Advances in Energy Harvesting Communications: Past,

IEEE Communications Surveys and Tutorials 18, 1384-1412 DOI: 10.1109/comst.2015.2497324

Citation Report

#	Article	IF	CITATIONS
1	Information and Energy Beamforming in MIMO Wireless Powered Systems. , 2016, , .		4
2	Optimal Energy-Efficient Transmission in Multiuser Systems with Hybrid Energy Harvesting Transmitter. , 2016, , .		6
3	Power Allocation for Cognitive Energy Harvesting and Smart Power Grid Coexisting System. , 2016, , .		1
4	Dynamic behavior of MEMS variable capacitor for autonomous biometric sensors. , 2016, , .		Ο
5	The Performance of Wireless Powered MIMO Relaying With Energy Beamforming. IEEE Transactions on Communications, 2016, 64, 4550-4562.	7.8	12
6	Power Waveforming: Wireless Power Transfer Beyond Time Reversal. IEEE Transactions on Signal Processing, 2016, 64, 5819-5834.	5.3	36
7	Distribution of decentralized optimization convergence bounds in energy harvesting wireless sensor networks. Transactions on Emerging Telecommunications Technologies, 2016, 27, 1580-1592.	3.9	0
8	Joint Optimization of Energy Harvesting and Detection Threshold for Energy Harvesting Cognitive Radio Networks. IEEE Access, 2016, 4, 7212-7222.	4.2	25
9	Outage Analysis of Wireless-Powered Relaying MIMO Systems with Non-Linear Energy Harvesters and Imperfect CSI. IEEE Access, 2016, 4, 7046-7053.	4.2	72
10	Distributed User Association in Energy Harvesting Small Cell Networks: A Probabilistic Bandit Model. IEEE Transactions on Wireless Communications, 2017, 16, 1549-1563.	9.2	26
11	Asymptotically Optimal Power Allocation for Energy Harvesting Communication Networks. IEEE Transactions on Vehicular Technology, 2017, 66, 7286-7301.	6.3	53
12	On the Design of Dual Energy Harvesting Communication Links With Retransmission. IEEE Transactions on Wireless Communications, 2017, 16, 4079-4093.	9.2	13
13	Cluster-Based Collaborative Spectrum Sensing for Energy Harvesting Cognitive Wireless Communication Network. IEEE Access, 2017, 5, 9266-9276.	4.2	21
14	Cooperative communication protocols with energy harvesting relays. , 2017, , .		6
15	Performance Analysis for Two-Way Network-Coded Dual-Relay Networks With Stochastic Energy Harvesting. IEEE Transactions on Wireless Communications, 2017, 16, 5747-5761.	9.2	15
16	Full-Duplex Communication in Cognitive Radio Networks: A Survey. IEEE Communications Surveys and Tutorials, 2017, 19, 2158-2191.	39.4	159
17	Exploiting Interference for Energy Harvesting: A Survey, Research Issues, and Challenges. IEEE Access, 2017, 5, 10403-10421.	4.2	107
18	Rate-Energy Region of SWIPT for MIMO Broadcasting Under Nonlinear Energy Harvesting Model. IEEE Transactions on Wireless Communications, 2017, 16, 5147-5161.	9.2	186

ιτλτιώνι Ρερώ

#	Article	IF	Citations
19	Power-Availability-Aware Cell Association for Energy-Harvesting Small-Cell Base Stations. IEEE Transactions on Wireless Communications, 2017, 16, 2409-2422.	9.2	21
20	Electric-Field Energy Harvesting From Lighting Elements for Battery-Less Internet of Things. IEEE Access, 2017, 5, 7423-7434.	4.2	34
21	Energy and Spectrum Harvesting in Sensor Networks. Springer Briefs in Electrical and Computer Engineering, 2017, , 9-24.	0.5	0
22	Group Cooperation With Optimal Resource Allocation in Wireless Powered Communication Networks. IEEE Transactions on Wireless Communications, 2017, 16, 3840-3853.	9.2	83
23	Energy Harvesting-Based D2D Communications in the Presence of Interference and Ambient RF Sources. IEEE Access, 2017, 5, 5224-5234.	4.2	26
24	Robust AN-Aided Beamforming and Power Splitting Design for Secure MISO Cognitive Radio With SWIPT. IEEE Transactions on Wireless Communications, 2017, 16, 2450-2464.	9.2	203
25	Scavenging for Energy: A Rectenna Design for Wireless Energy Harvesting in UHF Mobile Telephony Bands. IEEE Microwave Magazine, 2017, 18, 91-99.	0.8	41
26	Novel Water-Filling for Maximum Throughput of Power Grid, MIMO, and Energy Harvesting Coexisting System With Mixed Constraints. IEEE Transactions on Communications, 2017, 65, 827-838.	7.8	9
27	Joint Power Waveforming and Beamforming for Wireless Power Transfer. IEEE Transactions on Signal Processing, 2017, 65, 6409-6422.	5.3	14
28	Wireless-Powered Cooperative Multi-Relay Systems With Relay Selection. IEEE Access, 2017, 5, 19058-19071.	4.2	14
29	Delay-Aware Power Control for D2D Communication With Successive Interference Cancellation and Hybrid Energy Source. IEEE Wireless Communications Letters, 2017, 6, 806-809.	5.0	10
30	Agile Blocker and Clock Jitter Tolerant Low-Power Frequency Selective Receiver with Energy Harvesting Capability. Scientific Reports, 2017, 7, 9658.	3.3	2
31	Network-coding-based two-way relay cooperation with energy harvesting. International Journal of Distributed Sensor Networks, 2017, 13, 155014771770643.	2.2	1
32	Optimal power allocations for multichannel energy harvesting cognitive radio. , 2017, , .		3
33	Resource Allocation in Body Area Networks for Energy Harvesting Healthcare Monitoring. Scalable Computing and Communications, 2017, , 553-587.	0.5	2
34	Optimal Resource Allocation in Wireless Powered Communication Networks With User Cooperation. IEEE Transactions on Wireless Communications, 2017, 16, 7936-7949.	9.2	37
35	Performance Analysis of Nonlinear Energy-Harvesting DF Relay System in Interference-Limited Nakagami- <i>m</i> Fading Environment. ETRI Journal, 2017, 39, 803-812.	2.0	19
36	Energy-aware user association and energy cooperation for smart-grid-powered HetNet. , 2017, , .		1

			_
#	ARTICLE	IF	CITATIONS
37	Resilient scheduling of energy-variable weakly-hard real-time systems. , 2017, , .		5
38	A 3-coil simultaneous power and uplink data transmission inductive link for battery-less implantable devices. , 2017, , .		1
39	Wireless-powered cooperative multi-relay networks with relay selection. , 2017, , .		3
40	Minimizing Data Distortion of Periodically Reporting IoT Devices with Energy Harvesting. , 2017, , .		4
41	Optimization of a Power Splitting Protocol for Two-Way Multiple Energy Harvesting Relay System. IEEE Transactions on Green Communications and Networking, 2017, 1, 444-457.	5.5	51
42	Secrecy Performance Optimization for Wireless Powered Communication Networks With an Energy Harvesting Jammer. IEEE Transactions on Communications, 2017, 65, 764-774.	7.8	69
43	Optimal Power Allocation for Hybrid Energy Harvesting and Power Grid Coexisting System With Power Upper Bounded Constraints. IEEE Transactions on Signal and Information Processing Over Networks, 2017, 3, 187-199.	2.8	4
44	Resource allocation algorithm based on energy cooperation in two-way cognitive radio relay networks. , 2017, , .		2
45	Energy Management in Hybrid Energy Large-Scale MIMO Systems. IEEE Transactions on Vehicular Technology, 2017, 66, 10183-10193.	6.3	12
46	Outage probability of energy harvesting DF relay systems in generalized-K fading. , 2017, , .		4
47	Softwarization and Optimization for Sustainable Future Mobile Networks: A Survey. IEEE Access, 2017, 5, 25421-25436.	4.2	10
48	Proactive and Reactive DF Relaying for Energy Harvesting Underlay CR Network. Lecture Notes in Electrical Engineering, 2017, , 13-23.	0.4	1
49	Power Allocation for Coordinated Multi-Cell Systems With Imperfect Channel and Battery-Capacity-Limited Receivers. IEEE Communications Letters, 2017, 21, 2746-2749.	4.1	3
50	Resource Allocation for Energy Harvesting Assisted D2D Communications Underlaying OFDMA Cellular Networks. , 2017, , .		5
51	Transmission Strategy for D2D Terminal with Ambient RF Energy Harvesting. , 2017, , .		2
52	Simultaneous wireless information and power transfer for cognitive two-path successive relaying networks. , 2017, , .		0
53	Power aggregation from multiple energy harvesting devices via a conductive embroidered cloth. , 2017, , .		2
54	Joint Time Allocation and Power Splitting Schemes for DF Energy Harvesting Relaying Networks. , 2017,		7

#	Article	IF	CITATIONS
55	Superposition Coding for Energy Harvesting Communication without CSIT. , 2017, , .		1
56	Robust Radio Mode Selection in Wirelessly Powered Communications with Uncertain Channel Information. , 2017, , .		6
57	Analysis to optimize output power of energy harvester with boost converter in CMOS rectifier circuit. , 2017, , .		3
58	Joint Energy Flow and Time Duration Optimization for Harvested Energy Driven WPCN. , 2017, , .		2
59	Offloading data traffic via cognitive small cells with wireless powered user equipments. Eurasip Journal on Wireless Communications and Networking, 2017, 2017, .	2.4	11
60	Energy harvesting and information processing in cooperative multirelaying networks. , 2017, , .		0
61	Dynamic Power Splitting Schemes for Non-Linear EH Relaying Networks: Perfect and Imperfect CSI. , 2017, , .		15
62	Optimal power allocation based on sum-throughput maximization for energy harvesting cognitive radio networks. IOP Conference Series: Earth and Environmental Science, 2017, 52, 012045.	0.3	2
63	RF Energy Harvesting for 5G: An Overview. , 2017, , .		7
64	Spectrum Trading for Energy-Harvesting-Enabled Internet of Things in Harsh Environments. IEEE Access, 2018, 6, 16712-16726.	4.2	8
65	Secrecy Analysis of Wireless-Powered Multi-Antenna Relaying System With Nonlinear Energy Harvesters and Imperfect CSI. IEEE Transactions on Green Communications and Networking, 2018, 2, 460-470.	5.5	44
66	Towards Energy-Efficient Wireless Networking in the Big Data Era: A Survey. IEEE Communications Surveys and Tutorials, 2018, 20, 303-332.	39.4	70
67	Lyapunov Optimized Cooperative Communications With Stochastic Energy Harvesting Relay. IEEE Internet of Things Journal, 2018, 5, 1323-1333.	8.7	30
68	Optimal Fairness-Aware Time and Power Allocation in Wireless Powered Communication Networks. IEEE Transactions on Communications, 2018, 66, 3122-3135.	7.8	25
69	Energy Harvesting Time Coefficient Analyze for Cognitive Radio Sensor Network Using Game Theory. Lecture Notes in Computer Science, 2018, , 318-329.	1.3	0
70	On Dual-Path Energy-Harvesting Receivers for IoT With Batteries Having Internal Resistance. IEEE Internet of Things Journal, 2018, 5, 2741-2752.	8.7	15
71	Distributed Power Control for Multi-Hop Energy Harvesting Links With Retransmission. IEEE Transactions on Wireless Communications, 2018, 17, 4064-4078.	9.2	8
72	Review of Internet of Things (IoT) in Electric Power and Energy Systems. IEEE Internet of Things Journal, 2018, 5, 847-870.	8.7	460

#	Article	IF	CITATIONS
73	Self-Sustainability of Energy Harvesting Systems: Concept, Analysis, and Design. IEEE Transactions on Green Communications and Networking, 2018, 2, 175-192.	5.5	18
74	Beamforming in Wireless Energy Harvesting Communications Systems: A Survey. IEEE Communications Surveys and Tutorials, 2018, 20, 1329-1360.	39.4	119
75	Wireless Information and Power Transfer: Rate-Energy Tradeoff for Nonlinear Energy Harvesting. IEEE Transactions on Wireless Communications, 2018, 17, 1966-1981.	9.2	65
76	Optimal Transmission Schemes for DF Relaying Networks Using SWIPT. IEEE Transactions on Vehicular Technology, 2018, 67, 7062-7072.	6.3	67
77	Energy-Harvesting Wireless Sensor Networks (EH-WSNs). ACM Transactions on Sensor Networks, 2018, 14, 1-50.	3.6	247
78	Performance analysis of energy harvesting DF relay system in generalized- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="mml26" display="inline" overflow="scroll" altimg="si26.gif"><mml:mi>K</mml:mi>fading environment. Physical Communication, 2018, 28. 190-200.</mml:math 	2.1	10
79	Optimal User Scheduling in Energy Harvesting Wireless Networks. IEEE Transactions on Communications, 2018, , 1-1.	7.8	11
80	Lyapunov Optimization for Energy Harvesting Wireless Sensor Communications. IEEE Internet of Things Journal, 2018, 5, 1947-1956.	8.7	45
81	Joint Compression, Channel Coding, and Retransmission for Data Fidelity With Energy Harvesting. IEEE Transactions on Communications, 2018, 66, 1425-1439.	7.8	9
82	Energy Harvesting Cognitive Radio Networking for IoT-enabled Smart Grid. Mobile Networks and Applications, 2018, 23, 956-966.	3.3	47
83	Distributed simultaneous wireless information and power transfer in multiuser amplifyâ€andâ€forward ad hoc wireless networks. International Journal of Communication Systems, 2018, 31, e3411.	2.5	4
84	Internet of Hybrid Energy Harvesting Things. IEEE Internet of Things Journal, 2018, 5, 736-746.	8.7	160
85	Joint Optimization of Sensing and Power Allocation in Energy-Harvesting Cognitive Radio Networks. Transactions on Embedded Computing Systems, 2018, 17, 1-21.	2.9	2
86	A Critical Analysis of Research Potential, Challenges, and Future Directives in Industrial Wireless Sensor Networks. IEEE Communications Surveys and Tutorials, 2018, 20, 39-95.	39.4	181
87	Simultaneous Wireless Information and Power Transfer (SWIPT): Recent Advances and Future Challenges. IEEE Communications Surveys and Tutorials, 2018, 20, 264-302.	39.4	585
88	A Game Theoretic Approach for Backscatter-Aided Relay Communications in Hybrid Radio Networks. , 2018, , .		11
89	Energy-Efficient Adaptive Transmissions in Cognitive Radio Networks with Energy Harvesting. , 2018, , .		0
90	Optimization of a Two-HoP Network with Energy Conferencing Relays. International Journal of Wireless and Mobile Networks, 2018, 10, 35-50.	0.2	0

ARTICLE IF CITATIONS # A Novel Low-Cost Beam Steering Method Using Dispersive Superstrate., 2018,,. 0 91 Modeling wireless power transfer in a network of smart devices: a compartmental system approach., 2018,,. A New Interweave Cognitive Radio Scheme for Out-Band Energy Harvesting Systems. IEEE Access, 2018, 6, 93 4.2 3 72225-72232. Antenna Selection and Resource Allocation in Wireless Powered Communication Networks with 94 Self-Energy Recycling., 2018,,. Diffusion-Based Molecular Communication With Limited Molecule Production Rate. IEEE Transactions 95 2.1 14 on Molecular, Biological, and Multi-Scale Communications, 2018, 4, 61-72. Energy Efficient Joint Channel and Power allocation for Energy Harvesting Cognitive Radio Networks. , 2018, , . Cooperative Resource Allocation in Cognitive Wireless Powered Communication Networks with 97 0 Minimum Rate Requirements., 2018, ,. SMDP-Based Downlink Packet Scheduling Scheme for Solar Energy Assisted Heterogeneous Networks. Network Utility Optimization in RF Energy Harvesting Wireless Sensor Networks via Fixed-Trajectory 99 0 Mobile Charging., 2018,,. Outage Probability for Two-Way Relay Networks with Stochastic Energy Harvesting Source Nodes., 2018, , . Joint Resource Scheduling and Computation Offloading for Energy Harvesting Communications., 101 4 2018,,. Link Scheduling in Rechargeable Wireless Sensor Networks with Harvesting Time and Battery Capacity Constraints., 2018,,. A Spherical Hybrid Triboelectric Nanogenerator for Enhanced Water Wave Energy Harvesting. 103 2.9 39 Micromachines, 2018, 9, 598. Wireless Energy Harvesting on AF Relaying System over Outdated Channel Conditions., 2018, , . 104 105 Differential Game for Resource Allocation in Energy Harvesting Sensor Networks., 2018, , . 1 Optimal Resource Scheduling for Energy Harvesting Communications under Strict Delay Constraint., 2018,,. Social Sensor Cloud: Framework, Greenness, Issues, and Outlook. IEEE Network, 2018, 32, 100-105. 107 6.9 133 Optimal Time Assignment Policy for Maximizing Throughput in Cognitive Sensor Network with Energy 3.8 Harvesting. Sensors, 2018, 18, 2540.

		15	0
#	ARTICLE	IF	CITATIONS
109	Using SWIPT. Mobile Information Systems, 2018, 2018, 1-11.	0.6	3
110	Performance Analysis of SWIPT Relay Systems Over Nakagami-m Fading Channels with Non-linear Energy Harvester and Hybrid Protocol. , 2018, , .		5
111	Statistical Analysis of EH Battery State Under Noisy Energy Arrivals. , 2018, , .		2
112	Velocity Control of Multiple Mobile Chargers Over Moving Trajectories in RF Energy Harvesting Wireless Sensor Networks. IEEE Transactions on Vehicular Technology, 2018, 67, 11314-11318.	6.3	16
113	Outage Performance and QoS Optimization in Full-Duplex System With Non-Linear Energy Harvesting Model. IEEE Access, 2018, 6, 44281-44290.	4.2	24
114	Practical Backscatter Communication Systems for Battery-Free Internet of Things: A Tutorial and Survey of Recent Research. IEEE Signal Processing Magazine, 2018, 35, 16-27.	5.6	177
115	An Energy-Efficient Adaptive Spectrum Sharing Scheme for Full Duplex Cognitive Radios. , 2018, , .		0
116	Automatic charging of an energy harvesting powered sensor node from controllable energy source. , 2018, , .		1
117	Energy consumption index minimized resource allocation in hybrid energy multiuser OFDM system with distributed antennas. ITM Web of Conferences, 2018, 17, 03015.	0.5	1
118	Security–reliability tradeoff analysis of untrusted energy harvesting relay networks. International Journal of Distributed Sensor Networks, 2018, 14, 155014771875472.	2.2	5
119	Optimal Use of Harvested Solar, Hybrid Storage and Base Station Resources for Green Cellular Networks. IEEE Transactions on Green Communications and Networking, 2018, 2, 707-720.	5.5	15
120	Battery Recharge Time of a Stochastic Linear and Nonlinear Energy Harvesting Systems. IEEE Transactions on Vehicular Technology, 2018, 67, 7877-7881.	6.3	3
121	Access Mechanism in Wireless Powered Communication Networks With Harvesting Access Point. IEEE Access, 2018, 6, 37556-37567.	4.2	9
122	loT Communications Network for Wireless Power Transfer System State Estimation and Stabilization. IEEE Internet of Things Journal, 2018, 5, 4142-4150.	8.7	34
123	Secure Two-Way Transmission via Wireless-Powered Untrusted Relay and External Jammer. IEEE Transactions on Vehicular Technology, 2018, 67, 8451-8465.	6.3	51
124	Lyapunov-Optimized Two-Way Relay Networks With Stochastic Energy Harvesting. IEEE Transactions on Wireless Communications, 2018, 17, 6280-6292.	9.2	15
125	Integrated Data and Energy Communication Network: A Comprehensive Survey. IEEE Communications Surveys and Tutorials, 2018, 20, 3169-3219.	39.4	98
126	La-CTP: Loop-Aware Routing for Energy-Harvesting Wireless Sensor Networks. Sensors, 2018, 18, 434.	3.8	7

#	Article	IF	CITATIONS
127	Data Gathering and Energy Transfer Dilemma in UAV-Assisted Flying Access Network for IoT. Sensors, 2018, 18, 1519.	3.8	28
128	Power Optimization for Massive MIMO Systems With Hybrid Energy Harvesting Transmitter. IEEE Transactions on Vehicular Technology, 2018, 67, 10039-10043.	6.3	8
129	Optimal coordinated beamforming with artificial noise for secure SWIPT in multi-cell networks. Eurasip Journal on Wireless Communications and Networking, 2018, 2018, .	2.4	6
130	Level-Triggered Harvest-Then-Consume Protocol With Two Bits or Less Energy State Information. IEEE Wireless Communications Letters, 2018, 7, 150-153.	5.0	1
131	Renewable Energy-Based Resource Allocation for Full-Duplex Small Cell Networks. IEEE Access, 2018, 6, 24746-24756.	4.2	3
132	Information and Energy Cooperation in Overlay Hierarchical Cognitive Radio Networks. , 2018, , .		1
133	Relaying protocols for bufferâ€aided energy harvesting wireless cooperative networks. IET Networks, 2018, 7, 109-118.	1.8	24
134	Tradeoffs for Data Collection and Wireless Energy Transfer Dilemma in IoT Environments. , 2018, , .		5
135	A survey on energy efficient 5G green network with a planned multi-tier architecture. Journal of Network and Computer Applications, 2018, 118, 1-28.	9.1	45
136	Two-slope path-loss design of energy harvesting in random cognitive radio networks. Computer Networks, 2018, 142, 128-141.	5.1	12
137	Energy Efficient Resource Allocation Algorithm in Energy Harvesting-Based D2D Heterogeneous Networks. IEEE Internet of Things Journal, 2019, 6, 557-567.	8.7	130
138	Transmission delay minimization in wireless powered communication systems. Wireless Networks, 2019, 25, 1415-1430.	3.0	3
139	An overview of RF energy harvesting and information transmission in cooperative communication networks. Telecommunication Systems, 2019, 70, 295-308.	2.5	11
140	Joint Optimization of Spectrum Sensing and Transmit Power in Energy Harvesting Cognitive Radio Sensor Networks. Computer Journal, 2019, 62, 215-230.	2.4	6
141	Power Minimization in SWIPT Networks With Coexisting Power-Splitting and Time-Switching Users Under Nonlinear EH Model. IEEE Internet of Things Journal, 2019, 6, 8853-8869.	8.7	37
142	Deep Deterministic Policy Gradient (DDPG)-Based Energy Harvesting Wireless Communications. IEEE Internet of Things Journal, 2019, 6, 8577-8588.	8.7	184
143	Deep Learning Based Online Power Control for Large Energy Harvesting Networks. , 2019, , .		11
144	Monitoring System for Kinetic Energy Harvesting in a Mobile Platform. , 2019, , .		3

#	Article	IF	CITATIONS
145	Modeling the Energy Harvested by an RF Energy Harvesting System Using Gamma Processes. Mathematical Problems in Engineering, 2019, 2019, 1-12.	1.1	10
146	Delay-Optimal Resource Scheduling of Energy Harvesting-Based Devices. IEEE Transactions on Green Communications and Networking, 2019, 3, 1023-1034.	5.5	5
147	Performance evaluation of energy harvesting based DF system over Nakagami- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e653" altimg="si3.svg"><mml:mi>m</mml:mi> fading channels in the presence of co-channel interferences. Physical Communication, 2019, 36, 100758.</mml:math 	2.1	2
148	Energy-efficient secure multiuser scheduling in energy harvesting untrusted relay networks. Journal of Communications and Networks, 2019, 21, 365-375.	2.6	14
149	Efficient Algorithms for Mobile Sink Aided Data Collection From Dedicated and Virtual Aggregation Nodes in Energy Harvesting Wireless Sensor Networks. IEEE Transactions on Green Communications and Networking, 2019, 3, 1058-1071.	5.5	21
150	Passive Relaying Game for Wireless Powered Internet of Things in Backscatter-Aided Hybrid Radio Networks. IEEE Internet of Things Journal, 2019, 6, 8933-8944.	8.7	21
151	Optimal Resource Allocation for Energy Harvesting Cognitive Radio Network with Q Learning. Lecture Notes in Computer Science, 2019, , 548-560.	1.3	1
152	Reinforcement Learning Based Content Push Policy for HetNets with Energy Harvesting Small Cells. Lecture Notes in Computer Science, 2019, , 145-156.	1.3	0
153	An Efficient Design for NOMA-Assisted MISO-SWIPT Systems with AC Computing. IEEE Access, 2019, 7, 97094-97105.	4.2	8
154	Cooperative Spectrum Sensing in Multichannel Cognitive Radio Networks With Energy Harvesting. IEEE Access, 2019, 7, 84784-84802.	4.2	20
155	Energy Harvesting For Wearable Devices: A Review. IEEE Sensors Journal, 2019, 19, 9047-9062.	4.7	130
156	RF Energy Harvesting in Hybrid Two-Way Relaying Systems With Hardware Impairments. IEEE Transactions on Vehicular Technology, 2019, 68, 11792-11805.	6.3	35
157	Transmission Policy of Two-Way Relay Networks With Multiple Stochastic Energy Harvesting Nodes. IEEE Access, 2019, 7, 76967-76984.	4.2	2
158	Cooperative Spectrum Sharing on SWIPT-Based DF Relay: An Energy-Aware Retransmission Approach. IEEE Access, 2019, 7, 120802-120816.	4.2	9
159	On the Performance of Low-Altitude UAV-Enabled Secure AF Relaying With Cooperative Jamming and SWIPT. IEEE Access, 2019, 7, 153060-153073.	4.2	56
160	Dimensioning Renewable Energy Systems to Power Mobile Networks. IEEE Transactions on Green Communications and Networking, 2019, 3, 366-380.	5.5	18
161	Cost-Minimum Charger Placement for Wireless Power Transfer. , 2019, , .		2
162	Green CR-NOMA: A New Interweave Energy Harvesting Transmission Scheme for Secondary Access. , 2019, , .		7

0.			D	
	TAT	ON	REF	JUBL
\sim	1/11			

#	Article	IF	CITATIONS
163	The State-of-the-Art of Sensors and Environmental Monitoring Technologies in Buildings. Sensors, 2019, 19, 3648.	3.8	46
164	Ultra-Small Cell Networks With Collaborative RF and Lightwave Power Transfer. IEEE Transactions on Communications, 2019, 67, 6243-6255.	7.8	28
165	Energy-Neutral Wireless-Powered Networks. IEEE Wireless Communications Letters, 2019, 8, 1373-1376.	5.0	10
166	Online Power Control Based on Lyapunov Optimization Framework for Decode-and-Forward Relay Systems With Energy Harvesting. IEEE Access, 2019, 7, 71335-71349.	4.2	1
167	Link Scheduling in Rechargeable Wireless Sensor Networks With Imperfect Batteries. IEEE Access, 2019, 7, 104721-104736.	4.2	6
168	Stochastic Energy Harvesting and Relay Selection for Two-Way Dual-Relay Networks. IEEE Access, 2019, 7, 125323-125332.	4.2	2
169	Online Transmission Policy in Wireless Powered Networks with Urgency-aware Age of Information. , 2019, , .		11
170	Pushing the Boundaries of IoT: Building and Testing Self-powered Batteryless Switch. , 2019, , .		1
171	Development of Smart-Safe Using Radio Frequency Energy Harvesting. , 2019, , .		5
172	Toward energy-efficient cloud computing: a survey of dynamic power management and heuristics-based optimization techniques. Journal of Supercomputing, 2019, 75, 4750-4810.	3.6	65
173	Optimal Power Allocation for Wireless Sensor Powered by Dedicated RF Energy Source. IEEE Transactions on Vehicular Technology, 2019, 68, 2791-2801.	6.3	30
174	Dynamic Offloading for Energy Harvesting Mobile Edge Computing: Architecture, Case Studies, and Future Directions. IEEE Access, 2019, 7, 79877-79886.	4.2	30
175	A–Z overview of the in-band full-duplex cognitive radio networks. Computer Communications, 2019, 145, 66-95.	5.1	44
176	Transmission Capacity Analysis for Underlay Relay-Assisted Energy Harvesting Cognitive Sensor Networks. IEEE Access, 2019, 7, 63778-63788.	4.2	10
177	Hybrid NOMA for an Energy Harvesting MAC With Non-Ideal Batteries and Circuit Power. IEEE Transactions on Wireless Communications, 2019, 18, 3961-3973.	9.2	11
178	Advances in the development of power supplies for the Internet of Everything. InformaÄnÃ-Materiály, 2019, 1, 130-139.	17.3	97
179	Priority-Based Pipelined-Forwarding MAC Protocol for EH-WSNs. Wireless Communications and Mobile Computing, 2019, 2019, 1-7.	1.2	3
180	Wireless Power Transfer and Energy Harvesting: Current Status and Future Prospects. IEEE Wireless Communications, 2019, 26, 163-169.	9.0	129

#	Article	IF	CITATIONS
181	An Energy-Aware Retransmission Approach in SWIPT-Based Cognitive Relay Systems. IEEE Transactions on Cognitive Communications and Networking, 2019, 5, 580-594.	7.9	14
182	PPM: Preamble and Postamble-Based Multi-Packet Reception for Green ZigBee Communication. IEEE Transactions on Green Communications and Networking, 2019, 3, 817-827.	5.5	4
183	Resource allocation in RF energy harvestingâ€assisted underlay D2D communication. Transactions on Emerging Telecommunications Technologies, 2019, 30, e3589.	3.9	3
184	Cooperative Transmission With Priority and Fairness in Edge Computing Systems. IEEE Access, 2019, 7, 44059-44069.	4.2	2
185	Enhanced Broadband RF Differential Rectifier Integrated with Archimedean Spiral Antenna for Wireless Energy Harvesting Applications. Sensors, 2019, 19, 655.	3.8	43
186	Cooperative SWIPT Transmission in Overlay Multi-Antennas Hierarchical Cognitive Radio Networks. IEEE Access, 2019, 7, 6032-6046.	4.2	2
187	Outage Probability Analysis in Relaying Cooperative Systems with NOMA Considering Power Splitting. Symmetry, 2019, 11, 72.	2.2	5
188	A review on energy harvesting and storage for rechargeable wireless sensor networks. IOP Conference Series: Materials Science and Engineering, 0, 508, 012120.	0.6	9
189	Multi -Agent Deep Reinforcement Learning based Power Control for Large Energy Harvesting Networks. , 2019, , .		7
190	Power Allocation in Wireless Energy Harvesting Based Relaying Sensor Networks. , 2019, , .		3
191	VCEC: Velocity Control of Energy-Constrained RF-Based Wireless Charger in Sensor Networks with Multi-Depots Deployment. , 2019, , .		1
192	Energy-Efficient Power, Position and Time Control in UAV-Assisted Wireless Networks. , 2019, , .		3
193	Performance analysis of energy harvesting communications using multiple time slots. IET Communications, 2019, 13, 289-296.	2.2	8
194	Real-Time Power Control of Wireless Chargers in Battery-Free Body Area Networks. , 2019, , .		4
195	Energy Cooperation in Renewable- Powered Cell-Free Massive MIMO Systems. , 2019, , .		3
196	Radio-Frequency Based Energy Charging- An Experimental Study. , 2019, , .		2
198	Distributed Power Control for Large Energy Harvesting Networks: A Multi-Agent Deep Reinforcement Learning Approach. IEEE Transactions on Cognitive Communications and Networking, 2019, 5, 1140-1154.	7.9	38
199	Receiver-Initiated Energy Harvesting MAC Protocols: Survey. , 2019, , .		3

#	Article	IF	CITATIONS
200	Service Station Positioning for Mobile Charger in Wireless Rechargeable Sensor Networks. , 2019, , .		3
201	Online joint power control for cooperative jamming systems with energy harvesting. International Journal of Distributed Sensor Networks, 2019, 15, 155014771988811.	2.2	0
202	Online and robust resource allocation for D2D communications assisted by Green relays. IET Communications, 2019, 13, 3547-3557.	2.2	4
203	Mode Selection and Resource Allocation Algorithm in Energy-Harvesting D2D Heterogeneous Network. IEEE Access, 2019, 7, 179929-179941.	4.2	18
204	Global Energy Efficiency in Secure MISO SWIPT Systems With Non-Linear Power-Splitting EH Model. IEEE Journal on Selected Areas in Communications, 2019, 37, 216-232.	14.0	88
205	Sensing, Probing, and Transmitting Policy for Energy Harvesting Cognitive Radio With Two-Stage After-State Reinforcement Learning. IEEE Transactions on Vehicular Technology, 2019, 68, 1616-1630.	6.3	8
206	Energy Harvesting Sensor Node Scheduling in Wireless Sensor Networks. , 2019, , 1-4.		0
207	Online Policies for Energy Harvesting Receivers With Time-Switching Architectures. IEEE Transactions on Wireless Communications, 2019, 18, 1233-1246.	9.2	4
208	Mitigating Jamming Attacks Using Energy Harvesting. IEEE Wireless Communications Letters, 2019, 8, 297-300.	5.0	17
209	A Wake-Up Radio-Based MAC Protocol for Autonomous Wireless Sensor Networks. IEEE/ACM Transactions on Networking, 2019, 27, 56-70.	3.8	32
210	To overhear or not to overhear: a dilemma between network coding gain and energy consumption in multi-hop wireless networks. Wireless Networks, 2019, 25, 4097-4113.	3.0	1
211	Battery and supercapacitor imperfections modeling and comparison for RF energy harvesting wireless sensor network. Wireless Networks, 2020, 26, 843-853.	3.0	10
212	Secure communication with energy harvesting multiple half-duplex DF relays assisted with jamming. Wireless Networks, 2020, 26, 1151-1164.	3.0	6
213	Research on suboptimal energy balance of non-uniform distributed nodes in WSN. Journal of Supercomputing, 2020, 76, 3527-3541.	3.6	3
214	Optimal Power Allocation for Full-Duplex Underwater Relay Networks With Energy Harvesting: A Reinforcement Learning Approach. IEEE Wireless Communications Letters, 2020, 9, 223-227.	5.0	44
215	Outage Probability and Throughput of Multirelay SWIPT-WPCN Networks With Nonlinear EH Model and Imperfect CSI. IEEE Systems Journal, 2020, 14, 1206-1217.	4.6	31
216	Energy-driven computing. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190158.	3.4	18
217	Introduction to the Special Issue on the French–Polish Collaboration in Mathematical Models of Computer Systems, Networks and Bioinformatics. SN Computer Science, 2020, 1, 1.	3.6	0

#	Article	IF	CITATIONS
218	Efficient power distribution model for IoT nodes driven by energy harvested from low power ambient RF signal. Microelectronics Journal, 2020, 95, 104665.	2.0	9
219	Energy Harvesting Wireless Sensor Networks With Channel Estimation: Delay and Packet Loss Performance Analysis. IEEE Transactions on Vehicular Technology, 2020, 69, 1956-1969.	6.3	19
220	Sensing, Computing, and Communications for Energy Harvesting IoTs: A Survey. IEEE Communications Surveys and Tutorials, 2020, 22, 1222-1250.	39.4	184
221	Reinforcement Learning (RL)-Based Energy Efficient Resource Allocation for Energy Harvesting-Powered Wireless Body Area Network. Sensors, 2020, 20, 44.	3.8	35
222	Differential Game for Resource Allocation in Energy Harvesting Wireless Sensor Networks. IEEE Transactions on Green Communications and Networking, 2020, 4, 1165-1173.	5.5	9
223	Impact of Battery Charging on Spectrum Sensing of CRN With Energy Harvesting. IEEE Transactions on Vehicular Technology, 2020, 69, 7545-7557.	6.3	11
224	Joint Long-Term Energy Efficiency Optimization in C-RAN With Hybrid Energy Supply. IEEE Transactions on Vehicular Technology, 2020, 69, 11128-11138.	6.3	14
225	Outage performance analysis and resource allocation algorithm for energy harvesting D2D communication system. Wireless Networks, 2020, 26, 5163-5176.	3.0	6
226	Interference aided cooperative SWIPT for cellular IoT networks towards 5G and beyond. Physical Communication, 2020, 43, 101223.	2.1	4
227	Joint Resource Allocation for SWIPT-Based Two-Way Relay Networks. Energies, 2020, 13, 6024.	3.1	3
228	Energy-Efficient Time-Domain Equilibrium Scheduling and Optimization Scheme for Energy Harvesting-Powered D2D Communication. Journal of Sensors, 2020, 2020, 1-16.	1.1	0
229	Grand Challenges in Wireless Communications. Frontiers in Communications and Networks, 2020, 1, .	3.0	12
230	Power Splitting-Based SWIPT Systems With Full-Duplex Jamming. IEEE Transactions on Vehicular Technology, 2020, 69, 9822-9836.	6.3	30
231	IEDB-CHS-BOF: Improved Energy and Distance Based CH Selection with Balanced Objective Function for Wireless Sensor Networks. , 2020, , .		5
232	Packet Scheduling and Computation Offloading for Energy Harvesting Devices without CSIT. , 2020, , .		0
233	A survey on computation offloading modeling for edge computing. Journal of Network and Computer Applications, 2020, 169, 102781.	9.1	160
234	UAV-Assisted Time Division Power Allocation Strategy Based on RF Energy Harvesting. , 2020, , .		5
235	LATICS: A Low-Overhead Adaptive Task-Based Intermittent Computing System. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 3711-3723.	2.7	10

#	Article	IF	CITATIONS
236	Throughput Maximization in Wireless Powered Energy Harvesting Based Sensor Networks. , 2020, , .		0
237	I/Q Imbalance Aware Nonlinear Wireless-Powered Relaying of B5G Networks: Security and Reliability Analysis. IEEE Transactions on Network Science and Engineering, 2021, 8, 2995-3008.	6.4	53
238	Performance Analysis and Resource Allocations for a WPCN With a New Nonlinear Energy Harvester Model. IEEE Open Journal of the Communications Society, 2020, 1, 1403-1424.	6.9	20
239	Secure and Stateful Power Transitions in Embedded Systems. Journal of Hardware and Systems Security, 2020, 4, 263-276.	1.3	0
240	Resource Scheduling and Energy Cooperation in HetNet with Cross-Layer Interference Constraints. Mathematical Problems in Engineering, 2020, 2020, 1-16.	1.1	0
241	Optimization of Full-Duplex Relaying System With Non-Linear Energy Harvester. IEEE Access, 2020, 8, 201566-201576.	4.2	14
242	Power Management IC for a Dual-Input-Triple-Output Energy Harvester. Micromachines, 2020, 11, 937.	2.9	1
243	Update Interval Violation Probability in Energy Harvesting Wireless Sensor Networks. , 2020, , .		0
244	Automatic wireless power transfer management based on receiver feedback. , 2020, , .		0
245	Availability-Reliability-Stability Trade-Offs in Ultra-Reliable Energy-Harvesting Cognitive Radio IoT Networks. IEEE Access, 2020, 8, 82890-82916.	4.2	18
246	A System State Aware Switched-Multichannel Protocol for Energy Harvesting CRNs. IEEE Transactions on Cognitive Communications and Networking, 2020, 6, 669-682.	7.9	5
247	Power Allocation Based on Reinforcement Learning for MIMO System With Energy Harvesting. IEEE Transactions on Vehicular Technology, 2020, 69, 7622-7633.	6.3	12
248	A Solar Altitude Angle Model for Efficient Solar Energy Predictions. Sensors, 2020, 20, 1391.	3.8	19
249	G-Networks and the Performance of ICT with Renewable Energy. SN Computer Science, 2020, 1, 1.	3.6	5
250	Nanosensor networks for smart health care. , 2020, , 387-403.		11
251	Energy- and Spectral-Efficiency Tradeoff With \$alpha\$-Fairness in Energy Harvesting D2D Communication. IEEE Transactions on Vehicular Technology, 2020, 69, 9972-9983.	6.3	24
252	Deep Reinforcement Learning-based resource allocation strategy for Energy Harvesting-Powered Cognitive Machine-to-Machine Networks. Computer Communications, 2020, 160, 706-717.	5.1	21
253	Uplinks Schedulers for RF-Energy Harvesting Networks With Imperfect CSI. IEEE Transactions on Vehicular Technology, 2020, 69, 4233-4245.	6.3	3

#	Article	IF	CITATIONS
254	On hybrid energy utilization for harvesting base station in 5G networks. Energy Science and Engineering, 2020, 8, 768-778.	4.0	3
255	On Stochastic Link and Energy Scheduling for Energy Harvesting Bidirectional Communications. IEEE Access, 2020, 8, 20129-20145.	4.2	2
256	A Lean Control Theoretic Approach to Energy-Harvesting in Diffusion-Based Molecular Communications. IEEE Communications Letters, 2020, 24, 981-985.	4.1	7
257	Optimal charger placement for wireless power transfer. Computer Networks, 2020, 170, 107123.	5.1	15
258	Arrangement optimization of water-driven triboelectric nanogenerators considering capillary phenomenon between hydrophobic surfaces. Scientific Reports, 2020, 10, 1126.	3.3	8
259	Flexible Functional Split and Power Control for Energy Harvesting Cloud Radio Access Networks. IEEE Transactions on Wireless Communications, 2020, 19, 1535-1548.	9.2	11
260	Combination of Ultra-Dense Networks and Other 5G Enabling Technologies: A Survey. IEEE Access, 2020, 8, 22893-22932.	4.2	87
261	Resource Allocation Algorithm for NOMA-Enhanced D2D Communications with Energy Harvesting. Mobile Information Systems, 2020, 2020, 1-11.	0.6	6
262	Relay selection schemes in threshold DF cooperative systems with wireless power transfer. Journal of the Franklin Institute, 2020, 357, 5091-5109.	3.4	2
263	Modeling and Analysis of Energy Harvesting and Smart Grid-Powered Wireless Communication Networks: A Contemporary Survey. IEEE Transactions on Green Communications and Networking, 2020, 4, 461-496.	5.5	83
264	Resource Allocation for Wireless Cooperative IoT Network With Energy Harvesting. IEEE Transactions on Wireless Communications, 2020, 19, 4879-4893.	9.2	16
265	Internet of MIMO Things: UAV-Assisted Wireless-Powered Networks for Future Smart Cities. IEEE Internet of Things Magazine, 2020, 3, 8-13.	2.6	27
266	Statistical Performance Modeling of Solar and Wind-Powered UAV Communications. IEEE Transactions on Mobile Computing, 2021, 20, 2686-2700.	5.8	42
267	Information-Energy Region for SWIPT Networks in Mobility Scenarios. IEEE Transactions on Vehicular Technology, 2020, 69, 7264-7280.	6.3	6
268	Optimal Sensing Policy for Energy Harvesting Cognitive Radio Systems. IEEE Transactions on Wireless Communications, 2020, 19, 3826-3838.	9.2	5
269	Multi-Agent Reinforcement Learning for Energy Harvesting Two-Hop Communications With a Partially Observable System State. IEEE Transactions on Green Communications and Networking, 2021, 5, 442-456.	5.5	9
270	Uniform thresholding based transmission policy for energy harvesting wireless sensor nodes in fading channel. Wireless Networks, 2021, 27, 1001-1010.	3.0	0
271	A Framed Slotted ALOHA-Based MAC for Eliminating Vain Wireless Power Transfer in Wireless Powered IoT Networks. Electronics (Switzerland), 2021, 10, 9.	3.1	9

#	Article	IF	CITATIONS
272	Analysis of the Interdelivery Time in IoT Energy Harvesting Wireless Sensor Networks. IEEE Internet of Things Journal, 2021, 8, 4920-4930.	8.7	9
273	Joint Flight Cruise Control and Data Collection in UAV-Aided Internet of Things: An Onboard Deep Reinforcement Learning Approach. IEEE Internet of Things Journal, 2021, 8, 9787-9799.	8.7	39
274	New Look on Device to Device NOMA Systems: with and Without Wireless Power Transfer Modes. Wireless Personal Communications, 2021, 116, 2485-2500.	2.7	5
275	Outage Analysis of Energy-Harvesting-Based Relay-Assisted Random Underlay Cognitive Radio Networks With Multihop Primary Transmissions. IEEE Systems Journal, 2021, 15, 3871-3880.	4.6	4
276	Link Scheduling in Rechargeable Wireless Sensor Networks With Imperfect Battery and Memory Effects. IEEE Access, 2021, 9, 17803-17819.	4.2	2
277	A Survey of Energy and Spectrum Harvesting Technologies and Protocols for Next Generation Wireless Networks. IEEE Access, 2021, 9, 1737-1769.	4.2	16
278	Multi-slot energy harvesting wireless communication in interference environment. Mathematical Biosciences and Engineering, 2021, 18, 4127-4145.	1.9	0
279	Multiple Access Control in a Centralized Full-Duplex Cognitive Machine Type Network with RF Energy Harvesting. Wireless Personal Communications, 2021, 118, 949-960.	2.7	0
280	Finite Blocklength Analysis of Energy Harvesting Channels. Problems of Information Transmission, 2021, 57, 1-32.	0.5	0
281	Performance Analysis of URLL Energy-Harvesting Cognitive-Radio IoT Networks With Short Packet and Diversity Transmissions. IEEE Access, 2021, 9, 79293-79306.	4.2	7
282	QoS-Aware Energy Management and Node Scheduling Schemes for Sensor Network-Based Surveillance Applications. IEEE Access, 2021, 9, 3065-3096.	4.2	11
283	Low-Latency and Energy-Efficient Wireless Communications With Energy Harvesting. IEEE Transactions on Wireless Communications, 2022, 21, 1244-1256.	9.2	2
284	End-to-End Performance Optimization of a Dual-Hop Hybrid VLC/RF IoT System Based on SLIPT. IEEE Internet of Things Journal, 2021, 8, 17356-17371.	8.7	22
285	Secure Communication With Energy-Harvesting Buffer-Aided Jammer. IEEE Open Journal of the Communications Society, 2021, 2, 1799-1808.	6.9	0
286	Simultaneous Wireless Information and Power Transfer With Cooperative Relaying for Next-Generation Wireless Networks: A Review. IEEE Access, 2021, 9, 71482-71504.	4.2	33
287	Camouflage Learning: Feature Value Obscuring Ambient Intelligence for Constrained Devices. IEEE Transactions on Mobile Computing, 2023, 22, 781-796.	5.8	2
288	A Stochastic Geometry Analysis for Energy-Harvesting-Based Device-to-Device Communication. IEEE Internet of Things Journal, 2022, 9, 1591-1607.	8.7	5
289	Optimal wireless charger placement with individual energy requirement. Theoretical Computer Science, 2021, 857, 16-28.	0.9	1

		15	CITATIONS
#	Internet of things energy system: Smart applications, technology advancement, and open issues.	IF	CHATIONS
290	International Journal of Energy Research, 2021, 45, 8389-8419.	4.5	34
291	Reinforcement Learning Framework for Delay Sensitive Energy Harvesting Wireless Sensor Networks. IEEE Sensors Journal, 2021, 21, 7103-7113.	4.7	9
292	Development of A Guided Drone Powered by Radio Frequency Energy Harvesting. , 2021, , .		1
293	Digital TV Spectrum Survey for the Scope of Energy Scavenging in Jasin, Melaka. , 2021, , .		1
294	Wireless energy transfer policies for cognitive radio based MAC in energy-constrained IoT networks. Telecommunication Systems, 2021, 77, 435-449.	2.5	2
295	Energy Harvesting Mechanisms in a Smart City—A Review. Smart Cities, 2021, 4, 476-498.	9.4	36
296	Development and Characterization of Double-Contact Triboelectric Nanogenerator with Improved Energy Harvesting Performance. Journal of the Korean Society for Precision Engineering, 2021, 38, 287-294.	0.2	1
297	Modulation Diversity in a Two-Way Cooperative System with an Energy Harvesting Relay. , 2021, , .		0
298	Dynamic Resource Optimization for Decentralized Estimation in Energy Harvesting IoT Networks. IEEE Internet of Things Journal, 2021, 8, 8530-8542.	8.7	5
299	Cooperative Spectrum Sensing Based on Convolutional Neural Networks. Applied Sciences (Switzerland), 2021, 11, 4440.	2.5	8
300	Problems and Ways of Creating Efficient Electric Power Installations for Unmanned Underwater Vehicles Based on Chemical Current Sources. Russian Electrical Engineering, 2021, 92, 262-267.	0.6	0
301	Radiofrequency Energy Harvesting for Wireless Sensor Node: Design Guidelines and Current Circuits Performance. , 0, , .		2
302	Energy efficient resource allocation in delay-aware UAV-based cognitive radio networks with energy harvesting. Sustainable Energy Technologies and Assessments, 2021, 45, 101204.	2.7	3
303	Wireless Power and Energy Harvesting Control in IoD by Deep Reinforcement Learning. IEEE Transactions on Green Communications and Networking, 2021, 5, 980-989.	5.5	20
304	Link Scheduling in Rechargeable Wireless Sensor Networks with a Dual-Battery System. , 2021, , .		2
305	Throughput Maximization for Wireless Powered Communication: Reinforcement Learning Approaches. , 2021, , .		2
306	Review: Sensors for Biosignal/Health Monitoring in Electronic Skin. Polymers, 2021, 13, 2478.	4.5	22
307	Minimum Nodes Deployment for Mixed Energy Replenishment in Rechargeable WSNs. IEEE Sensors Journal, 2021, 21, 16282-16290.	4.7	3

#	Article	IF	CITATIONS
308	GSM900 Downlink Power Density Survey in Merlimau Area. , 2021, , .		0
309	Neural-Network-Based Power Control Prediction for Solar-Powered Energy Harvesting Communications. IEEE Internet of Things Journal, 2021, 8, 12983-12998.	8.7	5
310	Feasibility of RF RSL for RF Energy Harvesting : A Case Study of Alor Gajah Area. , 2021, , .		0
311	Energy Harvesting Schemes for Wearable Devices. AEU - International Journal of Electronics and Communications, 2021, 138, 153888.	2.9	37
312	Adhoc mobile power connectivity using a wireless power transmission grid. Scientific Reports, 2021, 11, 17867.	3.3	8
313	Spatiotemporal Medium Access Control for Wireless Powered IoT Networks. IEEE Internet of Things Journal, 2021, 8, 14822-14834.	8.7	3
314	UAV path planning for backscatter communication with phase cancellation. Computer Communications, 2021, 179, 242-250.	5.1	3
315	A comprehensive survey on Green ICT with 5G-NB-IoT: Towards sustainable planet. Computer Networks, 2021, 199, 108433.	5.1	8
316	Outage Minimization of Energy Harvesting-Based Relay-Assisted Random Underlay Cognitive Radio Networks With Interference Cancellation. IEEE Access, 2021, 9, 109432-109446.	4.2	4
317	Beamforming and Resource Allocation for Charging Power Minimization in Multiuser Wireless-Powered Networks. IEEE Access, 2021, 9, 136231-136242.	4.2	1
318	Steady-State Rate-Optimal Power Adaptation in Energy Harvesting Opportunistic Cognitive Radios With Spectrum Sensing and Channel Estimation Errors. IEEE Transactions on Green Communications and Networking, 2021, 5, 2104-2120.	5.5	6
319	Online Distributed Offloading and Computing Resource Management With Energy Harvesting for Heterogeneous MEC-Enabled IoT. IEEE Transactions on Wireless Communications, 2021, 20, 6743-6757.	9.2	156
320	Enhancing Spectrum Efficiency and Energy Harvesting Selection for Cognitive Using a Hybrid Technique. Lecture Notes in Networks and Systems, 2020, , 556-568.	0.7	2
321	Internet of Energy Harvesting Cognitive Radios. Internet of Things, 2020, , 125-150.	1.7	2
322	Design architectures for energy harvesting in the Internet of Things. Renewable and Sustainable Energy Reviews, 2020, 128, 109901.	16.4	150
323	Joint Beamforming and Resource Allocation for Wireless-Powered Device-to-Device Communications in Cellular Networks. IEEE Transactions on Wireless Communications, 2017, 16, 7290-7304.	9.2	23
324	Dynamic Task-based Intermittent Execution for Energy-harvesting Devices. ACM Transactions on Sensor Networks, 2020, 16, 1-24.	3.6	45
325	Street lamps as a platform. Communications of the ACM, 2020, 63, 75-83.	4.5	14

#	Article	IF	CITATIONS
326	Energy Efficiency Optimization for Secure SWIPT System. IEICE Transactions on Communications, 2020, E103.B, 582-590.	0.7	2
327	Energy Harvesting in Cognitive Networks Using Feasible Channel Selection Assignment. Recent Advances in Computer Science and Communications, 2020, 13, 173-182.	0.7	2
328	Performance Analysis and Deep Learning Design of Wireless Powered Cognitive NOMA IoT Short-Packet Communications With Imperfect CSI and SIC. IEEE Internet of Things Journal, 2022, 9, 10464-10479.	8.7	24
329	Relay Selection and Throughput Maximization for Full Duplex Wireless Powered Cooperative Communication Networks. , 2021, , .		2
330	Sustainability-Oriented Macro Trends and Innovation Types—Exploring Different Organization Types Tackling the Global Sustainability Megatrend. Sustainability, 2021, 13, 11583.	3.2	2
331	Advanced Maximum Power Point Tracker for PV Systems Under Dusty Weather Environments. IEEJ Transactions on Electrical and Electronic Engineering, 2022, 17, 61-71.	1.4	1
332	A Review on Kinetic Energy Harvesting with Focus on 3D Printed Electromagnetic Vibration Harvesters. Energies, 2021, 14, 6961.	3.1	8
333	Optimal Power Allocation Based on Transmission Completion Time Minimization for Energy Harvesting Relay Networks. Journal of Communications, 2017, , .	1.6	2
334	150-nW FD-SOI Intermittent Startup Circuit for Micropower Energy Harvesting Sensor. , 2019, , .		0
336	JBRC: Jointly Balanced Routing and Charging Scheme for RF Energy Harvesting Wireless Sensor Networks. , 2020, , .		0
337	Deep Q Network for Wiretap Channel Model with Energy Harvesting. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2020, , 433-444.	0.3	0
338	Performance Analysis of a SWIPT enabled Cognitive Radio Sensor Network using TS protocol. , 2020, , .		2
339	Review of Energy Harvesting in LoRa based Wireless Sensor Network. , 2020, , .		5
340	DESIGN, ANALYSIS, AND OPTIMIZATION OF DUAL SIDE PRINTED MULTIBAND ANTENNA FOR RF ENERGY HARVESTING APPLICATIONS. Progress in Electromagnetics Research C, 2020, 102, 79-91.	0.9	12
341	Minimum Wireless Charger Placement with Individual Energy Requirement. Lecture Notes in Computer Science, 2020, , 697-710.	1.3	0
342	Powering Healthcare IoT Sensors-Based Triboelectric Nanogenerator. Advances in Computer and Electrical Engineering Book Series, 2020, , 29-51.	0.3	2
343	Energy Harvesting Sensor Node Scheduling in Wireless Sensor Networks. , 2020, , 411-414.		1
344	Performance comparison of interference alignment algorithms in an energy harvesting scenario. , 2020, , .		2

#	Article	IF	CITATIONS
345	Combining Time Switching Energy Harvesting and Relay Selection for Energy-Efficient Cooperative Communication Networks. , 2021, , .		0
347	SWIPT-Enabled Multiple Access Channel: Effects of Decoding Cost and Non-Linear EH Model. IEEE Transactions on Communications, 2022, 70, 306-316.	7.8	8
348	On Securing Cognitive Radio Networks-Enabled SWIPT Over Cascaded \$kappa\$-\$mu\$ Fading Channels With Multiple Eavesdroppers. IEEE Transactions on Vehicular Technology, 2022, 71, 478-488.	6.3	10
349	Renewable Energy-Enabled Cellular Networks. SSRN Electronic Journal, 0, , .	0.4	3
350	AI Models for Green Communications Towards 6G. IEEE Communications Surveys and Tutorials, 2022, 24, 210-247.	39.4	104
351	On the Coverage of UAV-Assisted SWIPT Networks With Nonlinear EH Model. IEEE Transactions on Wireless Communications, 2022, 21, 4464-4481.	9.2	11
352	Coverage Performance of UAV-Assisted SWIPT Networks With Directional Antennas. IEEE Internet of Things Journal, 2022, 9, 10600-10609.	8.7	4
353	Joint Sleep and Rate Scheduling with Booting Costs for Energy Harvesting Communication Systems. IEEE Transactions on Mobile Computing, 2021, , 1-1.	5.8	1
354	On the Performance of Power Splitting-Based SWIPT in Self-Energy Recycling Full-Duplex Relaying Networks. , 2020, , .		3
355	Link Scheduling in Rechargeable Wireless Sensor Networks with Battery Memory Effects. , 2020, , .		0
356	Two-Way AF Relay Scheme Based on RF Energy Harvesting and X-Duplex in Cognitive Network. , 2020, , .		0
357	Mapping the Landscape of Green Communications and Green Computing: A Review Based on Bibliometric Analysis. , 2021, , .		1
358	On Adaptive Transmission for Distributed Detection in Energy Harvesting Wireless Sensor Networks With Limited Fusion Center Feedback. IEEE Transactions on Green Communications and Networking, 2022, 6, 1764-1779.	5.5	5
359	Throughput maximisation for multiâ€channel energy harvesting cognitive radio networks with hybrid overlay/underlay transmission. IET Communications, 2022, 16, 274-290.	2.2	4
360	Managing the harvested energy in wireless sensor networks: A priority Geo/Geo/1/k approach with threshold. Energy Reports, 2022, 8, 2448-2461.	5.1	3
361	Weighted Sum Rate Maximization for Two-Way Wireless Powered Interference Channels. IEEE Transactions on Vehicular Technology, 2022, 71, 5627-5632.	6.3	1
362	Adaptive Multiuser Cooperative NOMA Scheme With Energy Buffer-Aided Near-Users for High Spectral and Energy Efficiency. IEEE Internet of Things Journal, 2022, 9, 16643-16662.	8.7	3
363	Low-Complexity PSO-Based Resource Allocation Scheme for Cooperative Non-Linear SWIPT-Enabled NOMA. IEEE Access, 2022, 10, 34207-34220.	4.2	18

#	ARTICLE	IF	CITATIONS
364	Data Gathering Techniques in WSN: A Cross-Layer View. Sensors, 2022, 22, 2650.	3.8	13
365	Outage Energy Efficiency Maximization for UAV-Assisted Energy Harvesting Cognitive Radio Networks. IEEE Sensors Journal, 2022, 22, 7094-7105.	4.7	21
366	Performance evaluation of multiuser Internet of Things wirelessâ€powered relaying networks with transceiver hardware imperfections over Nakagamiâ€ <i>m</i> fading channels. International Journal of Communication Systems, 2022, 35, .	2.5	1
367	Wireless Power Charging of Smartphone up to 6 Feet From Transmitter Antenna at 2.4 GHz. , 2021, , .		0
368	Design of an Internet of Things Network for Temperature and Humidity Monitoring and Its Implementation Using SSAIL Technology. , 2021, , .		0
369	Model-Free Learning Algorithms for Dynamic Transmission Control in IoT Equipment. , 2021, , .		0
372	Energy Harvesting Wireless Sensor Networks: Inter-delivery-aware Scheduling Algorithms. , 2022, , .		0
373	Radio Frequency Energy Harvesting Technologies: A Comprehensive Review on Designing, Methodologies, and Potential Applications. Sensors, 2022, 22, 4144.	3.8	29
374	Deep Q-learning based optimal resource allocation method for energy harvested cognitive radio networks. Physical Communication, 2022, 53, 101766.	2.1	5
375	Outage Performance of Wireless Powered Decode-and-Forward Relaying Networks in Rician Fading. Entropy, 2022, 24, 763.	2.2	0
376	6th Generation: Communication, Signal Processing, Advanced Infrastructure, Emerging Technologies and Challenges. , 2021, , .		4
377	Knowledge-Assisted DRL for Energy Harvesting Based Multi-Access Wireless Communications. , 2021, , .		1
378	DS-SWIPT: Secure Communication with Wireless Power Transfer for Internet of Things. Security and Communication Networks, 2022, 2022, 1-11.	1.5	0
379	A Survey on Mobile Charging Techniques in Wireless Rechargeable Sensor Networks. IEEE Communications Surveys and Tutorials, 2022, 24, 1750-1779.	39.4	28
380	Performance of SWIPT-Enabled FD TWR Network With Hardware Impairments and Imperfect CSI. IEEE Systems Journal, 2023, 17, 1224-1234.	4.6	4
381	Development of Wireless Sensor Network for Environment Monitoring and Its Implementation Using SSAIL Technology. Sensors, 2022, 22, 5343.	3.8	17
382	Toward effective irregular wind energy harvesting: Self-adaptive mechanical design strategy of triboelectric-electromagnetic hybrid wind energy harvester for wireless environmental monitoring and green hydrogen production. Nano Energy, 2022, 102, 107638.	16.0	26
383	Throughput Maximization for Full Duplex Wireless Powered Cooperative Communication Network. , 2022, , .		0

#	Article	IF	CITATIONS
384	Approximation Designs for Energy Harvesting Relay Deployment in Wireless Sensor Networks. Journal of Computer Science and Technology, 2022, 37, 779-796.	1.5	0
385	Aerodynamics of Home-Chimney Pinwheels as Smart Turbine Energy Harvester(STEH) for Smart City IoT. , 2022, , .		1
386	Green Energy Scavenging for Powering Mobile Phones. , 2022, , .		3
387	Efficient DNN Execution on Intermittently-Powered IoT Devices With Depth-First Inference. IEEE Access, 2022, 10, 101999-102008.	4.2	2
388	Orthogonal CCSK Based on Complementary Code Sequences. Radioelectronics and Communications Systems, 2022, 65, 61-71.	0.5	1
389	A fixed clustering protocol based on random relay strategy for EHWSN. Digital Communications and Networks, 2023, 9, 90-100.	5.0	10
390	SMAC-Based WSN Protocol-Current State of the Art, Challenges, and Future Directions. Journal of Computer Networks and Communications, 2022, 2022, 1-29.	1.6	3
391	Textile Materials for Wireless Energy Harvesting. Electronic Materials, 2022, 3, 301-331.	1.9	4
392	Radiofrequency Energy Harvesting Systems for Internet of Things Applications: A Comprehensive Overview of Design Issues. Sensors, 2022, 22, 8088.	3.8	12
393	Latency-Aware Multi-antenna SWIPT System with Battery-Constrained Receivers. IEEE Transactions on Wireless Communications, 2022, , 1-1.	9.2	2
394	Overlay Cognitive Radio Networks Enabled Energy Harvesting With Random AF Relays. IEEE Access, 2022, 10, 113035-113045.	4.2	2
395	Concomitance of radio frequency energy harvesting and wearable devices: A review of rectenna designs. International Journal of RF and Microwave Computer-Aided Engineering, 2022, 32, .	1.2	4
396	Joint Shortest Chain and Fair Transmission Design for Energy-Balanced PEGASIS in WSNs. IEEE Internet of Things Journal, 2023, 10, 6803-6817.	8.7	1
397	Secure MiNO systems with nonlinear energy harvesting using optimal transmit antenna selection over <mml:math <br="" display="inline" id="d1e1096" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si3.svg"><mml:mio>`<mml:mi>î±</mml:mi> <mml:mo <br="" linebreak="goodbreak">linebreakstyle="after">â^`</mml:mo><mml:mi>î³</mml:mi> </mml:mio></mml:math> Âfading channels.	2.1	0
398	Physical Communication, 2023, 57, 2019(59. Throughput Maximization of Wireless-Powered Communication Network With Mobile Access Points. IEEE Transactions on Wireless Communications, 2023, 22, 4401-4415.	9.2	9
399	High-Accuracy and Long-Range Energy Harvesting Beat Sensor with LoRa. , 2022, , .		1
400	Neighbor-Aware Distributed Task Offloading Algorithm in Energy Harvesting Internet of Things. IEEE Internet of Things Journal, 2022, , 1-1.	8.7	0
401	Next-Generation IoT Devices: Sustainable Eco-Friendly Manufacturing, Energy Harvesting, and Wireless Connectivity. IEEE Journal of Microwaves, 2023, 3, 237-255.	6.5	16

ARTICLE IF CITATIONS A renewable energy-aware distributed task scheduler for multi-sensor IoT networks. , 2022, , . 402 0 Empirical Characterization of Solar Panel Outlay and Dimension for Net-Zero Energy IoT System., 2022,,. Comprehensive Review of Renewable Energy Communication Modeling for Smart Systems. Energies, 404 3.15 2023, 16, 409. HRL-Based Access Control for Wireless Communications With Energy Harvesting. IEEE Transactions on Automation Science and Engineering, 2024, 21, 1000-1011. Self-Powered Sensors: Applications, Challenges, and Solutions. IEEE Sensors Journal, 2023, 23, 406 4.7 9 20483-20509. Self-powered light dimming system using a magneto-mechano-electric generator with hardener-doped Pb(Mg_{1/3}Nb_{2/3})O₃â€"Pb(Zr,Ti)O₃single crystals. 10.3 Journal of Materials Chemistry A, 2023, 11, 3364-3372. A survey of energy efficient methods for UAV communication. Vehicular Communications, 2023, 41, 408 4.0 0 100594. Energy efficiency and delay determinacy tradeoff in energy harvesting-powered zero-touch 409 deterministic industrial M2M communications. Engineering Applications of Artificial Intelligence, 8.1 An Energy-Efficient Communication Protocol for Power-Constrained IoT Networks: A Deep 410 0 Reinforcement Learning Approach., 2023,,. Distributed Batteryless Access Control for Data and Energy Integrated Networks: Modeling and 8.7 Performance Analysis. IEEE Internet of Things Journal, 2023, 10, 13428-13441. On Distributed Detection in EH-WSNs With Finite-State Markov Channel and Limited Feedback. IEEE 412 0 5.5Transactions on Green Communications and Networking, 2023, 7, 1692-1708. Ultra-Green Relay Transmission with Wireless Power Transfer for Advanced IoT: Session-Specific 8.7 Analysis and Optimization. IEEE Internet of Things Journal, 2023, , 1-1. Joint Data Transmission and Energy Harvesting for MISO Downlink Transmission Coordination in Wireless IoT Networks. Sensors, 2023, 23, 3900. 414 3.8 0 eMeD: An Experimental Study of an Autonomous Wearable System with Hybrid Energy Harvester for 1.1 Internet of Medical Things. Journal of Sensors, 2023, 2023, 1-12. Optimal Power Allocation and Power Splitting Ratio Assignments for SWIPT-Enabled Orthogonal 416 0 3.1Multiple Access with Distributed Antenna Systems. Electronics (Switzerland), 2023, 12, 1995. Opportunistic Routing Aided Cooperative Communication MRC Network With Energy-Harvesting Nodes. IEEE Open Journal of the Communications Society, 2023, 4, 1091-1110. Backscatter Communication Meets Practical Battery-Free Internet of Things: A Survey and Outlook. 418 39.4 2 IEEE Communications Surveys and Tutorials, 2023, 25, 2021-2051. Machine learning assisted delay minimization in full duplex energy constrained cooperative 419 communication network. Ad Hoc Networks, 2023, 149, 103208.

~	_	
	12 FDC	DT
CILAD	NLFU	

#	Article	IF	CITATIONS
420	SWIPT Enabled Cooperative Cognitive Radio Sensor Network With Non-Linear Power Amplifier. IEEE Transactions on Cognitive Communications and Networking, 2023, 9, 884-896.	7.9	4
421	ISSAC: An Self-organizing and Self-healing MAC Design for Intermittent Communication Systems. , 2023, , .		0
422	Light Flash Write for Efficient Firmware Update on Energy-harvesting IoT Devices. , 2023, , .		0
423	Al based energy harvesting security methods: A survey. ICT Express, 2023, , .	4.8	0
424	Enhanced signal response in globally coupled networks of bistable oscillators: Effects of mean field density and signal shape. Physical Review E, 2023, 107, .	2.1	2
425	The Performance Optimization of Harnessing Green Information Technology for Energy Harvesting. , 2023, , .		0
426	Aol-Minimal Online Scheduling for Wireless-Powered IoT: A Lyapunov Optimization-Based Approach. IEEE Transactions on Green Communications and Networking, 2023, 7, 2081-2092.	5.5	0
427	UAV-Served Energy Harvesting-Enabled M2M Networks for Green Industry—A Perspective of Energy Efficient Resource Management Scheme. IEEE Transactions on Green Communications and Networking, 2023, 7, 1877-1891.	5.5	1
429	Performance analysis of twoâ€way wirelessâ€powered Amplifyâ€andâ€Forward relaying in the presence of coâ€channel interference. International Journal of Communication Systems, 2021, 34, .	2.5	1
430	Energy harvesting in self-sustainable IoT devices and applications based on cross-layer architecture design: A survey. Computer Networks, 2023, 236, 110011.	5.1	2
431	Zero-Energy Devices Empowered 6G Networks: Opportunities, Key Technologies, and Challenges. IEEE Internet of Things Magazine, 2023, 6, 44-50.	2.6	0
432	Outage analysis of hybrid VLC–RF system for IoT application under energy harvesting. Telecommunication Systems, 2023, 84, 387-397.	2.5	0
433	Power control algorithm for wireless sensor nodes based on energy prediction. Wireless Networks, 0, , .	3.0	0
434	Resource allocation for full-duplex MIMO relaying system with self-energy recycling. Wireless Networks, 2024, 30, 781-797.	3.0	0
435	Wake galloping piezoelectric-electromagnetic hybrid ocean wave energy harvesting with oscillating water column. Applied Energy, 2024, 353, 122081.	10.1	1
436	A Deep Reinforcement Learning Approach for DNN Collaborative Inference in Mobile Edge Computing. , 2023, , .		0
437	A comprehensive review of energy harvesting and routing strategies for IoT sensors sustainability and communication technology. Sensors International, 2024, 5, 100258.	8.4	1
438	Transduction of UV-light energy into alternating-current electricity via a neglected internal photoelectric effect of metal foil-based nanogenerator. Nano Energy, 2024, 120, 109174.	16.0	0

#	Article	IF	CITATIONS
439	Improving the Security and Reliability of Energy-Constrained Two-Way Relay Systems With Nonlinear Energy Harvesting. IEEE Access, 2023, 11, 136793-136808.	4.2	1
440	A critical review on energy efficient scheduling techniques in cloud computing. AIP Conference Proceedings, 2023, , .	0.4	0
441	Trust evaluation model of power terminal based on equipment portrait. Global Energy Interconnection, 2023, 6, 758-771.	2.3	0
442	Joint Trajectory, Power Profile and Harvested Energy Management in Cooperative UAVs. , 2023, , .		0
443	A review of residential blockchain internet of things energy systems: Resources, storage and challenges. Energy Reports, 2024, 11, 1225-1241.	5.1	0
444	Powering AI at the edge: A robust, memristor-based binarized neural network with near-memory computing and miniaturized solar cell. Nature Communications, 2024, 15, .	12.8	1
445	Energy Harvesting Communication System Optimization Based onÂBattery Leakage andÂRate Capacity. Lecture Notes in Electrical Engineering, 2024, , 630-641.	0.4	0
446	Optimal Resource Allocation for Energy Harvested Cognitive Radio Networks Based on Learn Heuristic Algorithm. Communications in Computer and Information Science, 2024, , 341-354.	0.5	0
447	Immersive Multimedia Service Caching in Edge Cloud with Renewable Energy. ACM Transactions on Multimedia Computing, Communications and Applications, 2024, 20, 1-23.	4.3	0
448	A Review of Recent Advances in Human-Motion Energy Harvesting Nanogenerators, Self-Powering Smart Sensors and Self-Charging Electronics. Sensors, 2024, 24, 1069.	3.8	0
449	Isolated Orthogonal Magnetic Energy Harvesting System Around High Voltage Transmission Lines. Journal of Electrical Engineering and Technology, 0, , .	2.0	0
450	Interference Exploitation Beamforming for Cognitive Radio Network with Energy Transfer. Lecture Notes in Electrical Engineering, 2024, , 169-177.	0.4	0
451	Polymeric Energy Harvesting Materials. Advances in Civil and Industrial Engineering Book Series, 2024, , 33-71.	0.2	0
453	Network sum-rate maximization for network-coded clustered uplink NOMA networks with SWIPT-enabled relays. Computer Networks, 2024, 244, 110340.	5.1	Ο