Bioengineering Hematopoietic Stem Cell Niche toward

Advanced Drug Delivery Reviews 99, 212-220 DOI: 10.1016/j.addr.2015.10.010

Citation Report

#	ARTICLE	IF	CITATIONS
1	New insights into the regulation by RUNX1 and GFI1(s) proteins of the endothelial to hematopoietic transition generating primordial hematopoietic cells. Cell Cycle, 2016, 15, 2108-2114.	2.6	18
2	Bone-marrow mimicking biomaterial niches for studying hematopoietic stem and progenitor cells. Journal of Materials Chemistry B, 2016, 4, 3490-3503.	5.8	31
3	From discovery to approval of an advanced therapy medicinal product-containing stem cells, in the EU. Regenerative Medicine, 2016, 11, 407-420.	1.7	53
4	Gram-Scale Laboratory Synthesis of UM171, a Potent Agonist of Human Hematopoietic Stem Cell Self-Renewal. Journal of Organic Chemistry, 2016, 81, 10236-10241.	3.2	4
5	Challenges and Opportunities to Harnessing the (Hematopoietic) Stem Cell Niche. Current Stem Cell Reports, 2016, 2, 85-94.	1.6	19
6	Ovarian Stem Cell Nests in Reproduction and Ovarian Aging. Cellular Physiology and Biochemistry, 2017, 43, 1917-1925.	1.6	34
7	ECM-based macroporous sponges release essential factors to support the growth of hematopoietic cells. Journal of Controlled Release, 2017, 257, 84-90.	9.9	16
8	Effects of oral implants with miR‑122‑modified cell sheets on rat bone marrow mesenchymal stem cells. Molecular Medicine Reports, 2018, 17, 1537-1544.	2.4	13
9	The significance and application of vascular niche in the development and maintenance of hematopoietic stem cells. International Journal of Hematology, 2018, 107, 642-645.	1.6	8
10	Tracing Hematopoietic Progenitor Cell Neutrophilic Differentiation via Raman Spectroscopy. Bioconjugate Chemistry, 2018, 29, 3121-3128.	3.6	16
11	Comparison of Hematopoietic and Spermatogonial Stem Cell Niches from the Regenerative Medicine Aspect. Advances in Experimental Medicine and Biology, 2018, 1107, 15-40.	1.6	8
12	Liver Sinusoidal Endothelial Cells Promote the Expansion of Human Cord Blood Hematopoietic Stem and Progenitor Cells. International Journal of Molecular Sciences, 2019, 20, 1985.	4.1	7
13	Umbilical cord blood mesenchymal stem cells application in hematopoietic stem cells expansion on nanofiber threeâ€dimensional scaffold. Journal of Cellular Biochemistry, 2019, 120, 12018-12026.	2.6	18
14	Bioactive ROSâ€scavenging nanozymes for regenerative medicine: Reestablishing the antioxidant firewall. Nano Select, 2020, 1, 285-297.	3.7	25
15	Emerging Biofabrication Techniques: A Review on Natural Polymers for Biomedical Applications. Polymers, 2021, 13, 1209.	4.5	50
16	Rebuilding the hematopoietic stem cell niche: Recent developments and future prospects. Acta Biomaterialia, 2021, 132, 129-148.	8.3	15
19	Development and application of nanomaterials, nanotechnology and nanomedicine for treating hematological malignancies. Journal of Hematology and Oncology, 2023, 16, .	17.0	3