The Microbiome and the Respiratory Tract

Annual Review of Physiology 78, 481-504

DOI: 10.1146/annurev-physiol-021115-105238

Citation Report

#	ARTICLE	IF	Citations
1	Characterisation of the human uterine microbiome in non-pregnant women through deep sequencing of the V1-2 region of the 16S rRNA gene. PeerJ, 2016, 4, e1602.	0.9	217
2	Microbial Communities of Conducting and Respiratory Zones of Lung-Transplanted Patients. Frontiers in Microbiology, 2016, 7, 1749.	1.5	9
3	Laboratory diagnosis of pneumonia in the molecular age. European Respiratory Journal, 2016, 48, 1764-1778.	3.1	106
4	Another piece in the â€~research mosaic' that describes the role of the lung microbiome in COPD. Thorax, 2016, 71, 777-778.	2.7	4
5	Childhood allergies and asthma: New insights on environmental exposures and local immunity at the lung barrier. Current Opinion in Immunology, 2016, 42, 41-47.	2.4	25
6	Epidemiology and the microbiome. Annals of Epidemiology, 2016, 26, 386-387.	0.9	4
7	Metagenomics and the Human Virome in Asymptomatic Individuals. Annual Review of Microbiology, 2016, 70, 125-141.	2.9	104
8	Composition and immunological significance of the upper respiratory tract microbiota. FEBS Letters, 2016, 590, 3705-3720.	1.3	72
9	Development of inhalable hyaluronan/mannitol composite dry powders for flucytosine repositioning in local therapy of lung infections. Journal of Controlled Release, 2016, 238, 80-91.	4.8	30
10	Eosinophils, probiotics, and the microbiome. Journal of Leukocyte Biology, 2016, 100, 881-888.	1.5	38
11	A tale of two sites: how inflammation can reshape the microbiomes of the gut and lungs. Journal of Leukocyte Biology, 2016, 100, 943-950.	1.5	81
12	The lung microbiota in early rheumatoid arthritis and autoimmunity. Microbiome, 2016, 4, 60.	4.9	158
13	The Lung Microbiome in HIV. Getting to the HAART of the Host–Microbe Interface. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 136-137.	2.5	9
14	The Lung Microbiome, Immunity, and the Pathogenesis of Chronic Lung Disease. Journal of Immunology, 2016, 196, 4839-4847.	0.4	291
15	How recent advances in molecular tests could impact the diagnosis of pneumonia. Expert Review of Molecular Diagnostics, 2016, 16, 533-540.	1.5	23
16	Understanding the role of the microbiome in chronic obstructive pulmonary disease: principles, challenges, and future directions. Translational Research, 2017, 179, 71-83.	2.2	57
17	Human Three-Dimensional Endometrial Epithelial Cell Model To Study Host Interactions with Vaginal Bacteria and Neisseria gonorrhoeae. Infection and Immunity, 2017, 85, .	1.0	72
18	The dynamics of the pulmonary microbiome during mechanical ventilation in the intensive care unit and the association with occurrence of pneumonia. Thorax, 2017, 72, 803-810.	2.7	118

#	Article	IF	Citations
19	Non-gut microbiota as a source of bioactive hydrogen. Postgraduate Medical Journal, 2017, 93, 170-170.	0.9	8
20	Differential responses of human dendritic cells to metabolites from the oral/airway microbiome. Clinical and Experimental Immunology, 2017, 188, 371-379.	1.1	14
21	Microbes Are Associated with Host Innate Immune Response in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 208-219.	2.5	130
22	Macrolides, inflammation and the lung microbiome: untangling the web of causality. Thorax, 2017, 72, 10-12.	2.7	16
23	Changes in the respiratory microbiome during acute exacerbations of idiopathic pulmonary fibrosis. Respiratory Research, 2017, 18, 29.	1.4	156
24	Infection: the neglected paradigm in SIDS research. Archives of Disease in Childhood, 2017, 102, 767-772.	1.0	31
25	Bacterial Topography of the Healthy Human Lower Respiratory Tract. MBio, 2017, 8, .	1.8	366
26	Rapid adaptation drives invasion of airway donor microbiota by Pseudomonas after lung transplantation. Scientific Reports, 2017, 7, 40309.	1.6	30
27	Sputum DNA sequencing in cystic fibrosis: non-invasive access to the lung microbiome and to pathogen details. Microbiome, 2017, 5, 20.	4.9	100
28	Microbiota in Exhaled Breath Condensate and the Lung. Applied and Environmental Microbiology, 2017, 83, .	1.4	16
29	The microbiome in respiratory medicine: current challenges and future perspectives. European Respiratory Journal, 2017, 49, 1602086.	3.1	194
30	Lung Homeostasis: Influence of Age, Microbes, and the Immune System. Immunity, 2017, 46, 549-561.	6.6	196
31	The Human Microbiome and Understanding the 16S rRNA Gene in Translational Nursing Science. Nursing Research, 2017, 66, 184-197.	0.8	30
32	Rapid Pathogen Identification in Bacterial Pneumonia Using Real-Time Metagenomics. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 1610-1612.	2.5	127
34	The significance of <i> Candida </i> in the human respiratory tract: our evolving understanding. Pathogens and Disease, 2017, 75, .	0.8	68
35	Acquisition and adaptation of the airway microbiota in the early life of cystic fibrosis patients. Molecular and Cellular Pediatrics, 2017, 4, 1.	1.0	28
36	The respiratory tract microbiome and lung inflammation: a two-way street. Mucosal Immunology, 2017, 10, 299-306.	2.7	338
37	Yeasts in Natural Ecosystems: Ecology. , 2017, , .		12

#	Article	IF	CITATIONS
38	Commensalism: The Case of the Human Zymobiome. , 2017, , 211-228.		4
39	Antibiotics and specialized metabolites from the human microbiota. Natural Product Reports, 2017, 34, 1302-1331.	5. 2	58
40	How do probiotics and prebiotics function at distant sites?. Beneficial Microbes, 2017, 8, 521-533.	1.0	61
41	Individual Patterns of Complexity in Cystic Fibrosis Lung Microbiota, Including Predator Bacteria, over a 1-Year Period. MBio, 2017, 8, .	1.8	38
42	Role of microbiota on lung homeostasis and diseases. Science China Life Sciences, 2017, 60, 1407-1415.	2.3	53
43	Protected sampling is preferable in bronchoscopic studies of the airway microbiome. ERJ Open Research, 2017, 3, 00019-2017.	1.1	34
44	Lung microbiome and host immune tone in subjects with idiopathic pulmonary fibrosis treated with inhaled interferon- \hat{l}^3 . ERJ Open Research, 2017, 3, 00008-2017.	1.1	42
45	Advancement in regional immunity and its clinical implication. Science China Life Sciences, 2017, 60, 1178-1190.	2.3	5
46	Silkworm larvae plasma (SLP) assay for detection of bacteria: False positives secondary to inflammation in vivo. Journal of Microbiological Methods, 2017, 132, 9-13.	0.7	3
47	Pattern recognition receptor immunomodulation of innate immunity as a strategy to limit the impact of influenza virus. Journal of Leukocyte Biology, 2017, 101, 851-861.	1.5	20
48	Chronic rhinosinusitis: the rationale for current treatments. Expert Review of Clinical Immunology, 2017, 13, 259-270.	1.3	35
49	The lung mycobiome in the next-generation sequencing era. Virulence, 2017, 8, 334-341.	1.8	57
50	Addressing the Analytic Challenges of Cross-Sectional Pediatric Pneumonia Etiology Data. Clinical Infectious Diseases, 2017, 64, S197-S204.	2.9	28
51	The Enduring Challenge of Determining Pneumonia Etiology in Children: Considerations for Future Research Priorities. Clinical Infectious Diseases, 2017, 64, S188-S196.	2.9	48
52	The Lung Microbiome in Idiopathic Pulmonary Fibrosis: A Promising Approach for Targeted Therapies. International Journal of Molecular Sciences, 2017, 18, 2735.	1.8	36
53	The Influence of the Microbiome on Early-Life Severe Viral Lower Respiratory Infections and Asthmaâ€"Food for Thought?. Frontiers in Immunology, 2017, 8, 156.	2.2	40
54	Geography, Ethnicity or Subsistence-Specific Variations in Human Microbiome Composition and Diversity. Frontiers in Microbiology, 2017, 8, 1162.	1.5	695
55	Oral Probiotics Alter Healthy Feline Respiratory Microbiota. Frontiers in Microbiology, 2017, 8, 1287.	1.5	25

#	ARTICLE	IF	Citations
56	Persistent and Recurrent Bacterial Bronchitisâ€"A Paradigm Shift in Our Understanding of Chronic Respiratory Disease. Frontiers in Pediatrics, 2017, 5, 19.	0.9	28
57	Comparison of Oropharyngeal Microbiota from Children with Asthma and Cystic Fibrosis. Mediators of Inflammation, 2017, 2017, 1-10.	1.4	32
58	The impact of persistent bacterial bronchitis on the pulmonary microbiome of children. PLoS ONE, 2017, 12, e0190075.	1.1	26
59	Lung Microbiota in Tuberculosis. There are No Small Roles, Only Small Actors. Mycobacterial Diseases: Tuberculosis & Leprosy, 2017, 07, .	0.1	0
60	A Different Microbiome Gene Repertoire in the Airways of Cystic Fibrosis Patients with Severe Lung Disease. International Journal of Molecular Sciences, 2017, 18, 1654.	1.8	39
62	No effects without causes: the Iron Dysregulation and Dormant Microbes hypothesis for chronic, inflammatory diseases. Biological Reviews, 2018, 93, 1518-1557.	4.7	92
63	Microbiome: Allergic Diseases of Childhood. , 2018, , 35-53.		0
64	Longitudinal profiling of the lung microbiome in the AERIS study demonstrates repeatability of bacterial and eosinophilic COPD exacerbations. Thorax, 2018, 73, 422-430.	2.7	201
65	Pathophysiology, Immunology, and Histopathology of Bronchiectasis., 2018,, 51-64.		2
66	The Lung Microbiota of Healthy Mice Are Highly Variable, Cluster by Environment, and Reflect Variation in Baseline Lung Innate Immunity. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 497-508.	2.5	189
67	The Human Respiratory Microbiome: Implications and Impact. Seminars in Respiratory and Critical Care Medicine, 2018, 39, 199-212.	0.8	24
68	Aberrant epithelial differentiation by cigarette smoke dysregulates respiratory host defence. European Respiratory Journal, 2018, 51, 1701009.	3.1	44
69	The oral microbiota – a mechanistic role for systemic diseases. British Dental Journal, 2018, 224, 447-455.	0.3	110
70	Lung Microbiota and Its Impact on the Mucosal Immune Phenotype. Microbiology Spectrum, 2017, 5, .	1.2	34
71	Development of a Stable Lung Microbiome in Healthy Neonatal Mice. Microbial Ecology, 2018, 75, 529-542.	1.4	36
72	IL-12 and IL-7 synergize to control mucosal-associated invariant T-cell cytotoxic responses to bacterial infection. Journal of Allergy and Clinical Immunology, 2018, 141, 2182-2195.e6.	1.5	49
73	Interplay between the lung microbiome and lung cancer. Cancer Letters, 2018, 415, 40-48.	3.2	188
74	Epidemiology, pathophysiology, and microbiology of community-acquired pneumonia. Annals of Research Hospitals, 0, 2, 1-1.	0.0	25

#	Article	IF	CITATIONS
75	Host species, pathogens and disease associated with divergent nasal microbial communities in tortoises. Royal Society Open Science, 2018, 5, 181068.	1.1	9
76	Effect of gastric fluid aspiration on the lung microbiota of laboratory rats. Experimental Lung Research, 2018, 44, 201-210.	0.5	4
77	Repertoire of bacterial species cultured from the human oral cavity and respiratory tract. Future Microbiology, 2018, 13, 1611-1624.	1.0	28
78	Inflammation and Pneumonia. Clinics in Chest Medicine, 2018, 39, 669-676.	0.8	37
79	Microbiological Diagnostic Performance of Metagenomic Next-generation Sequencing When Applied to Clinical Practice. Clinical Infectious Diseases, 2018, 67, S231-S240.	2.9	479
80	Inhaled nanomaterials and the respiratory microbiome: clinical, immunological and toxicological perspectives. Particle and Fibre Toxicology, 2018, 15, 46.	2.8	84
81	Effects of smoking on the lower respiratory tract microbiome in mice. Respiratory Research, 2018, 19, 253.	1.4	42
82	New Insights into Human Nostril Microbiome from the Expanded Human Oral Microbiome Database (eHOMD): a Resource for the Microbiome of the Human Aerodigestive Tract. MSystems, 2018, 3, .	1.7	346
83	Lung cancer: a new frontier for microbiome research and clinical translation. Ecancermedicalscience, 2018, 12, 866.	0.6	33
84	Modulation of Pulmonary Microbiota by Antibiotic or Probiotic Aerosol Therapy: A Strategy to Promote Immunosurveillance against Lung Metastases. Cell Reports, 2018, 24, 3528-3538.	2.9	141
85	Respiratory Bordetella bronchiseptica Carriage is Associated with Broad Phenotypic Alterations of Peripheral CD4+CD25+ T Cells and Differentially Affects Immune Responses to Secondary Non-Infectious and Infectious Stimuli in Mice. International Journal of Molecular Sciences, 2018, 19, 2602.	1.8	3
86	Profiling the airway in the macaque model of tuberculosis reveals variable microbial dysbiosis and alteration of community structure. Microbiome, 2018, 6, 180.	4.9	23
87	Lung Microbiota and Its Impact on the Mucosal Immune Phenotype. , 2018, , 161-186.		0
88	Contribution of Host Defence Proteins and Peptides to Host-Microbiota Interactions in Chronic Inflammatory Lung Diseases. Vaccines, 2018, 6, 49.	2.1	6
89	Production and transplantation of bioengineered lung into a large-animal model. Science Translational Medicine, 2018, 10 , .	5.8	85
90	Integrative Physiology of Pneumonia. Physiological Reviews, 2018, 98, 1417-1464.	13.1	154
91	Clinical Genetics in Interstitial Lung Disease. Frontiers in Medicine, 2018, 5, 116.	1.2	19
92	The Lung Microbiome in Health and Respiratory Diseases. Clinical Pulmonary Medicine, 2018, 25, 131-137.	0.3	3

#	Article	IF	CITATIONS
93	On Burkholderiales order microorganisms and cystic fibrosis in Russia. BMC Genomics, 2018, 19, 74.	1.2	15
94	New anti-pseudomonal agents for cystic fibrosis- still needed in the era of small molecule CFTR modulators?. Expert Opinion on Pharmacotherapy, 2018, 19, 1327-1336.	0.9	20
95	Interaction between the microbiome and TP53 in human lung cancer. Genome Biology, 2018, 19, 123.	3.8	247
96	Inhalational supplementation of metformin butyrate: A strategy for prevention and cure of various pulmonary disorders. Biomedicine and Pharmacotherapy, 2018, 107, 495-506.	2.5	14
97	Introduction to Techniques and Methodologies for Characterizing the Human Respiratory Virome. Methods in Molecular Biology, 2018, 1838, 111-123.	0.4	9
98	Immunological corollary of the pulmonary mycobiome in bronchiectasis: the CAMEB study. European Respiratory Journal, 2018, 52, 1800766.	3.1	105
99	Initial acquisition and succession of the cystic fibrosis lung microbiome is associated with disease progression in infants and preschool children. PLoS Pathogens, 2018, 14, e1006798.	2.1	147
100	Soil exposure modifies the gut microbiota and supports immune tolerance in a mouse model. Journal of Allergy and Clinical Immunology, 2019, 143, 1198-1206.e12.	1.5	124
101	Microbiological Diagnosis of Respiratory Illness. , 2019, , 396-405.e3.		1
102	Targeting Microbiota: What Do We Know about It at Present?. Medicina (Lithuania), 2019, 55, 459.	0.8	16
103	Manipulation of the microbiome in critical illnessâ€"probiotics as a preventive measure against ventilator-associated pneumonia. Intensive Care Medicine Experimental, 2019, 7, 37.	0.9	17
104	Worse lung cancer outcome in patients with lower respiratory tract infection confirmed at time of diagnosis. Thoracic Cancer, 2019, 10, 1819-1826.	0.8	8
105	The effect of levofloxacin on the lung microbiota of laboratory rats. Experimental Lung Research, 2019, 45, 200-208.	0.5	4
106	The contribution of infection and theÂrespiratory microbiome in acute exacerbations of idiopathic pulmonary fibrosis. European Respiratory Review, 2019, 28, 190045.	3.0	37
107	Interaction between the nasal microbiota and S. pneumoniae in the context of live-attenuated influenza vaccine. Nature Communications, 2019, 10, 2981.	5.8	59
108	Temporal association of the development of oropharyngeal microbiota with early life wheeze in a population-based birth cohort. EBioMedicine, 2019, 46, 486-498.	2.7	18
109	Obstructive Lung Disease in HIVâ€"Phenotypes and Pathogenesis. Current HIV/AIDS Reports, 2019, 16, 359-369.	1.1	23
110	Interannual comparison of core taxa and community composition of the blow microbiota from East Australian humpback whales. FEMS Microbiology Ecology, 2019, 95, .	1.3	10

#	Article	IF	CITATIONS
111	Interactions between microbiome and lungs: Paving new paths for microbiome based bio-engineered drug delivery systems in chronic respiratory diseases. Chemico-Biological Interactions, 2019, 310, 108732.	1.7	29
112	Optimisation and Benchmarking of Targeted Amplicon Sequencing for Mycobiome Analysis of Respiratory Specimens. International Journal of Molecular Sciences, 2019, 20, 4991.	1.8	28
113	Respiratory Dysbiosis in Canine Bacterial Pneumonia: Standard Culture vs. Microbiome Sequencing. Frontiers in Veterinary Science, 2019, 6, 354.	0.9	14
114	Infant airway microbiota and topical immune perturbations in the origins of childhood asthma. Nature Communications, 2019, 10, 5001.	5.8	92
115	The microbiome of the upper respiratory tract in health and disease. BMC Biology, 2019, 17, 87.	1.7	243
116	Uterine Immunity and Microbiota: A Shifting Paradigm. Frontiers in Immunology, 2019, 10, 2387.	2.2	108
117	Recent progress in experimental and human disease-associated multi-species biofilms. Computational and Structural Biotechnology Journal, 2019, 17, 1234-1244.	1.9	14
118	The Cancer Microbiota: EMT and Inflammation as Shared Molecular Mechanisms Associated with Plasticity and Progression. Journal of Oncology, 2019, 2019, 1-16.	0.6	49
119	Non-typeable Haemophilus influenzae protein vaccine in adults with COPD: A phase 2 clinical trial. Vaccine, 2019, 37, 6102-6111.	1.7	42
120	The influence of the microbiome on respiratory health. Nature Immunology, 2019, 20, 1279-1290.	7.0	299
121	Clinical predictors and outcome impact of community-onset polymicrobial bloodstream infection. International Journal of Antimicrobial Agents, 2019, 54, 716-722.	1.1	27
122	Impacts of environmental complexity on respiratory and gut microbiome community structure and diversity in growing pigs. Scientific Reports, 2019, 9, 13773.	1.6	33
123	Metagenome $\hat{a}\in$ "Inferred bacterial replication rates in cystic fibrosis airways. Journal of Cystic Fibrosis, 2019, 18, 653-656.	0.3	6
124	Commensal Microbiota Promote Lung Cancer Development via γδT Cells. Cell, 2019, 176, 998-1013.e16.	13.5	592
125	Microbiome networks and change-point analysis reveal key community changes associated with cystic fibrosis pulmonary exacerbations. Npj Biofilms and Microbiomes, 2019, 5, 4.	2.9	58
126	Controlling for Contaminants in Low-Biomass 16S rRNA Gene Sequencing Experiments. MSystems, 2019, 4, .	1.7	166
127	Emerging strategies for the noninvasive diagnosis of nosocomial pneumonia. Expert Review of Anti-Infective Therapy, 2019, 17, 523-533.	2.0	9
128	Pathophysiological role of respiratory dysbiosis in hospital-acquired pneumonia. Lancet Respiratory Medicine, the, 2019, 7, 710-720.	5.2	66

#	Article	IF	CITATIONS
130	Bacteria in the Genitourinary Tract: The Microbiota and Efforts to Address Infection., 2019, , 1-7.		0
131	Microbiota-Dependent Regulation of Antimicrobial Immunity in the Lung. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 284-289.	1.4	14
132	Airway microbiota in patients with paediatric cystic fibrosis: Relationship with clinical status. Enfermedades Infecciosas Y Microbiologia Clinica (English Ed), 2019, 37, 167-171.	0.2	0
133	Contribution of the Mucosal Microbiota to Bovine Respiratory Health. Trends in Microbiology, 2019, 27, 753-770.	3.5	73
134	Laryngotracheal Microbiota in Adult Laryngotracheal Stenosis. MSphere, 2019, 4, .	1.3	30
135	The ABCs of wheeze: Asthma and bacterial communities. PLoS Pathogens, 2019, 15, e1007645.	2.1	9
136	Bioaerosols Play a Major Role in the Nasopharyngeal Microbiota Content in Agricultural Environment. International Journal of Environmental Research and Public Health, 2019, 16, 1375.	1.2	27
137	The Yin and Yang of <i>Streptococcus</i> Lung Infections in Cystic Fibrosis: a Model for Studying Polymicrobial Interactions. Journal of Bacteriology, 2019, 201, .	1.0	24
138	The composition of the pulmonary microbiota in sarcoidosis – an observational study. Respiratory Research, 2019, 20, 46.	1.4	24
139	2017 NIH-wide workshop report on "The Human Microbiome: Emerging Themes at the Horizon of the 21st Century― Microbiome, 2019, 7, 32.	4.9	6
140	Microbes, metabolites, and the gut–lung axis. Mucosal Immunology, 2019, 12, 843-850.	2.7	540
142	The Clinician's Guide to Proton Pump Inhibitor Related Adverse Events. Drugs, 2019, 79, 715-731.	4.9	29
143	A Genomic Approach To Identify Klebsiella pneumoniae and Acinetobacter baumannii Strains with Enhanced Competitive Fitness in the Lungs during Multistrain Pneumonia. Infection and Immunity, 2019, 87, .	1.0	9
144	Elevated Gut Microbiome-Derived Propionate Levels Are Associated With Reduced Sterile Lung Inflammation and Bacterial Immunity in Mice. Frontiers in Microbiology, 2019, 10, 159.	1.5	51
145	Dysregulated Lung Commensal Bacteria Drive Interleukin-17B Production to Promote Pulmonary Fibrosis through Their Outer Membrane Vesicles. Immunity, 2019, 50, 692-706.e7.	6.6	138
146	The Lung Microbiome, Metabolome, and Breath Volatolome in the Diagnosis of Pulmonary Disease., 2019,, 297-305.		O
147	Lung Microbiota Contribute to Pulmonary Inflammation and Disease Progression in Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1127-1138.	2.5	205
148	Aspiration Pneumonia. New England Journal of Medicine, 2019, 380, 651-663.	13.9	363

#	ARTICLE	IF	CITATIONS
149	The biology of pulmonary exacerbations in bronchiectasis. European Respiratory Review, 2019, 28, 190055.	3.0	48
150	Dynamic Changes in the Microbiome and Mucosal Immune Microenvironment of the Lower Respiratory Tract by Influenza Virus Infection. Frontiers in Microbiology, 2019, 10, 2491.	1.5	36
151	<p>An Oral Whole-Cell Killed Nontypeable Haemophilus influenzae Immunotherapeutic For The Prevention Of Acute Exacerbations Of Chronic Airway Disease</p> . International Journal of COPD, 2019, Volume 14, 2423-2431.	0.9	5
152	Effect of an antimicrobial drug on lung microbiota in healthy dogs. Heliyon, 2019, 5, e02802.	1.4	13
153	Lung Microbiome in Asthma: Current Perspectives. Journal of Clinical Medicine, 2019, 8, 1967.	1.0	51
154	Dysbiosis of lower respiratory tract microbiome are associated with inflammation and microbial function variety. Respiratory Research, 2019, 20, 272.	1.4	62
155	The lung microbiome and transplantation. Current Opinion in Organ Transplantation, 2019, 24, 305-310.	0.8	14
156	The microbiome. Current Opinion in Anaesthesiology, 2019, 32, 412-420.	0.9	22
157	The Human Respiratory Microbiome: The End of the Beginning?., 2019,, 87-97.		0
158	Microbial communities in swine lungs and their association with lung lesions. Microbial Biotechnology, 2019, 12, 289-304.	2.0	24
159	The microbiome in asthma. Annals of Allergy, Asthma and Immunology, 2019, 122, 270-275.	0.5	65
160	The Human Microbiota and Asthma. Clinical Reviews in Allergy and Immunology, 2019, 57, 350-363.	2.9	92
161	Airway microbiome in adult survivors of extremely preterm birth: the EPICure study. European Respiratory Journal, 2019, 53, 1801225.	3.1	20
162	Characterising the respiratory microbiome. European Respiratory Journal, 2019, 53, 1801711.	3.1	24
163	Invited Review: From nose to gut – the role of the microbiome in neurological disease. Neuropathology and Applied Neurobiology, 2019, 45, 195-215.	1.8	71
164	The contribution of respiratory microbiome analysis to a treatable traits model of care. Respirology, 2019, 24, 19-28.	1.3	8
165	High-throughput 16S rDNA sequencing of the pulmonary microbiome of rats with allergic asthma. Genes and Diseases, 2020, 7, 272-282.	1.5	8
166	The impact of lung microbiota dysbiosis on inflammation. Immunology, 2020, 159, 156-166.	2.0	45

#	Article	IF	CITATIONS
167	Pathogenesis of HIV-Related Lung Disease: Immunity, Infection, and Inflammation. Physiological Reviews, 2020, 100, 603-632.	13.1	92
168	Hypoxiaâ€inducible factor and bacterial infections in chronic obstructive pulmonary disease. Respirology, 2020, 25, 53-63.	1.3	37
169	Methods in Lung Microbiome Research. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 283-299.	1.4	94
170	The Airway Microbiome and Bronchopulmonary Dysplasia. , 2020, , 151-162.		0
171	MAIT Cells Promote Tumor Initiation, Growth, and Metastases via Tumor MR1. Cancer Discovery, 2020, 10, 124-141.	7.7	101
172	Regulation of mononuclear phagocyte function by the microbiota at mucosal sites. Immunology, 2020, 159, 26-38.	2.0	20
173	The Human Respiratory System and its Microbiome at a Glimpse. Biology, 2020, 9, 318.	1.3	113
174	Zoonotic evolution and implications of microbiome in viral transmission and infection. Virus Research, 2020, 290, 198175.	1.1	12
175	Microbiota-derived metabolites as diagnostic markers for respiratory fungal infections. Journal of Pharmaceutical and Biomedical Analysis, 2020, 189, 113473.	1.4	6
176	The Pulmonary Microbiome in Cystic Fibrosis. , 2020, , .		0
177	Cardiorespiratory performance capacity and airway microbiome in patients following primary repair of esophageal atresia. Pediatric Research, 2021, 90, 66-73.	1.1	5
178	The Impact of the Microbiome on Immunity to Vaccination in Humans. Cell Host and Microbe, 2020, 28, 169-179.	5.1	104
179	Respiratory microbiota of humpback whales may be reduced in diversity and richness the longer they fast. Scientific Reports, 2020, 10, 12645.	1.6	15
180	Free-Flow Isoelectric Focusing for Comprehensive Separation and Analysis of Human Salivary Microbiome for Lung Cancer. Analytical Chemistry, 2020, 92, 12017-12025.	3.2	14
181	Lung and gut microbiota are altered by hyperoxia and contribute to oxygen-induced lung injury in mice. Science Translational Medicine, 2020, 12, .	5.8	97
182	Enrichment of the airway microbiome in people living with HIV with potential pathogenic bacteria despite antiretroviral therapy. EClinicalMedicine, 2020, 24, 100427.	3.2	4
183	Microbiomic Analysis on Low Abundant Respiratory Biomass Samples; Improved Recovery of Microbial DNA From Bronchoalveolar Lavage Fluid. Frontiers in Microbiology, 2020, 11, 572504.	1.5	16
184	The State of the Nitric Oxide Cycle in Respiratory Tract Diseases. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-9.	1.9	11

#	Article	IF	CITATIONS
185	The importance of airway and lung microbiome in the critically ill. Critical Care, 2020, 24, 537.	2.5	36
186	The evolving role of the lung microbiome in pulmonary fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L675-L682.	1.3	18
187	The influence of air pollution on respiratory microbiome: A link to respiratory disease. Toxicology Letters, 2020, 334, 14-20.	0.4	35
188	The sputum microbiome associated with different sub-types of AECOPD in a Chinese cohort. BMC Infectious Diseases, 2020, 20, 610.	1.3	16
189	Characterization of Microbiota in Cancerous Lung and the Contralateral Non-Cancerous Lung Within Lung Cancer Patients. Frontiers in Oncology, 2020, 10, 1584.	1.3	15
190	Insights into the Role of Bioactive Food Ingredients and the Microbiome in Idiopathic Pulmonary Fibrosis. International Journal of Molecular Sciences, 2020, 21, 6051.	1.8	16
191	Meeting report of the third annual Tri-Service Microbiome Consortium symposium. Environmental Microbiomes, 2020, 15, 12.	2.2	4
192	The Gut Microbiota and Respiratory Diseases: New Evidence. Journal of Immunology Research, 2020, 2020, 1-12.	0.9	116
193	The human respiratory tract microbial community structures in healthy and cystic fibrosis infants. Npj Biofilms and Microbiomes, 2020, 6, 61.	2.9	18
194	Role of gut-lung microbiome crosstalk in COVID-19. Research on Biomedical Engineering, 2020, , 1.	1.5	8
195	The microbiome: Composition and locations. Progress in Molecular Biology and Translational Science, 2020, 176, 1-42.	0.9	23
196	Influence of pancreatic status, CFTR mutations, Staphylococcus aureus and/or Pseudomonas aeruginosa infection/colonization on lung function in cystic fibrosis during aÂ2-year follow-up period. Wiener Klinische Wochenschrift, 2020, 132, 572-580.	1.0	1
197	Host-microbe cross-talk in the lung microenvironment: implications for understanding and treating chronic lung disease. European Respiratory Journal, 2020, 56, 1902320.	3.1	17
198	The Microbiome in Cystic Fibrosis Pulmonary Disease. Genes, 2020, 11, 536.	1.0	63
199	SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract. Cell, 2020, 182, 429-446.e14.	13.5	1,257
200	The lung microbiome and pneumonia: Where precision medicine meets pulmonology. Pulmonology, 2020, 26, 333-334.	1.0	5
201	A compendium answering 150 questions on COVIDâ€19 and SARSâ€CoVâ€2. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2503-2541.	2.7	95
202	Human microbiome: an academic update on human body site specific surveillance and its possible role. Archives of Microbiology, 2020, 202, 2147-2167.	1.0	141

#	Article	IF	CITATIONS
203	Respiratory microbiome and epithelial interactions shape immunity in the lungs. Immunology, 2020, 160, 171-182.	2.0	103
204	Analysis of the lung microbiota in dogs with Bordetella bronchiseptica infection and correlation with culture and quantitative polymerase chain reaction. Veterinary Research, 2020, 51, 46.	1.1	8
205	Design and rationale of a multi-center, pragmatic, open-label randomized trial of antimicrobial therapy – the study of clinical efficacy of antimicrobial therapy strategy using pragmatic design in Idiopathic Pulmonary Fibrosis (CleanUP-IPF) clinical trial. Respiratory Research, 2020, 21, 68.	1.4	17
206	A variety of bacterial aetiologies in the lower respiratory tract at patients with endobronchial tuberculosis. PLoS ONE, 2020, 15, e0234558.	1.1	3
207	Perspectives in lung microbiome research. Current Opinion in Microbiology, 2020, 56, 24-29.	2.3	11
208	The Role of Lung and Gut Microbiota in the Pathology of Asthma. Immunity, 2020, 52, 241-255.	6.6	329
209	Dysbiosis of the gut and lung microbiome has a role in asthma. Seminars in Immunopathology, 2020, 42, 75-93.	2.8	205
210	The Composition Alteration of Respiratory Microbiota in Lung Cancer. Cancer Investigation, 2020, 38, 158-168.	0.6	10
211	Characteristics of the Airway Microbiome of Cystic Fibrosis Patients. Biochemistry (Moscow), 2020, 85, 1-10.	0.7	10
212	Lung Microbiota Predict Clinical Outcomes in Critically Ill Patients. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 555-563.	2.5	202
213	The lung microbiota: role in maintaining pulmonary immune homeostasis and its implications in cancer development and therapy. Cellular and Molecular Life Sciences, 2020, 77, 2739-2749.	2.4	103
214	Culture-enriched metagenomic sequencing enables in-depth profiling of the cystic fibrosis lung microbiota. Nature Microbiology, 2020, 5, 379-390.	5.9	57
215	Respiratory dysbiosis and population-wide temporal dynamics in canine chronic bronchitis and non-inflammatory respiratory disease. PLoS ONE, 2020, 15, e0228085.	1.1	6
216	Assessment of the lung microbiota in dogs: influence of the type of breed, living conditions and canine idiopathic pulmonary fibrosis. BMC Microbiology, 2020, 20, 84.	1.3	13
217	New biomarkers for respiratory infections. Current Opinion in Pulmonary Medicine, 2020, 26, 232-240.	1.2	7
218	Improving Characterization of Understudied Human Microbiomes Using Targeted Phylogenetics. MSystems, 2020, 5, .	1.7	2
219	Bacterial Community Interactions During Chronic Respiratory Disease. Frontiers in Cellular and Infection Microbiology, 2020, 10, 213.	1.8	70
220	Respiratory and Gut Microbiota in Commercial Turkey Flocks with Disparate Weight Gain Trajectories Display Differential Compositional Dynamics. Applied and Environmental Microbiology, 2020, 86, .	1.4	22

#	Article	IF	CITATIONS
221	Metagenomics Reveals a Core Macrolide Resistome Related to Microbiota in Chronic Respiratory Disease. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 433-447.	2.5	58
222	Modified Sialic Acids on Mucus and Erythrocytes Inhibit Influenza A Virus Hemagglutinin and Neuraminidase Functions. Journal of Virology, 2020, 94, .	1.5	35
223	Mucins and the Microbiome. Annual Review of Biochemistry, 2020, 89, 769-793.	5.0	184
224	Shared mechanisms of multimorbidity in COPD, atherosclerosis and type-2 diabetes: the neutrophil as a potential inflammatory target. European Respiratory Review, 2020, 29, 190102.	3.0	36
225	The Respiratory Microbiome in Chronic Hypersensitivity Pneumonitis Is Distinct from That of Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 339-347.	2.5	45
226	Polyamines in the virulence of bacterial pathogens of respiratory tract. Molecular Oral Microbiology, 2021, 36, 1-11.	1.3	17
227	The lung cancer stem cell niche. Advances in Stem Cells and Their Niches, 2021, , 85-136.	0.1	0
228	MiR-21 Is Remotely Governed by the Commensal Bacteria and Impairs Anti-TB Immunity by Down-Regulating IFN- \hat{l}^3 . Frontiers in Microbiology, 2020, 11, 512581.	1.5	6
229	The human coronaviruses (HCoVs) and the molecular mechanisms of SARS-CoV-2 infection. Journal of Molecular Medicine, 2021, 99, 93-106.	1.7	34
230	Subchronic exposure to concentrated ambient PM2.5 perturbs gut and lung microbiota as well as metabolic profiles in mice. Environmental Pollution, 2021, 272, 115987.	3.7	52
231	Microbiome: A Supportive or a Leading Actor in Lung Cancer?. Pathobiology, 2021, 88, 198-207.	1.9	15
232	Comparative analysis of the pulmonary microbiome in healthy and diseased pigs. Molecular Genetics and Genomics, 2021, 296, 21-31.	1.0	12
233	The Role of Respiratory Microbiota in Lung Cancer. International Journal of Biological Sciences, 2021, 17, 3646-3658.	2.6	24
234	Interactions of Bacteriophages and Bacteria at the Airway Mucosa: New Insights Into the Pathophysiology of Asthma. Frontiers in Allergy, 2020, 1, 617240.	1.2	12
235	Lung Microbiome in Human Health and Diseases. , 2021, , .		2
236	The lung microbiome. , 2021, , 49-54.		0
237	Composition of Microbiomes. The Microbiomes of Humans, Animals, Plants, and the Environment, 2021, , 15-55.	0.2	0
238	Highly abundant core taxa in the blow within and across captive bottlenose dolphins provide evidence for a temporally stable airway microbiota. BMC Microbiology, 2021, 21, 20.	1.3	5

#	Article	IF	CITATIONS
239	Microbiome of the nasal cavity and the paranasal sinuses in health and disease (literature review). Part I. Rossiiskaya Rinologiya, 2021, 29, 23.	0.1	6
240	Metagenomics Reveals That Intravenous Injection of Beta-Hydroxybutyric Acid (BHBA) Disturbs the Nasopharynx Microflora and Increases the Risk of Respiratory Diseases. Frontiers in Microbiology, 2020, 11, 630280.	1.5	10
241	No evidence for a pathogen associated with pulmonary MALT lymphoma: a metagenomics investigation. Infectious Agents and Cancer, 2021, 16, 10.	1.2	7
242	Development of a robust protocol for the characterization of the pulmonary microbiota. Communications Biology, 2021, 4, 164.	2.0	7
243	Dysbiosis in Pediatrics Is Associated with Respiratory Infections: Is There a Place for Bacterial-Derived Products?. Microorganisms, 2021, 9, 448.	1.6	12
244	The Role of Bacterial and Fungal Human Respiratory Microbiota in COVID-19 Patients. BioMed Research International, 2021, 2021, 1-13.	0.9	42
245	Microbiota - The Unseen Players in Adult Asthmatic Airways. Turkish Thoracic Journal, 2021, 22, 75-82.	0.2	1
246	Beyond "Big Eaters― The Versatile Role of Alveolar Macrophages in Health and Disease. International Journal of Molecular Sciences, 2021, 22, 3308.	1.8	21
247	Computational characterization of inhaled droplet transport to the nasopharynx. Scientific Reports, 2021, 11, 6652.	1.6	43
248	A review and roadmap of the skin, lung and gut microbiota in systemic sclerosis. Rheumatology, 2021, 60, 5498-5508.	0.9	2
249	The triad: respiratory microbiome – virus – immune response in the pathophysiology of pulmonary viral infections. Expert Review of Respiratory Medicine, 2021, 15, 635-648.	1.0	4
250	Food, Nutrition, Physical Activity and Microbiota: Which Impact on Lung Cancer?. International Journal of Environmental Research and Public Health, 2021, 18, 2399.	1.2	8
251	Global analysis of shared TÂcell specificities in human non-small cell lung cancer enables HLA inference and antigen discovery. Immunity, 2021, 54, 586-602.e8.	6.6	80
252	SARS-CoV-2-Indigenous Microbiota Nexus: Does Gut Microbiota Contribute to Inflammation and Disease Severity in COVID-19?. Frontiers in Cellular and Infection Microbiology, 2021, 11, 590874.	1.8	35
253	Probiotics for prevention of acute respiratory infections in children: therapeutic potential Meditsinskiy Sovet, 2021, , 254-260.	0.1	0
254	Association of exacerbation phenotype with the sputum microbiome in chronic obstructive pulmonary disease patients during the clinically stable state. Journal of Translational Medicine, 2021, 19, 121.	1.8	31
255	Treatment of infections in cancer patients: an update from the neutropenia, infection and myelosuppression study group of the Multinational Association for Supportive Care in Cancer (MASCC). Expert Review of Clinical Pharmacology, 2021, 14, 295-313.	1.3	9
256	Pulmonary Microbiome of Patients Receiving Mechanical Ventilation: Changes Over Time. American Journal of Critical Care, 2021, 30, 128-132.	0.8	3

#	ARTICLE	IF	CITATIONS
257	The pulmonary metatranscriptome prior to pediatric HCT identifies post-HCT lung injury. Blood, 2021, 137, 1679-1689.	0.6	18
258	Traffic generated emissions alter the lung microbiota by promoting the expansion of Proteobacteria in C57Bl/6 mice placed on a high-fat diet. Ecotoxicology and Environmental Safety, 2021, 213, 112035.	2.9	11
259	The Role of Microbiome and Virome in Idiopathic Pulmonary Fibrosis. Biomedicines, 2021, 9, 442.	1.4	10
260	The changes of respiratory microbiome between mild and severe asthma patients. Microbiology and Immunology, 2021, 65, 204-213.	0.7	4
261	Lung immune tone via gut-lung axis: gut-derived LPS and short-chain fatty acids' immunometabolic regulation of lung IL-1β, FFAR2, and FFAR3 expression. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L65-L78.	1.3	60
262	Exploring the relationship between gut microbiota and exercise: short-chain fatty acids and their role in metabolism. BMJ Open Sport and Exercise Medicine, 2021, 7, e000930.	1.4	18
263	Systems Biology Modeling of the Complement System Under Immune Susceptible Pathogens. Frontiers in Physics, $2021, 9, .$	1.0	4
264	Microbes in lung cancer initiation, treatment, and outcome: Boon or bane?. Seminars in Cancer Biology, 2022, 86, 1190-1206.	4.3	18
265	Characterization of oral and cloacal microbial communities in cold-stunned Kemp's ridley sea turtles (Lepidochelys kempii) during the time course of rehabilitation. PLoS ONE, 2021, 16, e0252086.	1.1	12
266	Search for Promising Strains of Probiotic Microbiota Isolated from Different Biotopes of Healthy Cats for Use in the Control of Surgical Infections. Pathogens, 2021, 10, 667.	1.2	26
267	Sepsis: deriving biological meaning and clinical applications from high-dimensional data. Intensive Care Medicine Experimental, 2021, 9, 27.	0.9	27
268	Probiotics, Photobiomodulation, and Disease Management: Controversies and Challenges. International Journal of Molecular Sciences, 2021, 22, 4942.	1.8	31
269	The microbiota-mediated dietary and nutritional interventions for COVID-19. Clinical Immunology, 2021, 226, 108725.	1.4	32
270	Respiratory syncytial virus and airway microbiota $\hat{a}\in$ A complex interplay and its reflection on morbidity. Pediatric Allergy and Immunology, 2021, 32, 1141-1151.	1.1	2
271	<i>Nicoletella semolina</i> in the airways of healthy horses and horses with severe asthma. Journal of Veterinary Internal Medicine, 2021, 35, 1612-1619.	0.6	7
272	Possible effects of air temperature on COVIDâ€19 disease severity and transmission rates. Journal of Medical Virology, 2021, 93, 5358-5366.	2.5	16
273	Priming with intranasal lactobacilli prevents Pseudomonas aeruginosa acute pneumonia in mice. BMC Microbiology, 2021, 21, 195.	1.3	17
274	Lung microbiota predict invasive pulmonary aspergillosis and its outcome in immunocompromised patients. Thorax, 2022, 77, 283-291.	2.7	19

#	Article	IF	CITATIONS
275	The COVID-19 puzzle: deciphering pathophysiology and phenotypes of a new disease entity. Lancet Respiratory Medicine, the, 2021, 9, 622-642.	5.2	371
276	Lung microbiota predict chronic rejection in healthy lung transplant recipients: a prospective cohort study. Lancet Respiratory Medicine, the, 2021, 9, 601-612.	5. 2	49
277	Multidimensional role of bacteria in cancer: Mechanisms insight, diagnostic, preventive and therapeutic potential. Seminars in Cancer Biology, 2022, 86, 1026-1044.	4.3	3
278	Lung microbiome alterations in NSCLC patients. Scientific Reports, 2021, 11, 11736.	1.6	25
279	Exploring the Potential of Breast Microbiota as Biomarker for Breast Cancer and Therapeutic Response. American Journal of Pathology, 2021, 191, 968-982.	1.9	21
280	Clinical factors associated with composition of lung microbiota and important taxa predicting clinical prognosis in patients with severe community-acquired pneumonia. Frontiers of Medicine, 2022, 16, 389-402.	1.5	5
281	Multi-omics profiling predicts allograft function after lung transplantation. European Respiratory Journal, 2022, 59, 2003292.	3.1	16
282	Is the lung microbiome alive? Lessons from Antarctic soil. European Respiratory Journal, 2021, 58, 2100321.	3.1	2
283	Plant-based Remedies with Reference to Respiratory Diseases – A Review. Open Biotechnology Journal, 2021, 15, 46-58.	0.6	2
284	Pulmonary and intestinal microbiota dynamics during Gram-negative pneumonia-derived sepsis. Intensive Care Medicine Experimental, 2021, 9, 35.	0.9	9
285	The Mechanism and Effect of Autophagy, Apoptosis, and Pyroptosis on the Progression of Silicosis. International Journal of Molecular Sciences, 2021, 22, 8110.	1.8	29
286	In Vitro Antibacterial and Antibiofilm Activity of Hungarian Honeys against Respiratory Tract Bacteria. Foods, 2021, 10, 1632.	1.9	18
287	Host factors facilitating SARSâ€CoVâ€2 virus infection and replication in the lungs. Cellular and Molecular Life Sciences, 2021, 78, 5953-5976.	2.4	19
288	The lung microbiome in lung transplantation. Journal of Heart and Lung Transplantation, 2021, 40, 733-744.	0.3	17
290	Aspergillus fumigatus Acetate Utilization Impacts Virulence Traits and Pathogenicity. MBio, 2021, 12, e0168221.	1.8	10
291	Microbial Diversity Profiling of Gut Microbiota of Macropus giganteus Using Three Hypervariable Regions of the Bacterial 16S rRNA. Microorganisms, 2021, 9, 1721.	1.6	3
292	Lung-brain axis. Critical Reviews in Microbiology, 2022, 48, 257-269.	2.7	42
293	The Role of Immunobiotics and Postbiotics in the Recovery of Immune Cell Populations From Respiratory Mucosa of Malnourished Hosts: Effect on the Resistance Against Respiratory Infections. Frontiers in Nutrition, 2021, 8, 704868.	1.6	7

#	Article	IF	Citations
294	Critical appraisal of the mechanisms of gastrointestinal and hepatobiliary infection by COVID-19. American Journal of Physiology - Renal Physiology, 2021, 321, G99-G112.	1.6	12
295	Human Microbiota Network: Unveiling Potential Crosstalk between the Different Microbiota Ecosystems and Their Role in Health and Disease. Nutrients, 2021, 13, 2905.	1.7	26
296	Toll-like receptors, environmental caging, and lung dysbiosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L404-L415.	1.3	8
297	Is it possible to enhance immune response after vaccination? The role of a probiotic with a proven positive effect on all components of the immune system. Meditsinskiy Sovet, 2021, , 89-98.	0.1	0
298	Altered Microbial Composition of Drug-Sensitive and Drug-Resistant TB Patients Compared with Healthy Volunteers. Microorganisms, 2021, 9, 1762.	1.6	3
299	The Role of Respiratory Flora in the Pathogenesis of Chronic Respiratory Diseases. BioMed Research International, 2021, 2021, 1-10.	0.9	16
300	Effects of Inhaled Corticosteroid/Long-Acting \hat{l}^2 ₂ -Agonist Combination on the Airway Microbiome of Patients with Chronic Obstructive Pulmonary Disease: A Randomized Controlled Clinical Trial (DISARM). American Journal of Respiratory and Critical Care Medicine, 2021, 204, 1143-1152.	2.5	44
301	The association between bacteria colonizing the upper respiratory tract and lower respiratory tract infection in young children: a systematic review and meta-analysis. Clinical Microbiology and Infection, 2021, 27, 1262-1270.	2.8	26
302	We refuse to die – T cells causing havoc. Biomedical Journal, 2021, 44, 377-382.	1.4	0
303	Comparison of microbiota in the upper versus lower respiratory tract in children during health and respiratory disease: protocol for a systematic review. Systematic Reviews, 2021, 10, 253.	2.5	1
304	Which Biomarkers Can Be Used as Diagnostic Tools for Infection in Suspected Sepsis?. Seminars in Respiratory and Critical Care Medicine, 2021, 42, 662-671.	0.8	7
305	Selective Modulation of the Pulmonary Innate Immune Response Does Not Change Lung Microbiota in Healthy Mice. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 734-736.	2.5	6
306	Relationship between airway dysbiosis, inflammation and lung function in adults with cystic fibrosis. Journal of Cystic Fibrosis, 2021, 20, 754-760.	0.3	25
307	Pathophysiology of the Acute Respiratory Distress Syndrome. Critical Care Clinics, 2021, 37, 795-815.	1.0	19
308	Oral seeding and niche-adaptation of middle ear biofilms in health. Biofilm, 2021, 3, 100041.	1.5	4
309	The Respiratory Microbiome in Health and Disease. , 2022, , 177-184.		0
310	Inflammation-associated pulmonary microbiome and metabolome changes in broilers exposed to particulate matter in broiler houses. Journal of Hazardous Materials, 2022, 421, 126710.	6. 5	11
311	Functional lower airways genomic profiling of the microbiome to capture active microbial metabolism. European Respiratory Journal, 2021, 58, 2003434.	3.1	34

#	ARTICLE	IF	CITATIONS
312	A narrative review of the potential role of microaspiration and a dysregulated aerodigestive microbiome in lung disease. Annals of Esophagus, 0 , .	0.4	1
313	COVID-19 and the Microbiome: The Gut-Lung Connection. , 2022, , 442-458.		4
314	Unraveling the Interconnection Patterns Across Lung Microbiome, Respiratory Diseases, and COVID-19. Frontiers in Cellular and Infection Microbiology, 2020, 10, 619075.	1.8	16
315	Core Microbiota in Central Lung Cancer With Streptococcal Enrichment as a Possible Diagnostic Marker. Archivos De Bronconeumologia, 2021, 57, 681-689.	0.4	18
316	Airway microbiota in patients with paediatric cystic fibrosis: Relationship with clinical status. Enfermedades Infecciosas Y MicrobiologÃa ClÃnica, 2019, 37, 167-171.	0.3	2
317	Lung microbiome and coronavirus disease 2019 (COVID-19): Possible link and implications. Human Microbiome Journal, 2020, 17, 100073.	3.8	83
318	The Human Microbiota, Infectious Disease, and Global Health: Challenges and Opportunities. ACS Infectious Diseases, 2018, 4, 14-26.	1.8	34
324	Pneumonia recovery reprograms the alveolar macrophage pool. JCI Insight, 2020, 5, .	2.3	35
325	Sampling the lung microbiome. , 2019, , 1-17.		4
326	Age-related differences in the respiratory microbiota of chickens. PLoS ONE, 2017, 12, e0188455.	1.1	37
327	The airways microbiome of individuals with asthma treated with high and low doses of inhaled corticosteroids. PLoS ONE, 2020, 15, e0244681.	1.1	14
328	Influence of the Lung Microbiota Dysbiosis in Chronic Obstructive Pulmonary Disease Exacerbations: The Controversial Use of Corticosteroid and Antibiotic Treatments and the Role of Eosinophils as a Disease Marker. Journal of Clinical Medicine Research, 2019, 11, 667-675.	0.6	24
329	Evaluation of Sampling Methods for the Study of Avian Respiratory Microbiota. Avian Diseases, 2020, 64, 277-285.	0.4	6
330	Control of chronic obstructive pulmonary disease exacerbations frequency in association with ENT organs abnormalities. Pulmonologiya, 2020, 29, 716-724.	0.2	1
331	The respiratory microbiome in idiopathic pulmonary fibrosis. Annals of Translational Medicine, 2017, 5, 250-250.	0.7	48
332	Human microbiome in respiratory diseases. Annals of Translational Medicine, 2017, 5, 248-248.	0.7	5
333	Airway microbiome research: a modern perspective on surveillance cultures?. Annals of Translational Medicine, 2017, 5, 445-445.	0.7	7
334	Mukolitics in the therapy of respiratory diseases in pediatric practice. Meditsinskiy Sovet, 2020, , 48-54.	0.1	3

#	Article	IF	CITATIONS
335	Role of Lung Microbiome in Innate Immune Response Associated With Chronic Lung Diseases. Frontiers in Medicine, 2020, 7, 554.	1.2	43
336	The Lung Microbiome: A Central Mediator of Host Inflammation and Metabolism in Lung Cancer Patients?. Cancers, 2021, 13, 13.	1.7	21
337	A <i>Listeria </i> -Derived Polypeptide Promotes In Vivo Activation of NK Cells for Antitumor Therapy. ImmunoHorizons, 2017, 1, 53-62.	0.8	4
338	Engineering a genomeâ€reduced bacterium to eliminate <i>Staphylococcus aureus</i> biofilms <i>inÂvivo</i> . Molecular Systems Biology, 2021, 17, e10145.	3.2	21
339	Evaluation of the Respiratory Microbiome and the Use of Tracheal Lavage as a Diagnostic Tool in Kemp's Ridley Sea Turtles (Lepidochelys kempii). Animals, 2021, 11, 2927.	1.0	0
340	Viral Inactivation Impacts Microbiome Estimates in a Tissue-Specific Manner. MSystems, 2021, 6, e0067421.	1.7	1
341	The Lung Microbiome during Health and Disease. International Journal of Molecular Sciences, 2021, 22, 10872.	1.8	72
342	Cardiovascular diseases in combination with SARS-CoV-2 viral infection: cours and forecast. , 2021, 17, 97-105.	0.0	3
343	Emerging cellular and molecular interactions between the lung microbiota and lung diseases. Critical Reviews in Microbiology, 2021, , 1-34.	2.7	1
344	FEATURES OF THE MICROBIOME OF THE UPPER RESPIRATORY TRACT IN CHILDREN WITH RECURRENT RESPIRATORY DISEASES. Russian Journal of Infection and Immunity, 2017, 7, 341-349.	0.2	4
347	Applying ecological theories in lung microbiome research: lessons learned from microbial ecology and evolution?., 2019,, 50-66.		1
348	The lung bacterial microbiome in community-acquired and nosocomial pneumonia. , 2019, , 188-194.		1
349	Compromised immunity and the microbiome: transplantation, cancer and HIV., 2019, , 195-215.		0
350	Network Paradigm and Medicine: Achievements and Prospects. Ukraìnsʹkij žurnal Medicini Bìologìì Ta Sportu, 2019, 4, 25-31.	0.0	O
352	Lessons of microbiota. Shidnoevropejskij Zurnal Vnutrisnoi Ta Simejnoi Medicini, 2019, 2019, 4-12.	0.0	0
353	Microbiota and Network Medicine. Shidnoevropejskij Zurnal Vnutrisnoi Ta Simejnoi Medicini, 2019, 2019, 5-11.	0.0	O
356	Microbiota and nanoparticles: Description and interactions. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 169, 220-240.	2.0	9
357	Core Microbiota in Central Lung Cancer With Streptococcal Enrichment as a Possible Diagnostic Marker. Archivos De Bronconeumologia, 2021, 57, 681-689.	0.4	12

#	Article	IF	CITATIONS
358	ЗĐĐŸĐĐ>ЬĐĐ•ĐŸĐĐ~ĐОДЕĐĐ>Đ•ĐГІЇ. Immunology and Allergy Science and Practice, 2020, , 50-64.	0.0	0
359	The immune system and the microbiota: The two sides of mucosal tolerance. , 2022, , 297-315.		1
360	Correlation between Microbiota and Oncogenesis: Research Progress. Bioprocess, 2020, 10, 15-19.	0.1	1
362	ETIOLOGICAL STRUCTURE AND ECOLOGICAL SIGNIFICANCE OF OPPORTUNISTIC PATHOGENS IN BRONCHITIS. World of Medicine and Biology, 2020, 16, 68.	0.1	1
363	Impact of Human Microbiome on Health. , 2020, , 349-373.		3
364	Metataxonomic investigation of the microbial community in the trachea and oropharynx of healthy controls and diabetic patients using endotracheal tubes. PLoS ONE, 2021, 16, e0259596.	1.1	2
365	High-throughput next-generation sequencing for identifying pathogens during early-stage post-lung transplantation. BMC Pulmonary Medicine, 2021, 21, 348.	0.8	10
366	Repeated bronchoscopy in health and obstructive lung disease: is the airway microbiome stable?. BMC Pulmonary Medicine, 2021, 21, 342.	0.8	4
367	Antibiotics in interstitial lung diseases. , 0, , 264-275.		0
368	Breathing Better Through Bugs: Asthma and the Microbiome. Yale Journal of Biology and Medicine, 2016, 89, 309-324.	0.2	14
369	Lung tissue microbial profile in lung cancer is distinct from emphysema. American Journal of Cancer Research, 2018, 8, 1775-1787.	1.4	24
370	Rabbit microbiota across the whole body revealed by 16S rRNA gene amplicon sequencing. BMC Microbiology, 2021, 21, 312.	1.3	14
371	Inflammation, ageing and diseases of the lung: Potential therapeutic strategies from shared biological pathways. British Journal of Pharmacology, 2022, 179, 1790-1807.	2.7	8
372	The Role of Gut and Lung Microbiota in Susceptibility to Tuberculosis. International Journal of Environmental Research and Public Health, 2021, 18, 12220.	1.2	16
373	The current understanding and future directions for sputum microbiome profiling in chronic obstructive pulmonary disease. Current Opinion in Pulmonary Medicine, 2022, 28, 121-133.	1.2	11
374	Effects of hypertonic alkaline nasal irrigation on COVIDâ€19. Laryngoscope Investigative Otolaryngology, 2021, 6, 1240-1247.	0.6	8
375	Nontypeable Haemophilus influenzae Infection Impedes Pseudomonas aeruginosa Colonization and Persistence in Mouse Respiratory Tract. Infection and Immunity, 2022, 90, IAI0056821.	1.0	4
376	Gut-Lung Microbiota in Chronic Pulmonary Diseases: Evolution, Pathogenesis, and Therapeutics. Canadian Journal of Infectious Diseases and Medical Microbiology, 2021, 2021, 1-8.	0.7	24

#	Article	IF	CITATIONS
377	The intestinal microbiota and improving the efficacy of COVID-19 vaccinations. Journal of Functional Foods, 2021, 87, 104850.	1.6	23
378	Microbial Influence on Alzheimer's Disease. , 2021, 1, .		0
379	Peculiarities of microbiocenosis in the upper and lower respiratory tract of clinically healthy calves and the calves with bronchopneumonia. Ciencia E Agrotecnologia, 0, 45, .	1.5	1
380	Approaches to Sampling the Respiratory Microbiome. Respiratory Medicine, 2022, , 3-19.	0.1	2
381	Oral Prevotella Species and Their Connection to Events of Clinical Relevance in Gastrointestinal and Respiratory Tracts. Frontiers in Microbiology, 2021, 12, 798763.	1.5	38
382	Genomic and metabolic features of the Lactobacillus sakei JD10 revealed potential probiotic traits. Microbiological Research, 2022, 256, 126954.	2.5	7
383	Interacciones entre SARS-CoV-2 y el sistema de defensas del aparato respiratorio: consideraciones para la prevención y el manejo de las infecciones. Ciencia, TecnologÃa Y Salud, 2020, 7, 289-308.	0.0	0
384	Why is it worth remembering the lung microbiome in ICU patients?. Anaesthesiology Intensive Therapy, 2021, 53, 466-474.	0.4	2
385	Early-life viral infections are associated with disadvantageous immune and microbiota profiles and recurrent respiratory infections. Nature Microbiology, 2022, 7, 224-237.	5.9	25
386	A Natural Plant Source-Tea Polyphenols, a Potential Drug for Improving Immunity and Combating Virus. Nutrients, 2022, 14, 550.	1.7	9
387	Gut microbiome alterations in hereditary angioedema. Annals of Allergy, Asthma and Immunology, 2022, , .	0.5	2
388	Gut-lung cross talk in COVID-19 pathology and fatality rate. , 2022, , 41-59.		1
389	The lower airways microbiome and antimicrobial peptides in idiopathic pulmonary fibrosis differ from chronic obstructive pulmonary disease. PLoS ONE, 2022, 17, e0262082.	1.1	4
390	Bovine respiratory microbiota of feedlot cattle and its association with disease. Veterinary Research, 2022, 53, 4.	1.1	28
391	Exposure to Nickel Oxide Nanoparticles Induces Acute and Chronic Inflammatory Responses in Rat Lungs and Perturbs the Lung Microbiome. International Journal of Environmental Research and Public Health, 2022, 19, 522.	1.2	14
394	Spatiotemporal Adaptations of Macrophage and Dendritic Cell Development and Function. Annual Review of Immunology, 2022, 40, 525-557.	9.5	27
395	Microbiota composition and diversity of multiple body sites vary according to reproductive performance in a seabird. Molecular Ecology, 2023, 32, 2115-2133.	2.0	8
396	Altered Ecology of the Respiratory Tract Microbiome and Nosocomial Pneumonia. Frontiers in Microbiology, 2021, 12, 709421.	1.5	9

#	Article	IF	Citations
397	The emerging role of the lung microbiome and its importance in non-small cell lung cancer diagnosis and treatment. Lung Cancer, 2022, 165, 124-132.	0.9	15
398	Research Progress of Microbiome in Breast Cancer. Advances in Clinical Medicine, 2022, 12, 1555-1563.	0.0	0
399	Microbiota., 2022,, 21-56.		0
402	Role of Brain–Gut–Microbiome Axis in Depression Comorbid with Asthma. , 2022, , 135-151.		1
403	Collecting samples for metagenomics. , 2022, , 57-81.		0
404	Blurring the line between opportunistic pathogens and commensals. , 2022, , 133-155.		0
407	Insights into the Unique Lung Microbiota Profile of Pulmonary Tuberculosis Patients Using Metagenomic Next-Generation Sequencing. Microbiology Spectrum, 2022, 10, e0190121.	1.2	17
408	The lung microbiome regulates brain autoimmunity. Nature, 2022, 603, 138-144.	13.7	91
409	Diagnostic Significance of Metagenomic Next-Generation Sequencing for Community-Acquired Pneumonia in Southern China. Frontiers in Medicine, 2022, 9, 807174.	1.2	11
410	Dynamic alterations in the lung microbiota in a rat model of lipopolysaccharide-induced acute lung injury. Scientific Reports, 2022, 12, 4791.	1.6	10
411	Olmesartan Attenuates Single-Lung Ventilation Induced Lung Injury via Regulating Pulmonary Microbiota. Frontiers in Pharmacology, 2022, 13, 822615.	1.6	3
412	Targeting the Pulmonary Microbiota to Fight against Respiratory Diseases. Cells, 2022, 11, 916.	1.8	10
413	Alterations of lung microbiota in patients with non-small cell lung cancer. Bioengineered, 2022, 13, 6665-6677.	1.4	16
414	The Airway Microbiome-IL-17 Axis: a Critical Regulator of Chronic Inflammatory Disease. Clinical Reviews in Allergy and Immunology, 2023, 64, 161-178.	2.9	9
415	Pulmonary microbiome and gene expression signatures differentiate lung function in pediatric hematopoietic cell transplant candidates. Science Translational Medicine, 2022, 14, eabm8646.	5.8	6
416	Exploring the Change of Host and Microorganism in Chronic Obstructive Pulmonary Disease Patients Based on Metagenomic and Metatranscriptomic Sequencing. Frontiers in Microbiology, 2022, 13, 818281.	1.5	5
417	A High-Risk Profile for Invasive Fungal Infections Is Associated with Altered Nasal Microbiota and Niche Determinants. Infection and Immunity, 2022, 90, e0004822.	1.0	6
418	Mapping bacterial diversity and metabolic functionality of the human respiratory tract microbiome. Journal of Oral Microbiology, 2022, 14, 2051336.	1.2	6

#	Article	IF	Citations
419	Metabolome and microbiome multi-omics integration from a murine lung inflammation model of bronchopulmonary dysplasia. Pediatric Research, 2022, 92, 1580-1589.	1.1	5
420	Bronchoalveolar lavage fluid reveals factors contributing to the efficacy of PD-1 blockade in lung cancer. JCI Insight, 2022, 7, .	2.3	10
421	Early-Life Lung and Gut Microbiota Development and Respiratory Syncytial Virus Infection. Frontiers in Immunology, 2022, 13, 877771.	2.2	7
422	Teleost swim bladder, an ancient air-filled organ that elicits mucosal immune responses. Cell Discovery, 2022, 8, 31.	3.1	17
423	Microbiome Modulation as a Novel Strategy to Treat and Prevent Respiratory Infections. Antibiotics, 2022, 11, 474.	1.5	15
424	The human microbiome in disease and pathology. Apmis, 2022, 130, 690-705.	0.9	38
425	Human Gut Microbiota in Health and Selected Cancers. International Journal of Molecular Sciences, 2021, 22, 13440.	1.8	23
426	Leptin in the Respiratory Tract: Is There a Role in SARS-CoV-2 Infection?. Frontiers in Physiology, 2021, 12, 776963.	1.3	4
427	Examining the Executioners, Influenza Associated Secondary Bacterial Pneumonia. Infectious Diseases, 0, , .	4.0	0
428	Single Treatment of Vitamin D3 Ameliorates LPSâ€Induced Acute Lung Injury through Changing Lung <i>Rodentibacter</i> abundance. Molecular Nutrition and Food Research, 2022, 66, e2100952.	1.5	3
429	Role of air pollutants in airway epithelial barrier dysfunction in asthma and COPD. European Respiratory Review, 2022, 31, 210112.	3.0	49
430	A Multi-Omics Study of Familial Lung Cancer: Microbiome and Host Gene Expression Patterns. Frontiers in Immunology, 2022, 13, 827953.	2.2	7
431	IPF-Acute Exacerbations: Advances and Future Perspectives. Frontiers in Pharmacology, 2022, 13, 836553.	1.6	2
432	Functional, transcriptional, and microbial shifts associated with healthy pulmonary aging in rhesus macaques. Cell Reports, 2022, 39, 110725.	2.9	7
433	Immunonutrition and SARS-CoV-2 Infection in Children with Obesity. Nutrients, 2022, 14, 1701.	1.7	6
443	Microbiota in health and diseases. Signal Transduction and Targeted Therapy, 2022, 7, 135.	7.1	494
444	Microbiota and IPF: hidden and detected relationships. Sarcoidosis Vasculitis and Diffuse Lung Diseases, 2021, 38, e2021028.	0.2	7
445	Alterations in microbiota of patients with COVID-19: potential mechanisms and therapeutic interventions. Signal Transduction and Targeted Therapy, 2022, 7, 143.	7.1	83

#	Article	IF	CITATIONS
446	Respiratory Viral and Bacterial Exacerbations of COPDâ€"The Role of the Airway Epithelium. Cells, 2022, 11, 1416.	1.8	10
447	Microbiota and the Response to Vaccines Against Respiratory Virus. Frontiers in Immunology, 2022, 13, .	2.2	10
448	Therapeutic Targeting of the Respiratory Microbiome. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 535-544.	2.5	24
449	Insights into the Profile of the Human Expiratory Microbiota and Its Associations with Indoor Microbiotas. Environmental Science & Environmental Scien	4.6	10
451	De- "bug―ing the microbiome in lung cancer. Cancer and Metastasis Reviews, 2022, 41, 335-346.	2.7	4
452	Đ'Đ~Đ—ĐĐЧĐЛЬĐĐ•ĐОЛЬ ĐœĐ†ĐšĐĐžĐ'Đ†ĐžĐœĐ•Đ£ ĐŸĐĐ¢ĐžĐ"Đ•ĐЕЗІ ĐЛЕĐГІЧĐĐ~Đ\	∮Đ o £0Đ¥€)'Ð ž ÐЮВÐ
453	Sputum Microbiota in Coal Workers Diagnosed with Pneumoconiosis as Revealed by 16S rRNA Gene Sequencing. Life, 2022, 12, 830.	1.1	2
454	Aspects regarding the etiology of community pneumonia. Medic Ro, 2022, 3, 34.	0.0	0
455	Pathogenesis of pneumonia and acute lung injury. Clinical Science, 2022, 136, 747-769.	1.8	53
456	Structural and functional characteristics of microbiota in oropharynx of sub-healthy children with gastrointestinal heat retention syndrome differentiated by traditional Chinese medicine. Journal of Traditional Chinese Medical Sciences, 2022, , .	0.1	0
457	Microbiome as an immune regulator in health, disease, and therapeutics. Advanced Drug Delivery Reviews, 2022, 188, 114400.	6.6	11
458	Endotracheal tube microbiome in hospitalized patients defined largely by hospital environment. Respiratory Research, 2022, 23, .	1.4	5
459	Al-2/LuxS Quorum Sensing System Promotes Biofilm Formation of Lactobacillus rhamnosus GG and Enhances the Resistance to Enterotoxigenic Escherichia coli in Germ-Free Zebrafish. Microbiology Spectrum, 2022, 10, .	1.2	12
460	Implications of Gut Microbiota in Epithelial–Mesenchymal Transition and Cancer Progression: A Concise Review. Cancers, 2022, 14, 2964.	1.7	6
461	Hybrid measurement of respiratory aerosol reveals a dominant coarse fraction resulting from speech that remains airborne for minutes. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	17
462	Advances in diagnostic tools for respiratory tract infections: from tuberculosis to COVID-19 – changing paradigms?. ERJ Open Research, 2022, 8, 00113-2022.	1.1	5
463	Defining Communication and Language from Within a Pluralistic Evolutionary Worldview. Topoi, 2022, 41, 609-622.	0.8	3
465	Microbial Metabolites in the Maturation and Activation of Dendritic Cells and Their Relevance for Respiratory Immunity. Frontiers in Immunology, $0,13,.$	2.2	5

#	Article	IF	CITATIONS
466	Clinical evaluation of metagenomic next-generation sequencing for detecting pathogens in bronchoalveolar lavage fluid collected from children with community-acquired pneumonia. Frontiers in Medicine, $0,9,\ldots$	1.2	7
467	Utilizing the Gastrointestinal Microbiota to Modulate Cattle Health through the Microbiome-Gut-Organ Axes. Microorganisms, 2022, 10, 1391.	1.6	19
468	Impact of bacterial strain acquisition in the lung of patients with COPD: the AERIS study. Infectious Diseases, 2022, 54, 784-793.	1.4	2
469	Composition and diversity analysis of the lung microbiome in patients with suspected ventilator-associated pneumonia. Critical Care, 2022, 26, .	2.5	17
470	SARS-CoV-2 infection threatening intestinal health: A review of potential mechanisms and treatment strategies. Critical Reviews in Food Science and Nutrition, 0 , $1-19$.	5.4	6
471	Temporal changes of the respiratory microbiota as cats transition from health to experimental acute and chronic allergic asthma. Frontiers in Veterinary Science, 0, 9, .	0.9	6
472	The microbiome of lower respiratory tract and tumor tissue in lung cancer manifested as radiological ground-glass opacity. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	5
473	Microbiome alterations associated with phthalate exposures in a US-based sample of Latino workers. Environmental Research, 2022, 214, 114126.	3.7	3
474	Lung and gut microbiomes in pulmonary aspergillosis: Exploring adjunctive therapies to combat the disease. Frontiers in Immunology, 0, 13 , .	2.2	4
475	Microbiome alterations from volatile organic compounds (VOC) exposures among workers in salons primarily serving women of color. Environmental Research, 2022, 214, 114125.	3.7	3
476	Inborn errors of immunity and related microbiome. Frontiers in Immunology, 0, 13, .	2.2	1
477	Air pollution from livestock farms and the oropharyngeal microbiome of COPD patients and controls. Environment International, 2022, 169, 107497.	4.8	2
478	Mixed Fungal Biofilms: From Mycobiota to Devices, a New Challenge on Clinical Practice. Microorganisms, 2022, 10, 1721.	1.6	8
479	Differential Oral Microbial Input Determines Two Microbiota Pneumoâ€₹ypes Associated with Health Status. Advanced Science, 2022, 9, .	5.6	8
480	Characteristics of lower respiratory tract microbiota in the patients with post-hematopoietic stem cell transplantation pneumonia. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	3
481	Exploring the Cystic Fibrosis Lung Microbiome: Making the Most of a Sticky Situation. Journal of the Pediatric Infectious Diseases Society, 2022, 11, S13-S22.	0.6	12
482	Geography, niches, and transportation influence bovine respiratory microbiome and health. Frontiers in Cellular and Infection Microbiology, 0, 12 , .	1.8	5
483	Contribution of Symptomatic, Herbal Treatment Options to Antibiotic Stewardship and Microbiotic Health. Antibiotics, 2022, 11, 1331.	1.5	3

#	Article	IF	CITATIONS
484	Frontline workers: Mediators of mucosal immunity in community acquired pneumonia and COVID-19. Frontiers in Immunology, 0, 13, .	2.2	0
485	Association of SARS-CoV-2 and Polypharmacy with Gut–Lung Axis: From Pathogenesis to Treatment. ACS Omega, 2022, 7, 33651-33665.	1.6	7
486	From the nose to the lungs: the intricate journey of airborne pathogens amid commensal bacteria. American Journal of Physiology - Cell Physiology, 2022, 323, C1036-C1043.	2.1	2
487	Phage therapy for pulmonary infections: lessons from clinical experiences and key considerations. European Respiratory Review, 2022, 31, 220121.	3.0	14
488	Uncovering the core principles of the gut-lung axis to enhance innate immunity in the chicken. Frontiers in Immunology, 0, 13 , .	2.2	2
489	Metagenomic next-generation sequencing indicates more precise pathogens in patients with pulmonary infection: A retrospective study. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	4
490	Onco-biome in pharmacotherapy for lung cancer: a narrative review. Translational Lung Cancer Research, 2022, 11, 2332-2345.	1.3	1
491	Metabolomics of Respiratory Diseases. Handbook of Experimental Pharmacology, 2022, , 339-365.	0.9	2
492	The lung microbiome, peripheral gene expression, and recurrence-free survival after resection of stage II non-small cell lung cancer. Genome Medicine, 2022, 14, .	3.6	15
493	Impact of air pollution on respiratory microbiome: A narrative review. Intensive and Critical Care Nursing, 2023, 74, 103336.	1.4	7
494	The Lung Microbiota and Lung Cancer: A Growing Relationship. Cancers, 2022, 14, 4813.	1.7	6
496	Species-level respiratory microbiome profiling for etiologic diagnosis of children pneumonia using full length 16S rRNA gene sequencing. Indian Journal of Medical Microbiology, 2023, 43, 11-17.	0.3	1
497	In-Depth Metaproteomics Analysis of Oral Microbiome for Lung Cancer. Research, 2022, 2022, .	2.8	6
498	Microbiome and Human Health: Current Understanding, Engineering, and Enabling Technologies. Chemical Reviews, 2023, 123, 31-72.	23.0	54
499	The effects of human care on the blowhole and gut microbiotas of two cohabiting dolphin species based on a year-round surveillance. Frontiers in Marine Science, 0, 9, .	1.2	2
500	Comparative analysis of the lung microbiota in patients with respiratory infections, tuberculosis, and lung cancer: A preliminary study. Frontiers in Cellular and Infection Microbiology, $0,12,12$	1.8	7
501	Characterizing microbiota and metabolomics analysis to identify candidate biomarkers in lung cancer. Frontiers in Oncology, $0,12,.$	1.3	4
502	Characteristics of oral microbiome of healthcare workers in different clinical scenarios: a cross-sectional analysis. BMC Oral Health, 2022, 22, .	0.8	0

#	Article	IF	Citations
504	Specific associations between fungi and bacteria in broncho-alveolar aspirates from mechanically ventilated intensive care unit patients. Virulence, 2022, 13, 2022-2031.	1.8	1
505	Association between asthma and changes in the microbiota. Medic Ro, 2022, 6, 35.	0.0	O
506	Experience of using bacteriophages in the complex treatment of children with aphthous stomatitis. Stomatologiya, 2022, 101, 22.	0.1	2
507	Particles and microbiota: interaction to death or resilience?. , 2023, , 1-48.		0
508	Multi-omics reveals the mechanisms of DEHP driven pulmonary toxicity in ovalbumin-sensitized mice. Ecotoxicology and Environmental Safety, 2023, 249, 114355.	2.9	2
509	Microbial and Immune Regulation of the Gut-Lung Axis during Viral-Bacterial Coinfection. Journal of Bacteriology, 2023, 205, .	1.0	3
510	Development of an in vitro homeostasis model between airway epithelial cells, bacteria and bacteriophages: a time-lapsed observation of cell viability and inflammatory response. Journal of General Virology, 2022, 103, .	1.3	1
511	Microbial Biomarkers for Lung Cancer: Current Understandings and Limitations. Journal of Clinical Medicine, 2022, 11, 7298.	1.0	4
512	Meta-analysis of sputum microbiome studies identifies airway disease-specific taxonomic and functional signatures. Journal of Medical Microbiology, 2022, 72, .	0.7	0
513	Localization and potential role of prostate microbiota. Frontiers in Cellular and Infection Microbiology, 0, 12 , .	1.8	5
514	A Review on the Nasal Microbiome and Various Disease Conditions for Newer Approaches to Treatments. Indian Journal of Otolaryngology and Head and Neck Surgery, 0, , .	0.3	0
515	Clonal replacement sustains long-lived germinal centers primed by respiratory viruses. Cell, 2023, 186, 131-146.e13.	13.5	19
516	Modified Dingchuan Decoction treats cough-variant asthma by suppressing lung inflammation and regulating the lung microbiota. Journal of Ethnopharmacology, 2023, 306, 116171.	2.0	3
517	LDMD: A database of microbes in human lung disease. Frontiers in Microbiology, 0, 13, .	1.5	1
518	Airway microbiome-immune crosstalk in chronic obstructive pulmonary disease. Frontiers in Immunology, 0, 13, .	2.2	7
519	The Role of the Respiratory Microbiome in the Pathogenesis of Aspiration Pneumonia: Implications for Diagnosis and Potential Therapeutic Choices. Antibiotics, 2023, 12, 140.	1.5	3
520	Interactions between microbiome and underlying mechanisms in asthma. Respiratory Medicine, 2023, 208, 107118.	1.3	8
521	Bağırsak ve Akciğer Mikrobiyotaları Arasındaki İlişki. Ankara Sağlık Bilimleri Dergisi, 2021, 10, 120	-16.1.	1

#	Article	IF	Citations
522	Gut–lung crosstalk during critical illness. Current Opinion in Critical Care, 2023, 29, 130-137.	1.6	6
523	Potential role of healthy microbiome in metabolic syndrome and immune competence., 2023,, 805-814.		O
524	T lymphocyte cell: A pivotal player in lung cancer. Frontiers in Immunology, 0, 14, .	2.2	6
525	Lung epithelial cells: Upstream targets in type 2â€high asthma. European Journal of Immunology, 2023, 53,	1.6	3
526	Host Microbiome Threats in the Intensive Care Unit. Surgical Infections, 2023, 24, 276-283.	0.7	1
527	Bacteria and macrophages in the tumor microenvironment. Frontiers in Microbiology, 0, 14, .	1.5	1
528	Molecular Accounting and Profiling of Human Respiratory Microbial Communities: Toward Precision Medicine by Targeting the Respiratory Microbiome for Disease Diagnosis and Treatment. International Journal of Molecular Sciences, 2023, 24, 4086.	1.8	11
529	Analysis of 16S rRNA Gene Sequence of Nasopharyngeal Exudate Reveals Changes in Key Microbial Communities Associated with Aging. International Journal of Molecular Sciences, 2023, 24, 4127.	1.8	3
530	MAIT cells and the microbiome. Frontiers in Immunology, 0, 14, .	2.2	5
531	The role of clinical models in understanding the etiology of pneumonia. Emergency Medicine, 2022, 18, 43-53.	0.0	0
532	Changes in upper airways microbiota in ventilator-associated pneumonia. Intensive Care Medicine Experimental, 2023, 11, .	0.9	4
533	The effect of real-ambient PM2.5 exposure on the lung and gut microbiomes and the regulation of Nrf2. Ecotoxicology and Environmental Safety, 2023, 254, 114702.	2.9	6
534	Potential biomarker proteins for aspiration pneumonia detected by shotgun proteomics using buccal mucosa samples: a cross-sectional case–control study. Clinical Proteomics, 2023, 20, .	1.1	2
535	Niche-Based Microbial Community Assemblage in Urban Transit Systems and the Influence of City Characteristics. Microbiology Spectrum, 2023, 11 , .	1,2	0
536	Lower respiratory tract microbiome composition and community interactions in smokers. Access Microbiology, 2023, 5, .	0.2	1
537	The Lung Microbiome in Carcinogenesis and Immunotherapy Treatment. Cancer Journal (Sudbury, Mass) Tj ETQq	1 1.8.784	314 rgBT /0\
538	Microbiome and Its Dysbiosis in Inborn Errors of Immunity. Pathogens, 2023, 12, 518.	1.2	1
539	Immunomodulatory Properties of Vitamin D in the Intestinal and Respiratory Systems. Nutrients, 2023, 15, 1696.	1.7	8

#	ARTICLE	IF	CITATIONS
540	Pulmonary Manifestations of COVID-19. , 2024, , 100-136.		0
541	Association of lung-intestinal microecology and lung cancer therapy. Chinese Medicine, 2023, 18, .	1.6	5
542	Bridging the Gap Between Innate and Adaptive Immunity in the Lung: Summary of the Aspen Lung Conference 2022. American Journal of Respiratory Cell and Molecular Biology, 0, , .	1.4	0
543	The Fungal and Bacterial Interface in the Respiratory Mycobiome with a Focus on Aspergillus spp Life, 2023, 13, 1017.	1.1	2
544	Characterization of the lung microbiome and inflammatory cytokine levels in women exposed to environmental risk factors: A pilot study. Immunity, Inflammation and Disease, 2023, 11, .	1.3	1
545	Cough response in specific pathogen-free guinea pig animal model. Respiratory Physiology and Neurobiology, 2023, 313, 104067.	0.7	1
549	Microbiome therapeutics in respiratory illnesses. , 2023, , 401-419.		0
550	Human Microbiome and the Susceptibility to Infections. , 2023, , 117-138.		0
561	Bacteria in cancer initiation, promotion and progression. Nature Reviews Cancer, 2023, 23, 600-618.	12.8	21
570	Drug-microbiota interactions: an emerging priority for precision medicine. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	5
597	Role of Microbiomes in Defining the Metabolic and Regulatory Networks that Distinguishes Between Good Health and a Continuum of Disease States. , 2023, , 219-240.		0
609	Respiratory Delivery of Probiotics to Improve Lung Health. AAPS Introductions in the Pharmaceutical Sciences, 2023, , 149-172.	0.1	0
611	The human microbiota and its therapeutic options. , 2024, , 1993-2005.		O