Natural zeolites for pharmaceutical formulations: Prepa clinoptilolite-based material

Microporous and Mesoporous Materials 223, 58-67

DOI: 10.1016/j.micromeso.2015.10.034

Citation Report

#	Article	IF	CITATIONS
1	Antiphlogistic effect by zeolite as determined by a murine inflammation model. Microporous and Mesoporous Materials, 2016, 228, 207-214.	4.4	11
2	Enhancement of CO2 capture by using synthesized nano-zeolite. Journal of the Taiwan Institute of Chemical Engineers, 2016, 64, 220-226.	5.3	43
3	New insights on pressure, temperature, and chemical stability of CsAlSi5O12, a potential host for nuclear waste. Physics and Chemistry of Minerals, 2016, 43, 639-647.	0.8	15
4	Release of lead from Pb-clinoptilolite: managing the fate of an exhausted exchanger. International Journal of Environmental Science and Technology, 2017, 14, 223-232.	3.5	7
5	Natural collagenic skeleton of marine sponges in pharmaceutics: Innovative biomaterial for topical drug delivery. Materials Science and Engineering C, 2017, 70, 710-720.	7.3	53
6	Thermal Transformation of NH4-Clinoptilolite to Mullite and Silica Polymorphs. Minerals (Basel,) Tj ETQq1 1 0.784	314 rgBT 2.0	/Qverlock 10
7	Natural and Modified Silica-Based Materials as Carriers for NSAIDs. , 2017, , 219-258.		3
8	Aqueous injection of quercetin: An approach for confirmation of its direct in vivo cardiovascular effects. International Journal of Pharmaceutics, 2018, 541, 224-233.	5. 2	23
9	Adsorption of methanol and water vapor on modified forms of mordenite–clinoptilolite rock. Adsorption Science and Technology, 2018, 36, 927-935.	3.2	4
10	Solid state transformations of (NH4, Pb)-clinoptilolite through heating. Microporous and Mesoporous Materials, 2018, 267, 164-170.	4.4	4
11	Thermal transformations of (NH 4, Cs)-clinoptilolite with compositions in between the end-members. Microporous and Mesoporous Materials, 2018, 258, 122-130.	4.4	7
12	Surface-modified phillipsite-rich tuff from the Campania region (southern Italy) as a promising drug carrier: An ibuprofen sodium salt trial. American Mineralogist, 2018, 103, 700-710.	1.9	13
13	Histamine-binding capacities of different natural zeolites: a comparative study. Environmental Geochemistry and Health, 2018, 40, 2657-2665.	3.4	9
14	Antibacterial activity of Na-clinoptilolite against Helicobacter pylori: in-vitro tests, synergistic effect with amoxicillin and stability of the antibiotic formulated with the zeolite. Microporous and Mesoporous Materials, 2019, 288, 109592.	4.4	8
15	Surface modified natural zeolites (SMNZs) as nanocomposite versatile materials for health and environment. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110380.	5.0	16
16	Solid-state transformation of (NH4, Ba)-clinoptilolite to monocelsian, mullite, and cristobalite. Microporous and Mesoporous Materials, 2019, 280, 166-173.	4.4	6
17	Impregnation of silver in zeolite–chitosan composite: thermal stability and sterility study. Clay Minerals, 2019, 54, 145-151.	0.6	8
18	Aluminosilicate-based composites functionalized with cationic materials: possibilities for drug-delivery applications., 2019, , 285-327.		4

#	Article	IF	CITATIONS
19	Zeolites as potential drug carriers. , 2019, , 27-55.		5
20	Zeolite Microneedles: Recent Advancements and Implications in the Delivery of Collagen. IFMBE Proceedings, 2020, , 251-255.	0.3	0
21	Curcumin-loaded zeolite as anticancer drug carrier: effect of curcumin adsorption on zeolite structure. Pure and Applied Chemistry, 2020, 92, 461-471.	1.9	12
22	Solid-state transformations of Zn-clinoptilolite through heating. Journal of Solid State Chemistry, 2020, 283, 121165.	2.9	4
23	Surfactant-modified natural zeolites as carriers for diclofenac sodium release: A preliminary feasibility study for pharmaceutical applications. Materials Chemistry and Physics, 2020, 256, 123644.	4.0	10
24	Application of zeolites as nonâ€phosphate detergent builders: A review. Journal of Environmental Chemical Engineering, 2020, 8, 104287.	6.7	26
25	Effects of Thermal Treatment on Natural Clinoptilolite-Rich Zeolite Behavior in Simulated Biological Fluids. Molecules, 2020, 25, 2570.	3.8	24
26	Flow and Tableting Behaviors of Some Egyptian Kaolin Powders as Potential Pharmaceutical Excipients. Minerals (Basel, Switzerland), 2020, 10, 23.	2.0	13
27	<p>Biomedical Applications of Zeolitic Nanoparticles, with an Emphasis on Medical Interventions</p> . International Journal of Nanomedicine, 2020, Volume 15, 363-386.	6.7	34
28	Simulation-based evaluation of zeolite adsorbents for the removal of emerging contaminants. Materials Advances, 2020, 1, 86-98.	5.4	17
29	Antibacterial activity of Zn-loaded Cuban zeolite against Helicobacter pylori in comparison to its Na-loaded and unmodified counterparts. Environmental Geochemistry and Health, 2021, 43, 2037-2048.	3.4	5
30	Environmentally Friendly Road-Building Thermal Insulating Materials Based on Zeolite-Containing Rocks. Lecture Notes in Civil Engineering, 2021, , 103-109.	0.4	2
31	First Report on the Geologic Occurrence of Natural Na–A Zeolite and Associated Minerals in Cretaceous Mudstones of the Paja Formation of Vélez (Santander), Colombia. Crystals, 2021, 11, 218.	2.2	5
32	Uptake and release characteristics of serotonin hydrochloride by natural Cuban zeolite containing clinoptilolite and mordenite. Scientific Reports, 2021, 11, 14277.	3.3	0
33	Application of Zeolites in Agriculture and Other Potential Uses: A Review. Agronomy, 2021, 11, 1547.	3.0	80
34	A comparative analysis of natural zeolites from various Cuban and Mexican deposits: structure, composition, thermal properties and hierarchical porosity. Journal of Thermal Analysis and Calorimetry, 2022, 147, 6147-6159.	3.6	8
35	State of the art in the industrial production and application of zeolite-containing adsorbents and catalysts in Russia. Kataliz V Promyshlennosti, 2021, 21, 297-307.	0.3	2
36	Effects of Siliceous Natural Nanomaterials Applied in Combination with Foliar Fertilizers on Physiology, Yield and Fruit Quality of the Apricot and Peach Trees. Plants, 2021, 10, 2395.	3.5	13

#	Article	IF	CITATIONS
37	Chabazite from Campanian Ignimbrite Tuff as a Potential and Sustainable Remediation Agent for the Removal of Emerging Contaminants from Water. Sustainability, 2022, 14, 725.	3.2	2
38	Exploring the Properties of Micronized Natural Zeolitic Volcanic Tuff as Cosmetic Ingredient. Materials, 2022, 15, 2405.	2.9	3
39	On the possibility to modify the CsAlSi5O12/CsAlSi2O6 ratio during the thermal transformation of Cs-clinoptilolite. Microporous and Mesoporous Materials, 2022, 335, 111856.	4.4	3
40	State-of-the-Art in the Industrial Production and Use of Zeolite-Containing Adsorbents and Catalysts in Russia. Catalysis in Industry, 2022, 14, 56-65.	0.7	2
41	How to Obtain Maximum Environmental Applicability from Natural Silicates. Catalysts, 2022, 12, 519.	3.5	8
42	Technologies for removing pharmaceuticals and personal care products (PPCPs) from aqueous solutions: Recent advances, performances, challenges and recommendations for improvements. Journal of Molecular Liquids, 2023, 374, 121144.	4.9	15
43	Recent advances in the utilization of zeolite-based materials for controlled drug delivery. Results in Chemistry, 2023, 5, 100910.	2.0	5
44	Mineral Discoveries that Changed Everyday Life. Springer Mineralogy, 2023, , 287-326.	0.4	O
45	Zeolites as Ingredients of Medicinal Products. Pharmaceutics, 2023, 15, 1352.	4.5	5
46	Effects of zeolite applications on the mineral elements and fatty acid composition of different olive cultivars. Ege Üniversitesi Ziraat Fakültesi Dergisi, 2023, 60, 375-384.	0.4	O
47	Modification of natural zeolites and their applications for heavy metal removal from polluted environments: Challenges, recent advances, and perspectives. Heliyon, 2024, 10, e25303.	3.2	0
48	A Six-Year Hydration Evaluation of Cs-Bearing Materials at Room Temperature and 55% Relative Humidity Simulating Radioactive Waste with Different Crystallinities. Molecules, 2024, 29, 1302.	3.8	O