrysanthemumL coronarium) fertilized with chicken manure bearing roxarsone and its metabolites. Environmental Science and Pollution Research, 2017, 24, 16429-16439.	2.7	4
15	Phosphorus adsorption onto clay minerals and iron oxide with consideration of heterogeneous particle morphology. Science of the Total Environment, 2017, 605-606, 357-367.	3.9	84
16	Chemical Fractions of Phosphorus: The Effect of Soil Orders, Soil Properties, and Land Use. Communications in Soil Science and Plant Analysis, 2017, 48, 1319-1335.	0.6	5
17	Modelling the interactions between root system architecture, root functions and reactive transport processes in soil. Plant and Soil, 2017, 413, 161-180.	1.8	41
18	Nutrient Leaching When Soil Is Part of Plant Growth Media. Water (Switzerland), 2017, 9, 501.	1.2	4

#	Article	IF	CITATIONS
19	Using Topsoil Thickness to Improve Site‧pecific Phosphorus and Potassium Management on Claypan Soil. Agronomy Journal, 2017, 109, 2291-2301.	0.9	3
20	Alkalinized sewage sludge application improves fertility of acid soils. Ciencia E Agrotecnologia, 2017, 41, 483-493.	1.5	7
21	Release of Phosphorus Forms from Cover Crop Residues in Agroecological No-Till Onion Production. Revista Brasileira De Ciencia Do Solo, 2017, 41, .	0.5	6
22	Mechanism analysis of soil amelioration and phosphorus recovery by using a mineral soil conditioner in southern China. Journal of Soils and Sediments, 2018, 18, 1884-1895.	1.5	5
23	Ecologically relevant phosphorus pools in soils and their dynamics: The story so far. Geoderma, 2018, 325, 183-194.	2.3	111
24	Effects of a bacterivorous nematode on rice 32P uptake and root architecture in a high P-sorbing ferrallitic soil. Soil Biology and Biochemistry, 2018, 122, 39-49.	4.2	21
25	Organic P in temperate forest mineral soils as affected by humus form and mineralogical characteristics and its relationship to the foliar P content of European beech. Geoderma, 2018, 325, 162-171.	2.3	24
26	Phosphorus removal from eutrophic water using modified biochar. Science of the Total Environment, 2018, 633, 825-835.	3.9	100
27	Tailoring hydroxyapatite nanoparticles to increase their efficiency as phosphorus fertilisers in soils. Geoderma, 2018, 323, 116-125.	2.3	50
28	Adsorption and risk of phosphorus loss in soils in Amazonia. Journal of Soils and Sediments, 2018, 18, 917-928.	1.5	9
29	Persistent and widespread long-term phosphorus declines in Boreal lakes in Sweden. Science of the Total Environment, 2018, 613-614, 240-249.	3.9	60
30	Short-term impacts of forest clear-cut on P accessibility in soil microaggregates: An oxygen isotope study. Geoderma, 2018, 315, 59-64.	2.3	23
31	Soil solution phosphorus turnover: derivation, interpretation, and insights from a global compilation of isotope exchange kinetic studies. Biogeosciences, 2018, 15, 105-114.	1.3	39
32	Phosphorus adsorption and its relationship to the physical and chemical characteristics with different soil classes. African Journal of Agricultural Research Vol Pp, 2018, 13, 419-424.	0.2	2
33	Contrasting yield responses to phosphorus applications on mineral and organic soils from extensively managed grasslands: Implications for P management in high ecological status catchments. Journal of Plant Nutrition and Soil Science, 2018, 181, 861-869.	1.1	10
34	Cropping System, Landscape Position, and Topsoil Depth Affect Soil Fertility and Nutrient Buffering. Soil Science Society of America Journal, 2018, 82, 382-391.	1.2	7
35	Probing Oxytetracycline Sorption Mechanism on Kaolinite in a Single Ion and Binary Mixtures with Phosphate using In Situ ATRâ€FTIR Spectroscopy. Soil Science Society of America Journal, 2018, 82, 826-838.	1.2	7
36	Geochemical stability of acid-generating pyrrhotite tailings 4 to 5†years after addition of oxygen-consuming organic covers. Science of the Total Environment, 2018, 645, 1643-1655.	3.9	20

ARTICLE IF CITATIONS Phosphorus Leaching from an Organic and a Mineral Arable Soil in a Rainfall Simulation Study. 37 1.0 16 Journal of Environmental Quality, 2018, 47, 487-495. Soil microbial CNP and respiration responses to organic matter and nutrient additions: Evidence from 4.2 a tropical soil incubation. Soil Biology and Biochemistry, 2018, 122, 141-149. The Influence of Soil Moisture on Oxide Determination in Tropical Soils via Portable Xâ€ray 39 1.2 22 Fluorescence. Soil Science Society of America Journal, 2018, 82, 632-644. Plant growth, nutrients and potentially toxic elements in leaves of yerba mate clones in response to 0.3 phosphorus in acid soils. Anais Da Academia Brasileira De Ciencias, 2018, 90, 557-571. Enhancement of Kaolin Adsorption Affinity Toward Phosphate by Sequestrating Naturally Abundant 41 0.7 5 Ca/Mg From Seawater. Clean - Soil, Air, Water, 2018, 46, 1700662. A phosphorus-enriched biochar fertilizer from bio-fermentation waste: A potential alternative source 4.6 for phosphorus fertilizers. Journal of Cleaner Production, 2018, 196, 163-171. Transformation of Calcium Phosphates in Alkaline Vertisols by Acidified Incubation. Environmental 43 4.6 8 Science & amp; Technology, 2019, 53, 10131-10138. Short-term impacts of forest clear-cut on soil structure and consequences for organic matter 44 1.1 composition and nutrient speciation: A case study. PLoS ONE, 2019, 14, e0220476. Insights into 33phosphorus utilisation from Fe- and Al-hydroxides in Luvisol and Ferralsol subsoils. 45 0.6 5 Soil Research, 2019, 57, 447. Molecular-level understanding of phosphorus transformation with long-term phosphorus addition 2.3 and depletion in an alkaline soil. Geoderma, 2019, 353, 116-124. Crystallization of single and binary iron―and aluminum hydroxides affect phosphorus desorption. 47 4 1.1 Journal of Plant Nutrition and Soil Science, 2019, 182, 741-750. Large variations in readily-available phosphorus in casts of eight earthworm species are linked to cast 4.2 30 properties. Soil Biology and Biochemistry, 2019, 138, 107583. Sorption of Phosphorus from Fertilizer Mixture., 2019,,. 49 1 Effect of sheep manure-derived biochar on colloidal phosphorus release in soils from various land uses. Environmental Science and Pollution Research, 2019, 26, 36367-36379. 2.7 Do Aggregate Size Classes of the Subsurface Soil Horizon Have Different Chemical/Mineralogical 51 0.5 2 Properties?. Revista Brasileira De Ciencia Do Solo, 2019, 43, . Paddy Cultivation Significantly Alters Phosphorus Sorption Characteristics and Loss Risk in a Calcáreous Paddy Soil Chronósequence. Soil Science Society of America Journal, 2019, 83, 575-583. Phosphorus retention and availability in three contrasting soils amended with rice husk and corn cob 53 2.398 biochar at varying pyrolysis temperatures. Geoderma, 2019, 341, 10-17. P immobilizing materials for lake internal loading control: A review towards future developments. 54 6.6 Critical Reviews in Environmental Science and Technology, 2019, 49, 518-552.

#	Article	IF	CITATIONS
55	Phytoremediation and natural attenuation of sulfentrazone: mineralogy influence of three highly weathered soils. International Journal of Phytoremediation, 2019, 21, 652-662.	1.7	11
56	Plant availability of magnesium and phosphorus from struvite with concurrent nitrification inhibitor application. Soil Use and Management, 2019, 35, 675-682.	2.6	7
57	Adsorption of nitrate, phosphate, nickel and lead on soils: Risk of groundwater contamination. Ecotoxicology and Environmental Safety, 2019, 179, 182-187.	2.9	53
58	Phosphate Sorption Speciation and Precipitation Mechanisms on Amorphous Aluminum Hydroxide. Soil Systems, 2019, 3, 20.	1.0	36
59	Enhanced phosphate sequestration by Fe(<scp>iii</scp>) modified biochar derived from coconut shell. RSC Advances, 2019, 9, 10425-10436.	1.7	50
60	Calcium Uptake on Kaolinite and Gibbsite: Effects of Sulfate, pH, and Salt Concentration with Additional Insight from Second Harmonic Generation on Temperature Dependencies with Sapphire-Basal Planes and the Potential Relevance to Ice Nucleation. , 0, , .		0
61	Phosphate speciation on Al-substituted goethite: ATR-FTIR/2D-COS and CD-MUSIC modeling. Environmental Science: Nano, 2019, 6, 3625-3637.	2.2	25
62	Technological Challenges of Phosphorus Removal in High-Phosphorus Ores: Sustainability Implications and Possibilities for Greener Ore Processing. Sustainability, 2019, 11, 6787.	1.6	15
63	Strategic differences in phosphorus stabilization by alum and dolomite amendments in calcareous and red soils. Environmental Science and Pollution Research, 2019, 26, 4842-4854.	2.7	23
64	How fertile are earthworm casts? A meta-analysis. Geoderma, 2019, 338, 525-535.	2.3	133
65	Effect of organic matter on phosphorus adsorption and desorption in a black soil from Northeast China. Soil and Tillage Research, 2019, 187, 85-91.	2.6	210
66	Responses of soil phosphorus fractions after nitrogen addition in a subtropical forest ecosystem: Insights from decreased Fe and Al oxides and increased plant roots. Geoderma, 2019, 337, 246-255.	2.3	75
67	Phosphorus adsorption and desorption characteristics of different textural fluvo-aquic soils under long-term fertilization. Journal of Soils and Sediments, 2019, 19, 1306-1318.	1.5	21
68	Phosphorus availability and dynamics in soil affected by long-term ruzigrass cover crop. Geoderma, 2019, 337, 434-443.	2.3	26
69	Context-Dependency of Agricultural Legacies in Temperate Forest Soils. Ecosystems, 2019, 22, 781-795.	1.6	25
70	Transformation of clay minerals in nanoparticles of several zonal soils in China. Journal of Soils and Sediments, 2019, 19, 211-220.	1.5	20
71	Adsorption and precipitation of <i>myo</i> â€inositol hexakisphosphate onto kaolinite. European Journal of Soil Science, 2020, 71, 226-235.	1.8	16
72	Phosphorus acquisition processes in the field: study of faba bean cultivated on calcareous soils in Algeria. Archives of Agronomy and Soil Science, 2020, 66, 168-181.	1.3	10

#	Article	IF	CITATIONS
73	Almond and walnut shell-derived biochars affect sorption-desorption, fractionation, and release of phosphorus in two different soils. Chemosphere, 2020, 241, 124888.	4.2	33
74	Dynamics of phosphorus fractions in surface soils of different flooding wetlands before and after flow-sediment regulation in the Yellow River Estuary, China. Journal of Hydrology, 2020, 580, 124256.	2.3	34
75	Geochemistry and mineralogy of southwestern Lake Superior sediments with an emphasis on phosphorus lability. Journal of Soils and Sediments, 2020, 20, 1060-1073.	1.5	16
76	Phosphorus sorption and availability in an andosol after a decade of organic or mineral fertilizer applications: Importance of pH and organic carbon modifications in soil as compared to phosphorus accumulation. Chemosphere, 2020, 239, 124709.	4.2	75
77	Rootâ€induced soil deformation influences Fe, S and P: rhizosphere chemistry investigated using synchrotron XRF and XANES. New Phytologist, 2020, 225, 1476-1490.	3.5	44
78	Multiple-nutrient limitation of upland rainfed rice in ferralsols: a greenhouse nutrient-omission trial. Journal of Plant Nutrition, 2020, 43, 270-284.	0.9	22
79	Effects of different long-term cropping systems on phosphorus adsorption and desorption characteristics in red soils. Journal of Soils and Sediments, 2020, 20, 1371-1382.	1.5	25
80	Amendment type and Time of Addition Influence the Effect of Short-term Heating on Soil Respiration and Nutrient Availability. Journal of Soil Science and Plant Nutrition, 2020, 20, 431-438.	1.7	1
81	Activated dolomite phosphate rock fertilizers to reduce leaching of phosphorus and trace metals as compared to superphosphate. Journal of Environmental Management, 2020, 255, 109872.	3.8	22
82	Plant-Available Phosphorus in Highly Concentrated Fertilizer Bands: Effects of Soil Type, Phosphorus Form, and Coapplied Potassium. Journal of Agricultural and Food Chemistry, 2020, 68, 7571-7580.	2.4	37
83	Use of rapid small-scale column tests for simultaneous prediction of phosphorus and nitrogen retention in large-scale filters. Journal of Water Process Engineering, 2020, 37, 101473.	2.6	3
84	Adsorption thermodynamics and kinetics of Advanced Green Environmental Media (AGEM) for nutrient removal and recovery in agricultural discharge and stormwater runoff. Environmental Pollution, 2020, 266, 115172.	3.7	13
85	Synergistic effects of aluminum/iron oxides and clay minerals on nutrient removal and recovery in water filtration media. Journal of Cleaner Production, 2020, 275, 122728.	4.6	16
86	Adsorption of phosphate by halloysite (7 Ã) nanotubes (HNTs). Clay Minerals, 2020, 55, 184-193.	0.2	8
87	The Influence of Fly Ash Application on the Sorption-Desorption of Phosphate on Raised-Bed Soil of Tidal Swamplands. IOP Conference Series: Earth and Environmental Science, 2020, 499, 012003.	0.2	0
88	Effects of Rice Husk Biochar on Carbon Release and Nutrient Availability in Three Cultivation Age of Greenhouse Soils. Agronomy, 2020, 10, 990.	1.3	9
89	Impact of Humic Acids on Phosphorus Retention and Transport. Journal of Soil Science and Plant Nutrition, 2020, 20, 2431-2439.	1.7	5
90	Phosphorus speciation by P-XANES in an Oxisol under long-term no-till cultivation. Geoderma, 2020, 377, 114580.	2.3	17

#	Article	IF	CITATIONS
91	Effect of phosphate on the adsorption of antibiotics onto iron oxide minerals: Comparison between tetracycline and ciprofloxacin. Ecotoxicology and Environmental Safety, 2020, 205, 111345.	2.9	51
92	Applications of solid-state NMR spectroscopy in environmental science. Solid State Nuclear Magnetic Resonance, 2020, 110, 101698.	1.5	7
93	Assessing the Reactive Surface Area of Soils and the Association of Soil Organic Carbon with Natural Oxide Nanoparticles Using Ferrihydrite as Proxy. Environmental Science & Technology, 2020, 54, 11990-12000.	4.6	27
94	Weirs Control Phosphorus Transfer in Agricultural Watersheds. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	4
95	Weathering Intensity and Presence of Vegetation Are Key Controls on Soil Phosphorus Concentrations: Implications for Past and Future Terrestrial Ecosystems. Soil Systems, 2020, 4, 73.	1.0	16
96	Adsorption Media for the Removal of Soluble Phosphorus from Subsurface Drainage Water. International Journal of Environmental Research and Public Health, 2020, 17, 7693.	1.2	9
97	Spatial distribution of soil phosphorous fractions following 1-year farrowing sows in an outdoor hog-rearing farm in Eastern Canada. Environmental Monitoring and Assessment, 2020, 192, 322.	1.3	5
98	Anoxic conditions maintained high phosphorus sorption in humid tropical forest soils. Biogeosciences, 2020, 17, 89-101.	1.3	12
99	Dynamic of P Flux in Tropical Acid Soils Fertilized with Humic Acid–Complexed Phosphate. Journal of Soil Science and Plant Nutrition, 2020, 20, 1937-1948.	1.7	13
100	Soil factors affecting phosphorus adsorption in soils of the Cerrado, Brazil. Geoderma Regional, 2020, 22, e00298.	0.9	19
101	Seasonal evaluation of biotic and abiotic factors suggests phosphorus retention in constructed floodplains in three agricultural streams. Science of the Total Environment, 2020, 729, 138744.	3.9	12
102	Changes in phosphorus fractions in three tropical soils amended with corn cob and rice husk biochars. Communications in Soil Science and Plant Analysis, 2020, 51, 1331-1340.	0.6	1
103	Evaluating the effectiveness of the phosphorus sorption index for estimating maximum phosphorus sorption capacity. Soil Science Society of America Journal, 2020, 84, 994-1005.	1.2	5
104	Evidence of colloids as important phosphorus carriers in natural soil and stream waters in an agricultural catchment. Journal of Environmental Quality, 2020, 49, 921-932.	1.0	20
105	Hazenite: a new secondary phosphorus, potassium and magnesium fertiliser. Plant, Soil and Environment, 2020, 66, 1-6.	1.0	10
106	Soil available P, soil organic carbon and aggregation as affected by long-term poultry manure application to Andisols under pastures in Southern Chile. Geoderma Regional, 2020, 21, e00271.	0.9	15
107	Biochar as composite of phosphate fertilizer: Characterization and agronomic effectiveness. Science of the Total Environment, 2020, 743, 140604.	3.9	27
108	Spectroscopic studies on the phosphorus adsorption in salt-affected soils with or without nano-biochar additions. Environmental Research, 2020, 184, 109277.	3.7	42

#	Article	IF	CITATIONS
109	Soil properties explain tree growth and mortality, but not biomass, across phosphorus-depleted tropical forests. Scientific Reports, 2020, 10, 2302.	1.6	74
110	Understanding phosphate sorption characteristics of mineral amendments in relation to stabilising high legacy P calcareous soil. Environmental Pollution, 2020, 261, 114175.	3.7	13
111	Estimates of mean residence times of phosphorus in commonly considered inorganic soil phosphorus pools. Biogeosciences, 2020, 17, 441-454.	1.3	46
112	Phosphorus and carbon in soil particle size fractions: A synthesis. Biogeochemistry, 2020, 147, 225-242.	1.7	51
113	Rates of hydroxyapatite formation and dissolution in a sandstone aquifer: Implications for understanding dynamic phosphate behaviour within an agricultural catchment. Applied Geochemistry, 2020, 115, 104534.	1.4	8
114	Using golden apple snail to mitigate its invasion and improve soil quality: a biocontrol approach. Environmental Science and Pollution Research, 2020, 27, 14903-14914.	2.7	8
115	Lime application to reduce phosphorus release in different textured intact and small repacked soil columns. Journal of Soils and Sediments, 2020, 20, 2053-2066.	1.5	12
116	Speciation and sorption of phosphorus in agricultural soil profiles of redoximorphic character. Environmental Geochemistry and Health, 2020, 42, 3231-3246.	1.8	20
117	Increasing phosphorus availability by reducing clogging in drip fertigation systems. Journal of Cleaner Production, 2020, 262, 121319.	4.6	26
118	Effects of phosphate on the transport of graphene oxide nanoparticles in saturated clean and iron oxide-coated sand columns. Journal of Environmental Sciences, 2021, 103, 80-92.	3.2	17
119	Phosphorus recovery from soil through phosphorus extraction and retention on material: A comparison between batch extraction-retention and column percolation. Journal of Environmental Management, 2021, 277, 111435.	3.8	5
120	Assessing and understanding non-responsiveness of maize and soybean to fertilizer applications in African smallholder farms. Agriculture, Ecosystems and Environment, 2021, 305, 107165.	2.5	24
121	Efficacy of selected phosphorus sorbing materials (PSMs) to enhance the orthophosphate sorption capacity of filter socks. Water and Environment Journal, 2021, 35, 807-818.	1.0	2
122	Soil phosphorus availability and rice phosphorus uptake in paddy fields under various agronomic practices. Pedosphere, 2021, 31, 103-115.	2.1	31
123	Restoring soil carbon and chemical properties through silvopastoral adoption in the Colombian Amazon region. Land Degradation and Development, 2021, 32, 3720-3730.	1.8	25
124	Microbial Key Players Involved in P Turnover Differ in Artificial Soil Mixtures Depending on Clay Mineral Composition. Microbial Ecology, 2021, 81, 897-907.	1.4	14
125	The enrichment of phosphorus in floodplain subsoils – A case study from the Antrift catchment (Hesse, Germany). Geoderma, 2021, 385, 114853.	2.3	7
126	Effects of superabsorbent polyacrylamide hydrogel and gypsum applications on colloidal phosphorus release from agricultural soils. Journal of Soils and Sediments, 2021, 21, 925-935.	1.5	6

#	Article	IF	CITATIONS
127	Optimizing Phosphorus Levels in Wheat Grown in a Calcareous Soil with the Use of Adsorption Isotherm Models. Journal of Soil Science and Plant Nutrition, 2021, 21, 81-94.	1.7	13
128	Microscale Heterogeneous Distribution and Speciation of Phosphorus in Soils Amended with Mineral Fertilizer and Cattle Manure Compost. Minerals (Basel, Switzerland), 2021, 11, 121.	0.8	9
129	Alleviation of Cadmium Toxicity to Medicago Truncatula by AMF Involves the Changes of Cd Speciation in Rhizosphere Soil and Subcellular Distribution. Phyton, 2021, 90, 403-415.	0.4	4
130	Direct Quantification of Sorption Thermodynamics of Phosphate on Four Soil Colloids through Isothermal Titration Calorimetry. ACS Earth and Space Chemistry, 2021, 5, 295-304.	1.2	8
131	Impacts of long-term inorganic and organic fertilization on phosphorus adsorption and desorption characteristics in red paddies in southern China. PLoS ONE, 2021, 16, e0246428.	1.1	14
132	Accentuating the Role of Nitrogen to Phosphorus Ratio on the Growth and Yield of Wheat Crop. Sustainability, 2021, 13, 2253.	1.6	10
133	Soil Phosphorus Speciation and Availability in Meadows and Forests in Alpine Lake Watersheds With Different Parent Materials. Frontiers in Forests and Global Change, 2021, 3, .	1.0	1
134	Biochar effects on phosphorus sorption-desorption kinetics in soils with dissimilar acidity. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	5
135	Geospatial distribution of soil organic carbon and soil pH within the cocoa agroecological zones of Ghana. Geoderma, 2021, 386, 114921.	2.3	10
136	Soil slope and texture as factors of phosphorus exportation from pasture areas receiving pig slurry. Science of the Total Environment, 2021, 761, 144004.	3.9	7
137	Speciation of phosphorus accumulated in fertilized cropland of Aichi prefecture in Japan with different soil properties by sequential chemical extraction and P K-edge XANES. Soil Science and Plant Nutrition, 2021, 67, 150-161.	0.8	10
138	Review Article: The effect of humic substances on phosphate and iron acquisition byÂhigher plants: Qualitative and quantitative aspects. Journal of Plant Nutrition and Soil Science, 2021, 184, 329-338.	1.1	15
139	Sediment phosphorus buffering in streams at baseflow: A metaâ€analysis. Journal of Environmental Quality, 2021, 50, 287-311.	1.0	24
140	Molecular Determination of Organic Adsorption Sites on Smectite during Fe Redox Processes Using ToF-SIMS Analysis. Environmental Science & Technology, 2021, 55, 7123-7134.	4.6	8
141	Binding of Cd(II) by Amorphous Aluminum Hydroxide-Organophosphorus Coprecipitates: From Macroscopic to Microscopic Investigation. Adsorption Science and Technology, 2021, 2021, 1-8.	1.5	3
142	Variability in fluvial suspended and streambed sediment phosphorus fractions among small agricultural streams. Journal of Environmental Quality, 2021, 50, 612-626.	1.0	3
143	Use of polyacrylamide modified biochar coupled with organic and chemical fertilizers for reducing phosphorus loss under different cropping systems. Agriculture, Ecosystems and Environment, 2021, 310, 107306.	2.5	33
144	The Influence of Mechanical Composition and Mineral Composition of Calcareous Soil on Slope Farmland on Phosphorus Fixation. Applied Sciences (Switzerland), 2021, 11, 3731.	1.3	3

#	Article	IF	CITATIONS
145	Trace Elemental Partitioning on Clays Derived From Hydrothermal Muds of the El Tatio Geyser Field, Chile. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021422.	1.4	3
146	Latitudinal and depth patterns of soil microbial biomass carbon, nitrogen, and phosphorus in grasslands of an agroâ€pastoral ecotone. Land Degradation and Development, 2021, 32, 3833-3846.	1.8	19
147	Effects of Phosphorus Ensembled Nanomaterials on Nutrient Uptake and Distribution in Glycine max L. under Simulated Precipitation. Agronomy, 2021, 11, 1086.	1.3	8
148	The kaolinite shuttle links the Great Oxidation and Lomagundi events. Nature Communications, 2021, 12, 2944.	5.8	19
149	Global analysis of phosphorus fertilizer use efficiency in cereal crops. Global Food Security, 2021, 29, 100545.	4.0	38
150	Pyrolysis temperature affects phosphorus availability of rice straw and canola stalk biochars and biochar-amended soils. Journal of Soils and Sediments, 2021, 21, 2817.	1.5	8
151	Phosphate sorptionâ€desorption properties in volcanic topsoils along a chronosequence and a climatic gradient on the Galápagos Islands. Journal of Plant Nutrition and Soil Science, 2021, 184, 479-491.	1.1	3
152	Agricultural Practices Modulate the Beneficial Activity of Bacterial-Feeding Nematodes for Plant Growth and Nutrition: Evidence from an Original Intact Soil Core Technique. Sustainability, 2021, 13, 7181.	1.6	6
153	AçaÃ-Biochar and Compost Affect the Phosphorus Sorption, Nutrient Availability, and Growth of Dioclea apurensis in Iron Mining Soil. Minerals (Basel, Switzerland), 2021, 11, 674.	0.8	2
154	Long-term lime and phosphogypsum broadcast affects phosphorus cycling in a tropical Oxisol cultivated with soybean under no-till. Nutrient Cycling in Agroecosystems, 2021, 120, 307.	1.1	5
155	Phosphorus Release from Sediments in a Raw Water Reservoir with Reduced Allochthonous Input. Water (Switzerland), 2021, 13, 1983.	1.2	9
156	Highly efficient removal of phosphorus from agricultural runoff by a new akadama clay barrier-vegetated drainage ditch system (VDD) and its mechanism. Journal of Environmental Management, 2021, 290, 112575.	3.8	11
157	Citrus Residue Enhances the Effectiveness of Beef Cattle Manure Improving the Phosphorus Availability in Acidic Andisol. Communications in Soil Science and Plant Analysis, 2021, 52, 2767-2781.	0.6	4
158	Available for plants phosphorus in the floodplain catenas of the Amur River. Dokuchaev Soil Bulletin, 2021, , 61-91.	0.1	0
159	Decomposition and Nutrient Releasing of Biochar Compound Materials in Soil with Different Textures. Processes, 2021, 9, 1521.	1.3	3
160	Sustainable phosphorous management in two different soil series of Pakistan by evaluating dynamics of phosphatic fertilizer source. Saudi Journal of Biological Sciences, 2022, 29, 255-260.	1.8	9
161	A Soilscape Network Approach (SNAp) to investigate subsurface phosphorus translocation along slopes. Science of the Total Environment, 2021, 784, 147131.	3.9	4
162	Soil enzyme responses to land use change in the tropical rainforest of the Colombian Amazon region. PLoS ONE, 2021, 16, e0255669.	1.1	11

#	Article	IF	CITATIONS
163	Effects of soil depth and characteristics on phosphorus adsorption isotherms of different land utilization types. Soil and Tillage Research, 2021, 213, 105139.	2.6	14
164	Process optimization for the synthesis of ceramsites in terms of mechanical strength and phosphate adsorption capacity. Chemosphere, 2021, 278, 130239.	4.2	4
165	Theoretical investigation of the chloride effect on aqueous Hg(II) adsorption on the kaolinite(001) surface. Applied Clay Science, 2021, 210, 106120.	2.6	6
166	Phosphate oxygen isotope fingerprints of past biological activity in the Atacama Desert. Geochimica Et Cosmochimica Acta, 2021, 311, 1-11.	1.6	6
167	Montmorillonite-iron crosslinked alginate beads for aqueous phosphate removal. Chemosphere, 2021, 281, 130837.	4.2	24
168	Contrasting effects of carbon source recalcitrance on soil phosphorus availability and communities of phosphorus solubilizing microorganisms. Journal of Environmental Management, 2021, 298, 113426.	3.8	13
169	Activity of phosphatases and microbial phosphorus under various tree species growing on reclaimed technosols. Geoderma, 2021, 401, 115320.	2.3	10
170	Soil phosphorus retention can predict responses of phosphorus uptake and yield of rice plants to P fertilizer application in flooded weathered soils in the central highlands of Madagascar. Geoderma, 2021, 402, 115326.	2.3	13
171	Phosphorus accumulation poses less influence than soil physicochemical properties on organic phosphorus adsorption on ferrasol. Geoderma, 2021, 402, 115324.	2.3	8
172	Phosphorus in the runoff of soils with contrasting textures influenced by soil slope and pig slurry application. Agricultural Water Management, 2021, 258, 107178.	2.4	4
173	Factors controlling phosphorus mobility in nearshore aquifers adjacent to large lakes. Science of the Total Environment, 2021, 799, 149443.	3.9	4
174	The influence of long-term N and P fertilization on soil P forms and cycling in a wheat/fallow cropping system. Geoderma, 2021, 404, 115274.	2.3	17
175	Organic phosphorus forms in a tropical sandy soil after application of organic residues of different quality. Geoderma, 2022, 405, 115462.	2.3	7
176	Leached phosphorus apportionment and future management strategies across the main soil areas and cropping system types in northern China. Science of the Total Environment, 2022, 805, 150441.	3.9	8
177	Phosphorus adsorption by sediment considering mineral composition and environmental factors. Environmental Science and Pollution Research, 2021, 28, 17495-17505.	2.7	14
178	Effects of Shallow Water Table Depth on Vegetative Filter Strips Retarding Transport of Nonpoint Source Pollution in Controlled Flume Experiments. International Journal of Environmental Research, 2021, 15, 163-175.	1.1	3
179	Intensive agricultural managementâ€induced subsurface accumulation of labile phosphorus in Midwestern agricultural soils dominated by tile lines. Soil Science Society of America Journal, 2020, 84, 1094-1109.	1.2	12
180	Phosphorus lability increases with the rehabilitation advance of iron mine land in the eastern Amazon. Environmental Monitoring and Assessment, 2020, 192, 390.	1.3	11

#	Article	IF	CITATIONS
181	Linking phosphorus sorption and magnetic susceptibility in clays and tropical soils. Soil Research, 2020, 58, 430.	0.6	17
182	Influence of zinc deficiency on the mineral composition of maize plants in contrasting soils. Bioscience Journal, 0, , 1234-1245.	0.4	1
183	Effect of Eucalyptus globullus biochar addition on the availability of phosphorus in acidic soil. Agronomia Colombiana, 2017, 35, 75-81.	0.1	5
184	Relación entre el pH y la disponibilidad de nutrientes para cacao en un entisol de la Amazonia colombiana. Ciencia Tecnologia Agropecuaria, 2017, 18, 529-541.	0.3	9
186	Simultaneous evaluation of kinetic release of labile arsenic and phosphorus in agricultural soils using cerium oxide-based DGT. Science of the Total Environment, 2022, 807, 151039.	3.9	6
187	Phosphorus Transformation in Soils Following Co-Application of Charcoal and Wood Ash. Agronomy, 2021, 11, 2010.	1.3	68
188	Adsorption of Phosphate Ions on Chicken Feather Hydrochar and Hydrochar-Soil Mixtures. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	6
189	Fertilisation with Compost: Effects on Soil Phosphorus Sorption and on Phosphorus Availability in Acid Soils. Open Journal of Soil Science, 2019, 09, 255-268.	0.3	6
190	Dipteryx alata Seedlings Nutritional Status in a Recovery Area in the Brazilian Savannah. Floresta E Ambiente, 2020, 27, .	0.1	4
191	Phosphate-Dependent Regulation of Growth and Stresses Management in Plants. Frontiers in Plant Science, 2021, 12, 679916.	1.7	67
192	Does Addition of Phosphate and Ammonium Nutrients Affect Microbial Activity in Froth Treatment Affected Tailings?. Microorganisms, 2021, 9, 2224.	1.6	0
193	Effects of Phosphate Competition on Arsenate Binding to Aluminum Hydroxide Surfaces. ACS Earth and Space Chemistry, 2021, 5, 3140-3149.	1.2	1
194	Physical, Chemical, Morphological and Mineralogical Characterization Surface and Subsurface in Hydromorphic and Non-hydromorphic Soil of the Central Amazon. Journal of Agricultural Science, 2020, 12, 245.	0.1	1
195	Phosphorus speciation and distribution in a variable harge Oxisol under noâ€ŧill amended with lime and/or phosphogypsum for 18 years. European Journal of Soil Science, 0, , .	1.8	0
196	Experimental Study of the Adsorption of Nitrogen and Phosphorus by Natural Clay Minerals. Adsorption Science and Technology, 2021, 2021, .	1.5	14
197	Tillage systems and cover plants change organic fractions of phosphorus in oxisol of eastern Amazonia. Bragantia, 2020, 79, 434-446.	1.3	1
198	Speciation and pH- and particle size-dependent solubility of phosphorus in tropical sandy soils. Geoderma, 2022, 408, 115590.	2.3	15
199	Phosphorus sorption and desorption characteristics of soils as affected by biochar. Soil and Tillage Research, 2022, 216, 105251.	2.6	17

#	Article	IF	CITATIONS
200	Role of clay minerals in controlling phosphorus availability in a subtropical Alfisol. Geoderma, 2022, 409, 115592.	2.3	17
201	Fate of phosphorus from treated wastewater in soil-based constructed wetlands. Science of the Total Environment, 2022, 816, 151589.	3.9	5
202	Legume Nitrogen Fixation and Symbioses in Low-Inputs Rainfed Rice Rotations. Sustainability, 2021, 13, 12349.	1.6	3
203	Assessing the Plasticity of Paper Birch Traits in a Boreal Common Garden Experiment. SSRN Electronic Journal, 0, , .	0.4	0
204	Biosolids increase phosphate adsorption of semi-arid Mediterranean soils. Journal of Environmental Management, 2022, 305, 114361.	3.8	2
205	Encapsulation of the glyphosate herbicide in mesoporous and soil-affine sorbents for its prolonged release. Chemical Engineering Journal, 2022, 431, 134225.	6.6	6
206	Phosphate fertilization and organic compost on the initial growth of sorghum in degraded soils. Scientia Agraria Paranaensis, 2020, 19, 289-295.	0.1	0
207	Understanding Competitive Phosphate and Silicate Adsorption on Goethite by Connecting Batch Experiments with Density Functional Theory Calculations. Environmental Science & Technology, 2022, 56, 823-834.	4.6	22
208	Methods for assessing laterally-resolved distribution, speciation and bioavailability of phosphorus in soils. Reviews in Environmental Science and Biotechnology, 2022, 21, 53-74.	3.9	13
209	Elucidating the mechanisms determining the availability of phosphate by application of biochars from different parent materials. Environmental Geochemistry and Health, 2022, 44, 4191-4200.	1.8	8
210	The ciliate protozoan Colpoda cucullus can improve maize growth by transporting soil phosphates. Journal of Integrative Agriculture, 2022, 21, 855-861.	1.7	4
211	Biochar, slag and ferrous manganese ore affect lead, cadmium and antioxidant enzymes in water		

#	Article	IF	CITATIONS
218	Effects of environmental factors on phosphorus adsorption capacity and release risk in lake sediments. Plant, Soil and Environment, 2022, 68, 186-194.	1.0	4
219	A Freundlichâ€type multiâ€component approach for modeling the sorption of nickel and phosphate in soil. Soil Science Society of America Journal, 2022, 86, 664-677.	1.2	3
220	Adsorption-desorption kinetics and phosphorus loss standard curve in erosive weathered granite soil: Stirred flow chamber experiments. Journal of Cleaner Production, 2022, 347, 131202.	4.6	2
221	Effects of magnetite on phosphorus storage and carbon cycling in Lake Michigan shoreline sediments. Applied Geochemistry, 2022, 140, 105293.	1.4	2
222	On the tropical soils; The influence of organic matter (OM) on phosphate bioavailability. Saudi Journal of Biological Sciences, 2022, 29, 3635-3641.	1.8	17
223	Spatial distribution of soil phosphorus fractions in a clayey Oxisol submitted to long-term phosphate fertilization strategies. Geoderma, 2022, 418, 115847.	2.3	5
224	Sequential Phosphorus Fractionation to Understand the Fate of Phosphorus Fertilizer in Sandy Ultisol, Amended with Biochar and Coal Fly Ash. Communications in Soil Science and Plant Analysis, 0, , 1-13.	0.6	2
225	Organic materials with high P and low C:P ratio improve P availability for lowland rice in highly weathered soils: Pot and incubation experiments. Journal of Plant Nutrition and Soil Science, 2022, 185, 475-485.	1.1	1
226	Adsorption mechanisms of inositol hexakisphosphate in the presence of phosphate at the amorphous aluminum oxyhydroxide-water interface. Science of the Total Environment, 2022, 837, 155525.	3.9	2
227	Inorganic Phosphorus Transformation and Phosphorus Adsorption–Desorption Properties of Soil in a Cotton Field Under Mulched Drip Irrigation in Xinjiang: A Four-Year Field Assessment. Frontiers in Environmental Science, 2022, 10, .	1.5	1
228	Organic phosphorus leaching risk from agricultural soils across China. Chemical and Biological Technologies in Agriculture, 2022, 9, .	1.9	1
229	Nano and Micro Manure Amendments Decrease Degree of Phosphorus Saturation and Colloidal Phosphorous Release from Agriculture Soils. SSRN Electronic Journal, 0, , .	0.4	0
230	Potential Phosphorus Uptake Mechanisms in the Deep Sedimentary Biosphere. Frontiers in Marine Science, 2022, 9, .	1.2	0
231	The impacts of exceptional rainfall on phosphorus mobilisation in a mountain agroforestry catchment (NE, Spain). Catena, 2022, 216, 106407.	2.2	6
232	Phosphorus fractions in soils with distinct mineralogy and their relationship with phosphate buffer capacity indicators in Brazil. Acta Scientiarum - Agronomy, 0, 44, e55148.	0.6	2
233	Intensive crop rotations and residue quality increase soil phosphorus lability under long-term no-till in tropical soils. Soil and Tillage Research, 2022, 223, 105446.	2.6	7
234	Phosphate Adsorption Kinetics and Equilibria on Natural Iron and Manganese Oxide Composites. SSRN Electronic Journal, 0, , .	0.4	0
235	Effect of anaerobic-digested and lime-stabilized dairy processing sludge on phosphorus dynamics in grassland soils with varying textures. Journal of Cleaner Production, 2022, 366, 132915.	4.6	4

#	Article	IF	CITATIONS
236	Multiple modes of action are needed to unlock soil phosphorus fractions unavailable for plants: The example of bacteria- and fungi-based biofertilizers. Applied Soil Ecology, 2022, 178, 104550.	2.1	8
237	Nano and micro manure amendments decrease degree of phosphorus saturation and colloidal phosphorus release from agriculture soils. Science of the Total Environment, 2022, 845, 157278.	3.9	6
238	Chemical and spectroscopic evaluations supporting superior P availability after biochar-P fertilizer application. Soil and Tillage Research, 2022, 223, 105487.	2.6	4
239	The influence of phosphorus application and varying soil pH on soil and herbage properties across a range of grassland soils with impeded drainage. Journal of Agricultural Science, 2022, 160, 516-527.	0.6	3
240	Geochemical Assessment of Heavy Metal Contamination in Coastal Sediment Cores from Usukan Beach, Kota Belud, Sabah, Malaysia. Journal of Physics: Conference Series, 2022, 2314, 012008.	0.3	0
241	Soil clay is a key factor affecting soil phosphorus availability in the distribution area of Masson pine plantations across subtropical China. Ecological Indicators, 2022, 144, 109482.	2.6	3
242	Root response and phosphorus uptake with enhancement in available phosphorus level in soil in the presence of water-soluble organic matter deriving from organic material. Journal of Environmental Management, 2022, 322, 116038.	3.8	4
243	Optimization of magnesium phosphate cement: Stabilization of a kaolinitic soil. Transportation Geotechnics, 2022, 37, 100854.	2.0	5
244	Role of soil minerals on organic phosphorus availability and phosphorus uptake by plants. Geoderma, 2022, 428, 116125.	2.3	11
245	Effects of nitrogen-enriched biochar on subtropical paddy soil organic carbon pool dynamics. Science of the Total Environment, 2022, 851, 158322.	3.9	12
246	Phosphate adsorption kinetics and equilibria on natural iron and manganese oxide composites. Journal of Environmental Management, 2022, 323, 116222.	3.8	5
247	Sensitivity of the Transport of Plastic Nanoparticles to Typical Phosphates Associated with Ionic Strength and Solution pH. International Journal of Molecular Sciences, 2022, 23, 9860.	1.8	1
248	Comparative Response of Fermented and Non-Fermented Animal Manure Combined with Split Dose of Phosphate Fertilizer Enhances Agronomic Performance and Wheat Productivity through Enhanced P Use Efficiency. Agronomy, 2022, 12, 2335.	1.3	1
249	Proximal sensor data fusion for Brazilian soil properties prediction: Exchangeable/available macronutrients, aluminum, and potential acidity. Geoderma Regional, 2022, 30, e00573.	0.9	4
250	The mechanism for enhancing phosphate immobilization on colloids of oxisol, ultisol, hematite, and gibbsite by chitosan. Chemosphere, 2022, 309, 136749.	4.2	6
251	Tracing the Transformation and Allocation of the Newly Applied-P in Calcareous Soil Using an Enriched Oxygen Isotope Labeling Technique. Journal of Agricultural and Food Chemistry, 2022, 70, 13473-13485.	2.4	0
252	Phosphorous Sorption Characteristics of Soils in Smallholding Land Use in Southern Ethiopia. Applied and Environmental Soil Science, 2022, 2022, 1-9.	0.8	0
253	Earthworms affect reactive surface area and thereby phosphate solubility in iron-(hydr)oxide dominated soils. Geoderma, 2022, 428, 116212.	2.3	5

#	Article	IF	CITATIONS
254	National-scale spatial variations of soil phosphorus retention capacity in Brazil. Physics and Chemistry of the Earth, 2022, 128, 103271.	1.2	2
255	Heated kaolinite-La(III) hydroxide complex for effective removal of phosphate from eutrophic water. Applied Clay Science, 2023, 231, 106729.	2.6	3
256	Phosphorus fractions and their relationships with soil chemical attributes in an integrated crop-livestock system under annual phosphates fertilization. Frontiers in Sustainable Food Systems, 0, 6, .	1.8	0
257	Sources and Solubilization of Phosphatic Fertilizers. Sustainable Agriculture Reviews, 2023, , 25-47.	0.6	0
258	Phosphorus and nitrogen leaching from an organic and a mineral soil receiving single and split dairy slurry applications: a laboratory column experiment. Journal of Soils and Sediments, 0, , .	1.5	0
259	Formation of pyromorphite by hydroxyapatite during lead migration in soil with different phosphorus sorption abilities. Soils and Foundations, 2022, 62, 101241.	1.3	1
260	Application of humic acid and hydroxyapatite in Cd-contaminated alkaline maize cropland: A field trial. Science of the Total Environment, 2023, 859, 160315.	3.9	8
261	Retardation factors in controlling the transport of inorganic, organic, and particulate phosphorus in fluvo-aquic soil. Ecotoxicology and Environmental Safety, 2023, 249, 114402.	2.9	3
262	Stabilization of biomass ash granules using accelerated carbonation to optimize the preparation of soil improvers. Waste Management, 2023, 156, 297-306.	3.7	1
263	Impacts of soil, climate, and phenology on retention of dissolved agricultural nutrients by permanent-cover buffers. Science of the Total Environment, 2023, 860, 160532.	3.9	0
264	Isolation, screening, characterization, and optimization of bacteria isolated from calcareous soils for siderophore production. Archives of Microbiology, 2022, 204, .	1.0	7
265	Variability of phosphorus sorption properties in hydromorphic soils: Consequences for P losses in agricultural landscapes. European Journal of Soil Science, 2022, 73, .	1.8	3
266	Clay Fraction Mineralogy and Structural Soil Attributes of Two Soil Classes under the Semi-Arid Climate of Brazil. Land, 2022, 11, 2192.	1.2	3
267	Self-functionalization of soil-aged biochar surfaces increases nitrate retention. Science of the Total Environment, 2023, 861, 160644.	3.9	2
268	Soil properties and growing duration determine phosphorus phyto-availability dynamics of polyphosphate versus orthophosphate fertilizers. Plant and Soil, 0, , .	1.8	0
269	Prediction of Phosphorus Sorption Index and Availability by NIR and MIR in Soils in Madagascar. Land, 2023, 12, 196.	1.2	0
270	Mapping the phosphorus sorption capacity of Danish soils in four depths with quantile regression forests and uncertainty propagation. Geoderma, 2023, 430, 116316.	2.3	4
271	Effect of tree species and substrate properties on organic phosphorus forms in afforested Technosols. Land Degradation and Development, 2023, 34, 2418-2427.	1.8	0

#	Article	IF	CITATIONS
272	Phosphorus adsorption, availability, and potential loss characteristics in an Ultisolâ€derived paddy soil chronosequence, using a stirredâ€flow chamber study. Soil Science Society of America Journal, 0, , .	1.2	0
273	Intraspecific variations in fine root N and P and factors affecting their concentrations in Masson pine plantations across subtropical China. Journal of Forestry Research, 2023, 34, 1463-1473.	1.7	1
274	Legume growth and straw retention in sugarcane fields: Effects on crop yield, C and N storage in the central-south Brazil. Agriculture, Ecosystems and Environment, 2023, 347, 108374.	2.5	2
275	The role of oak species in long-term soil P loss in a humid river bottomland. Catena, 2023, 227, 107125.	2.2	1
276	Effect of fertilization on farmland phosphorus loss via surface runoff in China: A meta-analysis. Soil and Tillage Research, 2023, 230, 105700.	2.6	3
277	Influence of organic fertilization on clay mineral transformation and soil phosphorous retention: Evidence from an 8-year fertilization experiment. Soil and Tillage Research, 2023, 230, 105702.	2.6	9
278	Predicting laterite redox potential with iron activity and electron transfer term. Chemosphere, 2023, 328, 138519.	4.2	0
279	Adsorption effects and mechanisms of phosphorus by nanosized laponite. Chemosphere, 2023, 331, 138684.	4.2	7
280	Shallow Sediment as a Phosphorus Reservoir in an Oligotrophic Lake. Journal of Geophysical Research G: Biogeosciences, 2023, 128, .	1.3	1
281	Effects of pH and Soil Minerals on Phosphorus Release from Agricultural Waste–Based Sorbents: A Continuous-Flow Column Study. Journal of Environmental Engineering, ASCE, 2023, 149, .	0.7	1
282	Recycling rice straw enhances the solubilisation and plant acquisition of soil phosphorus by altering rhizosphere environment of wheat. Soil and Tillage Research, 2023, 228, 105647.	2.6	2
283	The influence of elevated CO ₂ and soil depth on rhizosphere activity and nutrient availability in a mature <i>Eucalyptus</i> woodland. Biogeosciences, 2023, 20, 505-521.	1.3	2
284	Can Organic Matter from Waste-Derived Amendments Limit Phosphorus Losses from Soil to the Aquatic Environment?. Agriculture (Switzerland), 2023, 13, 375.	1.4	0
285	Mixed with Broadleaf Tree Species Improved Soil Aggregate Stability in Chinese Fir (Cunninghamia) Tj ETQq1 1 (Nutrition, 0, , .	0.784314 1.7	rgBT /Overloo 3
286	Coapplication of water treatment residual and compost for increased phosphorus availability in arable sandy soils. , 2023, 2, 68-81.		0
287	Seasonal and Spatial Distribution of Phosphorus Fractions in Surface Sediments of the Southern Caspian Sea. , 2023, 47, 411-425.		1
288	The Effect of Digestate from Liquid Cow Manure on Spring Wheat Chlorophyll Content, Soil Properties, and Risk of Leaching. Agronomy, 2023, 13, 626.	1.3	1
289	Effect of coffee husk and cocoa pods biochar on phosphorus fixation and release processes in acid soils from West Cameroon. Soil Use and Management, 2023, 39, 817-832.	2.6	2

#	Article	IF	CITATIONS
290	Ecotoxicological Differences of Antimony (III) and Antimony (V) on Earthworms Eisenia fetida (Savingy). Toxics, 2023, 11, 230.	1.6	0
291	The effects of phosphate and pH on arsenate adsorption on allophanic Andosols in Miyazaki. Soil Science and Plant Nutrition, 0, , 1-12.	0.8	0
292	Pan-Arctic soil element bioavailability estimations. Earth System Science Data, 2023, 15, 1059-1075.	3.7	4
293	Abiotic and biotic drivers of struvite solubilization in contrasting soils. Pedosphere, 2023, 33, 828-837.	2.1	1
294	Breeding Milestones Correspond with Changes to Wheat Rhizosphere Biogeochemistry That Affect P Acquisition. Agronomy, 2023, 13, 813.	1.3	1
295	Soil phosphorus availability and fractionation in response to different phosphorus sources in alkaline and acid soils: a short-term incubation study. Scientific Reports, 2023, 13, .	1.6	7
296	Available and total phosphorus background levels in soils: a calcareous and semi-arid region. Environmental Monitoring and Assessment, 2023, 195, .	1.3	3
303	The status of phosphorus levels in Iranian agricultural soils — a systematic review and meta-analysis. Environmental Monitoring and Assessment, 2023, 195, .	1.3	1
339	Crop response to nitrogen-phosphorus colimitation: theory, experimental evidences, mechanisms, and models. A review. Agronomy for Sustainable Development, 2024, 44, .	2.2	0