Variable Intensive Early Walking Poststroke (VIEWS)

Neurorehabilitation and Neural Repair 30, 440-450 DOI: 10.1177/1545968315604396

Citation Report

#	Article	IF	CITATIONS
1	Influence of skill and exercise training parameters on locomotor recovery during stroke rehabilitation. Current Opinion in Neurology, 2016, 29, 677-683.	1.8	35
2	Walking adaptability therapy after stroke: study protocol for a randomized controlled trial. Trials, 2016, 17, 425.	0.7	29
3	Powered robotic exoskeletons in post-stroke rehabilitation of gait: a scoping review. Journal of NeuroEngineering and Rehabilitation, 2016, 13, 53.	2.4	213
4	Alterations in Aerobic Exercise Performance and Gait Economy Following High-Intensity Dynamic Stepping Training in Persons With Subacute Stroke. Journal of Neurologic Physical Therapy, 2016, 40, 239-248.	0.7	32
5	Feasibility and Impact of High-Intensity Walking Training in Frail Older Adults. Journal of Aging and Physical Activity, 2017, 25, 533-538.	0.5	7
6	Effects of Training Intensity on Locomotor Performance in Individuals With Chronic Spinal Cord Injury: A Randomized Crossover Study. Neurorehabilitation and Neural Repair, 2017, 31, 944-954.	1.4	37
7	Bimanual coordination: A missing piece of arm rehabilitation after stroke. Restorative Neurology and Neuroscience, 2017, 35, 347-364.	0.4	65
8	A soft robotic exosuit improves walking in patients after stroke. Science Translational Medicine, 2017, 9, .	5.8	439
9	Factors Influencing the Efficacy of Aerobic Exercise for Improving Fitness and Walking Capacity After Stroke. Archives of Physical Medicine and Rehabilitation, 2017, 98, 581-595.	0.5	58
10	Altered Sagittal- and Frontal-Plane Kinematics Following High-Intensity Stepping Training Versus Conventional Interventions in Subacute Stroke. Physical Therapy, 2017, 97, 320-329.	1.1	26
11	Manual physical balance assistance of therapists during gait training of stroke survivors: characteristics and predicting the timing. Journal of NeuroEngineering and Rehabilitation, 2017, 14, 125.	2.4	9
12	Delivering Intensive Rehabilitation in Stroke: Factors Influencing Implementation. Physical Therapy, 2018, 98, 243-250.	1.1	27
13	High-Intensity Variable Stepping Training in Patients With Motor Incomplete Spinal Cord Injury: A Case Series. Journal of Neurologic Physical Therapy, 2018, 42, 94-101.	0.7	11
14	Contributions of Stepping Intensity and Variability to Mobility in Individuals Poststroke. Stroke, 2019, 50, 2492-2499.	1.0	50
15	High Intensity Exercise for Walking Competency in Individuals with Stroke: A Systematic Review and Meta-Analysis. Journal of Stroke and Cerebrovascular Diseases, 2019, 28, 104414.	0.7	22
16	Exercise-Induced Alterations in Sympathetic-Somatomotor Coupling in Incomplete Spinal Cord Injury. Journal of Neurotrauma, 2019, 36, 2688-2697.	1.7	6
17	Improved walking function in laboratory does not guarantee increased community walking in stroke survivors: Potential role of gait biomechanics. Journal of Biomechanics, 2019, 91, 151-159.	0.9	15
18	Compensation or Recovery? Altered Kinetics and Neuromuscular Synergies Following High-Intensity Stepping Training Poststroke. Neurorehabilitation and Neural Repair, 2019, 33, 47-58.	1.4	28

#	Article	IF	CITATIONS
19	Cardiopulmonary Responses During Clinical and Laboratory Gait Assessments in People With Chronic Stroke. Physical Therapy, 2019, 99, 86-97.	1.1	9
20	Effect of high-intensity exercise on cardiorespiratory fitness in stroke survivors: A systematic review and meta-analysis. Annals of Physical and Rehabilitation Medicine, 2020, 63, 59-68.	1.1	46
21	Clinical Practice Guideline to Improve Locomotor Function Following Chronic Stroke, Incomplete Spinal Cord Injury, and Brain Injury. Journal of Neurologic Physical Therapy, 2020, 44, 49-100.	0.7	176
22	Impaired Motor Control and Neurologic Rehabilitation in Older Adults. , 2020, , 379-399.		0
23	Exoskeleton-assisted Gait Training in Persons With Multiple Sclerosis: A Single-Group Pilot Study. Archives of Physical Medicine and Rehabilitation, 2020, 101, 599-606.	0.5	23
24	Implementation of High-Intensity Stepping Training During Inpatient Stroke Rehabilitation Improves Functional Outcomes. Stroke, 2020, 51, 563-570.	1.0	57
25	Effect of investigator observation on gait parameters in individuals with stroke. Journal of Biomechanics, 2020, 100, 109602.	0.9	15
26	Day-to-Day Variability of Walking Performance Measures in Individuals Poststroke and Individuals With Parkinson Disease. Journal of Neurologic Physical Therapy, 2020, 44, 241-247.	0.7	12
27	Does overground robotic gait training improve non-motor outcomes in patients with chronic stroke? Findings from a pilot study. Journal of Clinical Neuroscience, 2020, 81, 240-245.	0.8	10
28	Predicting Discharge Walking Function With High-Intensity Stepping Training During Inpatient Rehabilitation in Nonambulatory Patients Poststroke. Archives of Physical Medicine and Rehabilitation, 2022, 103, S189-S196.	0.5	8
29	Stepwise Regression and Latent Profile Analyses of Locomotor Outcomes Poststroke. Stroke, 2020, 51, 3074-3082.	1.0	13
30	Verbal feedback enhances motor learning during post-stroke gait retraining. Topics in Stroke Rehabilitation, 2021, 28, 362-377.	1.0	8
31	Intensity of daily physical activity – a key component for improving physical capacity after minor stroke?. Disability and Rehabilitation, 2022, 44, 3048-3053.	0.9	8
32	Task-Specific Versus Impairment-Based Training on Locomotor Performance in Individuals With Chronic Spinal Cord Injury: A Randomized Crossover Study. Neurorehabilitation and Neural Repair, 2020, 34, 627-639.	1.4	28
33	Locomotor Kinematics and Kinetics Following High-Intensity Stepping Training in Variable Contexts Poststroke. Neurorehabilitation and Neural Repair, 2020, 34, 652-660.	1.4	7
34	Physical fitness training for stroke patients. The Cochrane Library, 2020, 2020, CD003316.	1.5	99
35	A randomized controlled study incorporating an electromechanical gait machine, the Hybrid Assistive Limb, in gait training of patients with severe limitations in walking in the subacute phase after stroke. PLoS ONE, 2020, 15, e0229707.	1.1	18
36	Lessons Learned: The Difficulties of Incorporating Intensity Principles Into Inpatient Stroke Rehabilitation. Archives of Rehabilitation Research and Clinical Translation, 2020, 2, 100052.	0.5	6

#	Article	IF	CITATIONS
37	Quantifying dosage of physical therapy using lower body kinematics: a longitudinal pilot study on early post-stroke individuals. Journal of NeuroEngineering and Rehabilitation, 2020, 17, 15.	2.4	10
38	Effects of Exercise Intensity on Acute Circulating Molecular Responses Poststroke. Neurorehabilitation and Neural Repair, 2020, 34, 222-234.	1.4	27
39	Advances and challenges in stroke rehabilitation. Lancet Neurology, The, 2020, 19, 348-360.	4.9	402
40	Does kinematic gait quality improve with functional gait recovery? A longitudinal pilot study on early post-stroke individuals. Journal of Biomechanics, 2020, 105, 109761.	0.9	22
41	Functional magnetic resonance brain imaging of imagined walking to study locomotor function after stroke. Clinical Neurophysiology, 2021, 132, 167-177.	0.7	14
42	Moving Forward. Journal of Neurologic Physical Therapy, 2021, 45, 46-49.	0.7	16
43	The Kickstart Walk Assist System for improving balance and walking function in stroke survivors: a feasibility study. Journal of NeuroEngineering and Rehabilitation, 2021, 18, 42.	2.4	3
44	Changes in Walking Speed After High-Intensity Treadmill Training Are Independent of Changes in Spatiotemporal Symmetry After Stroke. Frontiers in Neurology, 2021, 12, 647338.	1.1	3
45	Cost-Effectiveness of High-intensity Training vs Conventional Therapy for Individuals With Subacute Stroke. Archives of Physical Medicine and Rehabilitation, 2022, 103, S197-S204.	0.5	6
46	Development and Results of an Implementation Plan for High-Intensity Gait Training. Journal of Neurologic Physical Therapy, 2021, 45, 282-291.	0.7	3
47	Use-dependent plasticity explains aftereffects in visually guided locomotor learning of a novel step length asymmetry. Journal of Neurophysiology, 2020, 124, 32-39.	0.9	17
48	Activity Level and Intensity of Older Adults in Skilled Nursing Rehabilitation Measured via Actigraphy. Journal of Geriatric Physical Therapy, 2021, 44, 45-50.	0.6	4
49	The effect of time spent in rehabilitation on activity limitation and impairment after stroke. The Cochrane Library, 2021, 2021, CD012612.	1.5	19
50	Efficacy of an exoskeleton-based physical therapy program for non-ambulatory patients during subacute stroke rehabilitation: a randomized controlled trial. Journal of NeuroEngineering and Rehabilitation, 2021, 18, 149.	2.4	18
51	"Mobil nach Schlaganfall"– ein überregionales Versorgungskonzept im regionalen und multiprofessionellen Setting. , 2019, , 221-235.		0
52	The Value of High Intensity Locomotor Training Applied to Patients With Acute-Onset Neurologic Injury. Archives of Physical Medicine and Rehabilitation, 2022, 103, S178-S188.	0.5	9
53	Virtual reality in post-stroke neurorehabilitation – a systematic review and meta-analysis. Topics in Stroke Rehabilitation, 2023, 30, 53-72.	1.0	15
54	High Level Mobility Training in Ambulatory Patients with Acquired Non-Progressive Central Neurological Injury: a Feasibility Study. Brain Injury, 2022, , 1-7.	0.6	0

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
55	Associations Between Time After Stroke and Exercise Training Outcomes: A Metaâ€Regression Analysis. Journal of the American Heart Association, 2021, 10, e022588.	1.6	9
56	Gains in Daily Stepping Activity in People With Chronic Stroke After High-Intensity Gait Training in Variable Contexts. Physical Therapy, 2022, 102, .	1.1	6
57	Rethinking the tools in the toolbox. Journal of NeuroEngineering and Rehabilitation, 2022, 19, .	2.4	2
58	Increasing the Amount and Intensity of Stepping Training During Inpatient Stroke Rehabilitation Improves Locomotor and Non-Locomotor Outcomes. Neurorehabilitation and Neural Repair, 2022, 36, 621-632.	1.4	5
59	Varying Joint Patterns and Compensatory Strategies Can Lead to the Same Functional Gait Outcomes: A Case Study. , 2022, , .		0
61	Beyond steps per day: other measures of real-world walking after stroke related to cardiovascular risk. Journal of NeuroEngineering and Rehabilitation, 2022, 19, .	2.4	4
63	Application of â€~the PUSH strategy' to reduce contraversive pushing after stroke during inpatient rehabilitation. Physiotherapy Practice and Research, 2022, , 1-7.	0.1	0
64	Evidence of High-Intensity Exercise on Lower Limb Functional Outcomes and Safety in Acute and Subacute Stroke Population: A Systematic Review. International Journal of Environmental Research and Public Health, 2023, 20, 153.	1.2	4
65	A scoping review on recent trends in wearable sensors to analyze gait in people with stroke: From sensor placement to validation against gold-standard equipment. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 0, , 095441192211423.	1.0	1