Nanoscale cation motion in TaOx, HfOx and TiOx mem

Nature Nanotechnology 11, 67-74 DOI: 10.1038/nnano.2015.221

Citation Report

#	Article	IF	CITATIONS
1	Resistive Switching of Plasma–Treated Zinc Oxide Nanowires for Resistive Random Access Memory. Nanomaterials, 2016, 6, 16.	1.9	25
2	The Resistive Switching Characteristics in ZrO2 and Its Filamentary Conduction Behavior. Materials, 2016, 9, 551.	1.3	9
3	Nonlinear thickness and oxidation-dependent transparency and conductance of sputtered titanium suboxide nanofilms. Optical Materials Express, 2016, 6, 1837.	1.6	1
4	Electrochemical processes and device improvement in conductive bridge RAM cells. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 274-288.	0.8	52
5	Correlation between diode polarization and resistive switching polarity in Pt/TiO ₂ /Pt memristive device. Physica Status Solidi - Rapid Research Letters, 2016, 10, 426-430.	1.2	8
6	Investigation of the behaviour of electronic resistive switching memory based on MoSe2-doped ultralong Se microwires. Applied Physics Letters, 2016, 109, .	1.5	86
7	Nanosculpting of complex oxides by massive ionic transfer. Nanotechnology, 2016, 27, 505703.	1.3	1
8	Interfacial versus filamentary resistive switching in TiO2 and HfO2 devices. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, .	0.6	54
9	<i>In situ</i> transmission electron microscopy of resistive switching in thin silicon oxide layers. Resolution and Discovery, 2016, 1, 27-33.	0.9	16
10	On the mechanisms of cation injection in conducting bridge memories: The case of HfO2 in contact with noble metal anodes (Au, Cu, Ag). Journal of Applied Physics, 2016, 119, .	1.1	37
11	Integration scheme of nanoscale resistive switching memory using bottom-up processes at room temperature for high-density memory applications. Scientific Reports, 2016, 6, 28966.	1.6	12
12	Memristive behaviour in poly-acrylic acid coated TiO ₂ nanotube arrays. Nanotechnology, 2016, 27, 485208.	1.3	24
13	Glass-Based Transparent Conductive Electrode: Its Application to Visible-to-Ultraviolet Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2016, 8, 35668-35677.	4.0	21
14	Field-enhanced ion transport in solids: Reexamination with molecular dynamics simulations. Physical Review B, 2016, 94, .	1.1	42
15	Impact of oxygen stoichiometry on electroforming and multiple switching modes in TiN/TaO <i>x</i> /Pt based ReRAM. Applied Physics Letters, 2016, 109, .	1.5	51
16	On the origin of resistive switching volatility in Ni/TiO2/Ni stacks. Journal of Applied Physics, 2016, 120, ·	1.1	12
17	Sub-10 nm Ta Channel Responsible for Superior Performance of a HfO2 Memristor. Scientific Reports, 2016, 6, 28525.	1.6	177
18	Effect of Oxygen-deficiencies on Resistance Switching in Amorphous YFe0.5Cr0.5O3â^'d films. Scientific Reports, 2016, 6, 30335.	1.6	8

#	Article	IF	CITATIONS
19	Resistance switching characteristics of core–shell γ-Fe2O3/Ni2O3 nanoparticles in HfSiO matrix. Journal of Alloys and Compounds, 2016, 678, 31-35.	2.8	20
20	Current-voltage hysteresis of the composite MoS2-MoOâ‰ 8 nanobelts for data storage. Journal of Alloys and Compounds, 2016, 679, 47-53.	2.8	19
21	Solid-state electrochemistry on the nanometer and atomic scales: the scanning probe microscopy approach. Nanoscale, 2016, 8, 13838-13858.	2.8	27
22	Atomistic simulations of electrochemical metallization cells: mechanisms of ultra-fast resistance switching in nanoscale devices. Nanoscale, 2016, 8, 14037-14047.	2.8	22
23	Engineering incremental resistive switching in TaO _x based memristors for brain-inspired computing. Nanoscale, 2016, 8, 14015-14022.	2.8	271
24	Electrochemical metallization switching with a platinum group metal in different oxides. Nanoscale, 2016, 8, 14023-14030.	2.8	35
25	Nanoscale electrochemistry using dielectric thin films as solid electrolytes. Nanoscale, 2016, 8, 13828-13837.	2.8	126
26	3D resistive RAM cell design for high-density storage class memory—a review. Science China Information Sciences, 2016, 59, 1.	2.7	54
27	Proton exchange reactions in SiOx-based resistive switching memory: Review and insights from impedance spectroscopy. Progress in Solid State Chemistry, 2016, 44, 75-85.	3.9	45
28	X-ray spectromicroscopy investigation of soft and hard breakdown in RRAM devices. Nanotechnology, 2016, 27, 345705.	1.3	11
29	Physico-Chemical Characterization of Anodic Oxides on Hf as a Function of the Anodizing Conditions. Journal of the Electrochemical Society, 2016, 163, C563-C570.	1.3	15
30	Impact of oxygen exchange reaction at the ohmic interface in Ta ₂ O ₅ -based ReRAM devices. Nanoscale, 2016, 8, 17774-17781.	2.8	116
31	Realization of Functional Complete Stateful Boolean Logic in Memristive Crossbar. ACS Applied Materials & Interfaces, 2016, 8, 34559-34567.	4.0	56
32	Conduction Channel Formation and Dissolution Due to Oxygen Thermophoresis/Diffusion in Hafnium Oxide Memristors. ACS Nano, 2016, 10, 11205-11210.	7.3	97
33	Hydrothermal synthesis and memristive switching behaviors of single-crystalline anatase TiO2 nanowire arrays. Journal of Alloys and Compounds, 2016, 688, 294-300.	2.8	17
34	Investigation of the Switching Mechanism in TiO ₂ -Based RRAM: A Two-Dimensional EDX Approach. ACS Applied Materials & Interfaces, 2016, 8, 19605-19611.	4.0	69
35	Conduction and switching mechanism in Nb ₂ O ₅ thin films based resistive switches. Europhysics Letters, 2016, 116, 17003.	0.7	13
36	Microstructure and dynamics of vacancy-induced nanofilamentary switching network in donor doped SrTiO _{3â^'<i>x</i>} memristors. Nanotechnology, 2016, 27, 505210.	1.3	39

#	Article	IF	CITATIONS
37	Quantized conductance coincides with state instability and excess noise in tantalum oxide memristors. Nature Communications, 2016, 7, 11142.	5.8	95
38	Demonstration of Synaptic Behaviors and Resistive Switching Characterizations by Proton Exchange Reactions in Silicon Oxide. Scientific Reports, 2016, 6, 21268.	1.6	84
39	Highly improved resistive switching performances of the self-doped Pt/HfO2:Cu/Cu devices by atomic layer deposition. Science China: Physics, Mechanics and Astronomy, 2016, 59, 1.	2.0	13
40	Atomic Insight into the Origin of Various Operation Voltages of Cation-Based Resistance Switches. ACS Applied Materials & Interfaces, 2016, 8, 31978-31985.	4.0	8
41	Eliminating Negativeâ€SET Behavior by Suppressing Nanofilament Overgrowth in Cationâ€Based Memory. Advanced Materials, 2016, 28, 10623-10629.	11.1	189
42	Modulating memristive performance of hexagonal WO3 nanowire by water-oxidized hydrogen ion implantation. Scientific Reports, 2016, 6, 32712.	1.6	21
43	CMOS compatible electrode materials selection in oxide-based memory devices. Journal of Applied Physics, 2016, 120, .	1.1	11
44	Direct Observation of Localized Radial Oxygen Migration in Functioning Tantalum Oxide Memristors. Advanced Materials, 2016, 28, 2772-2776.	11.1	92
45	Synergistic Resistive Switching Mechanism of Oxygen Vacancies and Metal Interstitials in Ta ₂ O ₅ . Journal of Physical Chemistry C, 2016, 120, 2456-2463.	1.5	34
46	Tuning Ionic Transport in Memristive Devices by Graphene with Engineered Nanopores. ACS Nano, 2016, 10, 3571-3579.	7.3	139
47	Moisture effects on the electrochemical reaction and resistance switching at Ag/molybdenum oxide interfaces. Physical Chemistry Chemical Physics, 2016, 18, 12466-12475.	1.3	46
48	Resistive Switching Mechanisms on TaO _{<i>x</i>} and SrRuO ₃ Thin-Film Surfaces Probed by Scanning Tunneling Microscopy. ACS Nano, 2016, 10, 1481-1492.	7.3	100
49	Coexistence of Grainâ€Boundariesâ€Assisted Bipolar and Threshold Resistive Switching in Multilayer Hexagonal Boron Nitride. Advanced Functional Materials, 2017, 27, 1604811.	7.8	229
50	Bipolar resistive switching memory behaviors of the micro-size composite particles. Composite Structures, 2017, 166, 177-183.	3.1	17
51	Multilevel Ultrafast Flexible Nanoscale Nonvolatile Hybrid Graphene Oxide–Titanium Oxide Memories. ACS Nano, 2017, 11, 3010-3021.	7.3	98
52	An efficient analog Hamming distance comparator realized with a unipolar memristor array: a showcase of physical computing. Scientific Reports, 2017, 7, 40135.	1.6	27
53	The Effect of Nb Incorporation on the Electronic Properties of Anodic HfO ₂ . ECS Journal of Solid State Science and Technology, 2017, 6, N25-N31.	0.9	15
54	Atomic layer deposition and properties of mixed Ta2O5 and ZrO2 films. AIP Advances, 2017, 7, .	0.6	26

#	Article	IF	CITATIONS
55	Role of CMOS Back-End Metals as Active Electrodes for Resistive Switching in ReRAM Cells. ECS Journal of Solid State Science and Technology, 2017, 6, N1-N9.	0.9	14
56	Direct Probing of the Dielectric Scavenging-Layer Interface in Oxide Filamentary-Based Valence Change Memory. ACS Applied Materials & Interfaces, 2017, 9, 10820-10824.	4.0	50
57	Oxygen migration during resistance switching and failure of hafnium oxide memristors. Applied Physics Letters, 2017, 110, .	1.5	64
58	Direct Observation of Dualâ€Filament Switching Behaviors in Ta ₂ O ₅ â€Based Memristors. Small, 2017, 13, 1603116.	5.2	85
59	Gate-tunable, normally-on to normally-off memristance transition in patterned LaAlO3/SrTiO3 interfaces. Applied Physics Letters, 2017, 110, .	1.5	7
60	Designing Strained Interface Heterostructures for Memristive Devices. Advanced Materials, 2017, 29, 1605049.	11.1	33
61	Probing electrochemistry at the nanoscale: in situ TEM and STM characterizations of conducting filaments in memristive devices. Journal of Electroceramics, 2017, 39, 73-93.	0.8	28
62	Ultrasensitive Memristive Synapses Based on Lightly Oxidized Sulfide Films. Advanced Materials, 2017, 29, 1606927.	11.1	158
63	Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials, 2017, 29, 1700212.	11.1	166
64	Mechanism for bipolar resistive switching memory behaviors of a self-assembled three-dimensional MoS2 microsphere composed active layer. Journal of Applied Physics, 2017, 121, .	1.1	34
65	Coexistence of two types of metal filaments in oxide memristors. AIP Advances, 2017, 7, .	0.6	8
66	Multifunctional Nanoionic Devices Enabling Simultaneous Heterosynaptic Plasticity and Efficient Inâ€Memory Boolean Logic. Advanced Electronic Materials, 2017, 3, 1700032.	2.6	56
67	Probing nanoscale oxygen ion motion in memristive systems. Nature Communications, 2017, 8, 15173.	5.8	149
68	Characteristics and transport mechanisms of triple switching regimes of TaOx memristor. Applied Physics Letters, 2017, 110, .	1.5	35
69	Oxygen Vacancies Control Transition of Resistive Switching Mode in Single-Crystal TiO ₂ Memory Device. ACS Applied Materials & Interfaces, 2017, 9, 16327-16334.	4.0	80
70	Emulation of synaptic metaplasticity in memristors. Nanoscale, 2017, 9, 45-51.	2.8	73
71	Polymer-Assisted Solution Processing of TiO ₂ Thin Films for Resistive-Switching Random Access Memory. Journal of the Electrochemical Society, 2017, 164, H21-H24.	1.3	9
72	Interfacial Metal–Oxide Interactions in Resistive Switching Memories. ACS Applied Materials & Interfaces, 2017, 9, 19287-19295.	4.0	103

#	Article	IF	CITATIONS
73	Modeling resistive switching materials and devices across scales. Journal of Electroceramics, 2017, 39, 39-60.	0.8	19
74	Reset switching statistics of TaOx-based Memristor. Journal of Electroceramics, 2017, 39, 132-136.	0.8	8
75	Memristive devices: Technology, design automation and computing frontiers. , 2017, , .		3
76	Temperature and field-dependent transport measurements in continuously tunable tantalum oxide memristors expose the dominant state variable. Applied Physics Letters, 2017, 110, .	1.5	38
77	Resistive Switching in ZnO Nanorods/Graphene Oxide Hybrid Multilayer Structures. Advanced Electronic Materials, 2017, 3, 1600418.	2.6	43
78	Nanosized Conducting Filaments Formed by Atomic-Scale Defects in Redox-Based Resistive Switching Memories. Chemistry of Materials, 2017, 29, 3164-3173.	3.2	70
79	Solid‣tate Electrolyteâ€Gated Graphene in Optical Modulators. Advanced Materials, 2017, 29, 1606372.	11.1	19
80	Memristive Devices with Highly Repeatable Analog States Boosted by Graphene Quantum Dots. Small, 2017, 13, 1603435.	5.2	44
81	Coexistence of bipolar and threshold resistive switching in TiO ₂ based structure with embedded hafnium nanoparticles. Journal Physics D: Applied Physics, 2017, 50, 045103.	1.3	11
82	Mimicking Classical Conditioning Based on a Single Flexible Memristor. Advanced Materials, 2017, 29, 1602890.	11.1	119
83	Epitaxial growth of BaTiO3/ZnO heterojunctions and transition from rectification to bipolar resistive switching effect. Applied Physics Letters, 2017, 111, .	1.5	10
84	Improvement of SET variability in TaO <i>_x</i> based resistive RAM devices. Nanotechnology, 2017, 28, 465203.	1.3	8
85	Electrochemical Tantalum Oxide for Resistive Switching Memories. Advanced Materials, 2017, 29, 1703357.	11.1	69
86	High-Performance Single-Active-Layer Memristor Based on an Ultrananocrystalline Oxygen-Deficient TiO _{<i>x</i>} Film. ACS Applied Materials & Interfaces, 2017, 9, 36989-36996.	4.0	22
87	Resistive switching memory using biomaterials. Journal of Electroceramics, 2017, 39, 223-238.	0.8	70
88	Ultraâ€Low Power Multilevel Switching with Enhanced Uniformity in Forming Free TiO _{2â^'x} â€Based RRAM with Embedded Pt Nanocrystals. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700570.	0.8	25
89	Robust resistive memory devices using solution-processable metal-coordinated azoÂaromatics. Nature Materials, 2017, 16, 1216-1224.	13.3	244
90	Interfacial interactions and their impact on redox-based resistive switching memories (ReRAMs). Semiconductor Science and Technology, 2017, 32, 093006.	1.0	100

#	Article	IF	CITATIONS
91	Customized binary and multi-level HfO2â^'x-based memristors tuned by oxidation conditions. Scientific Reports, 2017, 7, 10070.	1.6	46
92	Comprehensive modeling of electrochemical metallization memory cells. Journal of Computational Electronics, 2017, 16, 1017-1037.	1.3	26
93	Structurally Engineered Nanoporous Ta ₂ O _{5–<i>x</i>} Selector-Less Memristor for High Uniformity and Low Power Consumption. ACS Applied Materials & Interfaces, 2017, 9, 34015-34023.	4.0	18
94	Guiding the Growth of a Conductive Filament by Nanoindentation To Improve Resistive Switching. ACS Applied Materials & Interfaces, 2017, 9, 34064-34070.	4.0	106
95	Control of Switching Modes and Conductance Quantization in Oxygen Engineered HfO <i>_x</i> based Memristive Devices. Advanced Functional Materials, 2017, 27, 1700432.	7.8	99
96	Truly Electroformingâ€Free and Lowâ€Energy Memristors with Preconditioned Conductive Tunneling Paths. Advanced Functional Materials, 2017, 27, 1702010.	7.8	75
97	A Versatile and Accurate Compact Model of Memristor With Equivalent Resistor Topology. IEEE Electron Device Letters, 2017, 38, 1367-1370.	2.2	14
98	Plasmon-induced nanoscale quantised conductance filaments. Scientific Reports, 2017, 7, 2878.	1.6	3
99	Interfaces Formed by ALD Metal Oxide Growth on Metal Layers. ECS Transactions, 2017, 80, 87-95.	0.3	3
100	Multibit memory operation of metal-oxide bi-layer memristors. Scientific Reports, 2017, 7, 17532.	1.6	228
101	Identifying intrinsic ferroelectricity of thin film with piezoresponse force microscopy. AIP Advances, 2017, 7, .	0.6	42
102	Synapse-Inspired Variable Conductance in Biomembranes: A Preliminary Study. , 2017, , .		0
103	Improved resistive switching reliability by using dual-layer nanoporous carbon structure. Applied Physics Letters, 2017, 111, .	1.5	25
104	Investigations of switching phenomena in Pt/HfO <inf>2</inf> /Ti/Pt memristive devices. , 2017, , .		1
105	A Silk Fibroin Bio-Transient Solution Processable Memristor. Scientific Reports, 2017, 7, 14731.	1.6	47
106	Magnetic field-induced bipolar resistive switching and negative differential resistance in (110)SrTiO 3 :Nb/ZnO heterojunctions. Physica B: Condensed Matter, 2017, 521, 69-72.	1.3	6
107	Brownmillerite thin films as fast ion conductors for ultimate-performance resistance switching memory. Nanoscale, 2017, 9, 10502-10510.	2.8	37
108	Effect of carrier screening on ZnO-based resistive switching memory devices. Nano Research, 2017, 10, 77-86.	5.8	23

#	Article	IF	CITATIONS
109	In situ TEM observation on the interface-type resistive switching by electrochemical redox reactions at a TiN/PCMO interface. Nanoscale, 2017, 9, 582-593.	2.8	76
110	Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nature Materials, 2017, 16, 101-108.	13.3	1,655
111	A larger nonvolatile bipolar resistive switching memory behaviour fabricated using eggshells. Current Applied Physics, 2017, 17, 235-239.	1.1	33
112	Spatially uniform resistance switching of low current, high endurance titanium–niobium-oxide memristors. Nanoscale, 2017, 9, 1793-1798.	2.8	25
113	Filament-to-dielectric band alignments in \$\$hbox {TiO}_{2}\$\$ TiO 2 and \$\$hbox {HfO}_{2}\$\$ HfO. Journal of Computational Electronics, 2017, 16, 1057-1065.	1.3	7
114	Ab initio modeling of transport and thermodynamic stability for hafnia memristive devices. Journal of Computational Electronics, 2017, 16, 1066-1076.	1.3	1
115	Effect of annealing on structural changes and oxygen diffusion in amorphous HfO2 using classical molecular dynamics. Journal of Applied Physics, 2018, 123, .	1.1	14
116	Nonvolatile Memory Materials for Neuromorphic Intelligent Machines. Advanced Materials, 2018, 30, e1704729.	11.1	187
117	Valence change detection in memristive oxide based heterostructure cells by hard X-ray photoelectron emission spectroscopy. APL Materials, 2018, 6, .	2.2	15
118	Electrochemical Oxidation of Hf–Nb Alloys as a Valuable Route to Prepare Mixed Oxides of Tailored Dielectric Properties. Advanced Electronic Materials, 2018, 4, 1800006.	2.6	17
119	Electrochemically prepared oxides for resistive switching devices. Electrochimica Acta, 2018, 274, 103-111.	2.6	25
120	Ion Gated Synaptic Transistors Based on 2D van der Waals Crystals with Tunable Diffusive Dynamics. Advanced Materials, 2018, 30, e1800195.	11.1	368
121	Transport, Magnetic, and Memristive Properties of a Nanogranular (CoFeB) x (LiNbO y)100–x Composite Material. Journal of Experimental and Theoretical Physics, 2018, 126, 353-367.	0.2	55
122	Electronic structure and charge transport in nonstoichiometric tantalum oxide. Nanotechnology, 2018, 29, 264001.	1.3	16
123	Effect of nanograin–boundary networks generation on corrosion of carburized martensitic stainless steel. Scientific Reports, 2018, 8, 2289.	1.6	7
124	CdS Nanoribbonâ€Based Resistive Switches with Ultrawidely Tunable Power by Surface Charge Transfer Doping. Advanced Functional Materials, 2018, 28, 1706577.	7.8	16
125	Resistive Switching Device Technology Based on Silicon Oxide for Improved ON–OFF Ratio—Part I: Memory Devices. IEEE Transactions on Electron Devices, 2018, 65, 115-121.	1.6	58
126	An artificial nociceptor based on a diffusive memristor. Nature Communications, 2018, 9, 417.	5.8	295

#	Article	IF	CITATIONS
127	Asymmetric resistive switching effect in ZnO/Nb:SrTiO3 heterojunctions. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	3
128	Breaking the Currentâ€Retention Dilemma in Cationâ€Based Resistive Switching Devices Utilizing Graphene with Controlled Defects. Advanced Materials, 2018, 30, e1705193.	11.1	190
129	ITO/Ag/AlN/Al2O3 multilayer electrodes with conductive channels: Application in ultraviolet light-emitting diodes. Journal of Alloys and Compounds, 2018, 741, 21-27.	2.8	12
130	Smooth Interfacial Scavenging for Resistive Switching Oxide via the Formation of Highly Uniform Layers of Amorphous TaO _{<i>x</i>} . ACS Applied Materials & Interfaces, 2018, 10, 5609-5617.	4.0	22
131	Compliance-Free, Digital SET and Analog RESET Synaptic Characteristics of Sub-Tantalum Oxide Based Neuromorphic Device. Scientific Reports, 2018, 8, 1228.	1.6	91
132	Threshold Switching of Ag or Cu in Dielectrics: Materials, Mechanism, and Applications. Advanced Functional Materials, 2018, 28, 1704862.	7.8	239
133	Role of the Electrode Material on the RESET Limitation in Oxide ReRAM Devices. Advanced Electronic Materials, 2018, 4, 1700243.	2.6	20
134	Improved switching reliability achieved in HfOx based RRAM with mountain-like surface-graphited carbon layer. Applied Surface Science, 2018, 440, 107-112.	3.1	16
135	Charge Transport and the Nature of Traps in Oxygen Deficient Tantalum Oxide. ACS Applied Materials & Interfaces, 2018, 10, 3769-3775.	4.0	45
136	Brain-inspired computing with resistive switching memory (RRAM): Devices, synapses and neural networks. Microelectronic Engineering, 2018, 190, 44-53.	1.1	231
137	Memristorâ€Based Analog Computation and Neural Network Classification with a Dot Product Engine. Advanced Materials, 2018, 30, 1705914.	11.1	517
138	Quantitative Observation of Threshold Defect Behavior in Memristive Devices with <i>Operando</i> X-ray Microscopy. ACS Nano, 2018, 12, 4938-4945.	7.3	12
139	Sub 100 nW Volatile Nano-Metal-Oxide Memristor as Synaptic-Like Encoder of Neuronal Spikes. IEEE Transactions on Biomedical Circuits and Systems, 2018, 12, 351-359.	2.7	19
140	Memristive Ion Channel-Doped Biomembranes as Synaptic Mimics. ACS Nano, 2018, 12, 4702-4711.	7.3	107
141	Investigation of Preexisting and Generated Defects in Nonfilamentary a-Si/TiO ₂ RRAM and Their Impacts on RTN Amplitude Distribution. IEEE Transactions on Electron Devices, 2018, 65, 970-977.	1.6	13
142	Unified computational model of transport in metal-insulating oxide-metal systems. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	1
143	The impact of TiW barrier layer thickness dependent transition from electro-chemical metallization memory to valence change memory in ZrO2-based resistive switching random access memory devices. Thin Solid Films, 2018, 660, 777-781.	0.8	25
144	Characteristic modification by inserted metal layer and interface graphene layer in ZnO-based resistive switching structures. Chinese Physics B, 2018, 27, 027104.	0.7	0

#	Article	IF	CITATIONS
145	Recent Developments in Oxide-Based Ionic Conductors: Bulk Materials, Nanoionics, and Their Memory Applications. Critical Reviews in Solid State and Materials Sciences, 2018, 43, 47-82.	6.8	20
146	Onâ€Demand Reconfiguration of Nanomaterials: When Electronics Meets Ionics. Advanced Materials, 2018, 30, 1702770.	11.1	152
147	Processes and Effects of Oxygen and Moisture in Resistively Switching TaO <i>_x</i> and HfO <i>_x</i> . Advanced Electronic Materials, 2018, 4, 1700458.	2.6	85
148	Conduction mechanisms, dynamics and stability in ReRAMs. Microelectronic Engineering, 2018, 187-188, 121-133.	1.1	59
149	Electrical evidence of multiple-filament formation in tantalum oxide-based resistive switching memory via a novel device structure. Japanese Journal of Applied Physics, 2018, 57, 124201.	0.8	0
150	The influence of interfacial (sub)oxide layers on the properties of pristine resistive switching devices. , 2018, , .		2
151	Sensory gating in bilayer amorphous carbon memristors. Nanoscale, 2018, 10, 20272-20278.	2.8	10
152	Beyond SiO _x : an active electronics resurgence and biomimetic reactive oxygen species production and regulation from mitochondria. Journal of Materials Chemistry C, 2018, 6, 12788-12799.	2.7	8
153	Intensity-modulated LED achieved through integrating p-GaN/n-ZnO heterojunction with multilevel RRAM. Applied Physics Letters, 2018, 113, .	1.5	13
154	Oxygen vacancy drift controlled three-terminal ReRAM with a reduction in operating gate bias and gate leakage current. Solid State Ionics, 2018, 328, 30-34.	1.3	3
155	Addressing Multiple Resistive States of Polyoxovanadates: Conductivity as a Function of Individual Molecular Redox States. Journal of the American Chemical Society, 2018, 140, 16635-16640.	6.6	49
156	Chemistry of resistivity changes in TiTe/Al2O3 conductive-bridge memories. Scientific Reports, 2018, 8, 17919.	1.6	7
157	Modeling of Read-Disturb-Induced SET-State Current Degradation in a Tungsten Oxide Resistive Switching Memory. IEEE Electron Device Letters, 2018, 39, 1648-1651.	2.2	5
158	Challenges in materials and devices for resistive-switching-based neuromorphic computing. Journal of Applied Physics, 2018, 124, .	1.1	155
159	Scaling of resistive random access memory devices beyond 100 nm ² : influence of grain boundaries studied using scanning tunneling microscopy. Nanotechnology, 2018, 29, 495202.	1.3	7
160	Oxide Thin Films for Memristive Devices. , 2018, , 346-356.		0
161	Bipolar to unipolar mode transition and imitation of metaplasticity in oxide based memristors with enhanced ionic conductivity. Journal of Applied Physics, 2018, 124, .	1.1	19
162	Development of a molecular gap-type atomic switch and its stochastic operation. Journal of Applied Physics, 2018, 124, 152114.	1.1	13

#	Article	IF	CITATIONS
163	Optimization of non-linear conductance modulation based on metal oxide memristors. Nanotechnology Reviews, 2018, 7, 443-468.	2.6	44
164	TAOS based Cu/TiW/IGZO/Ga2O3/Pt bilayer CBRAM for low-power display technology. Surface and Coatings Technology, 2018, 354, 169-174.	2.2	26
165	Performance Variability, Switching Mechanism, and Physical Model for Oxide Based Memristor and RRAM Device. , 2018, , .		3
166	Electrochemical metallization cell with anion supplying active electrode. Scientific Reports, 2018, 8, 12617.	1.6	9
167	Neuromorphic Computing with Memristor Crossbar. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700875.	0.8	60
168	Negative Capacitance beyond Ferroelectric Switches. ACS Applied Materials & Interfaces, 2018, 10, 19812-19819.	4.0	19
169	Probing memristive switching in nanoionic devices. Nature Electronics, 2018, 1, 274-287.	13.1	128
170	Spring-Like Pseudoelectroelasticity of Monocrystalline Cu ₂ S Nanowire. Nano Letters, 2018, 18, 5070-5077.	4.5	11
171	All-Inorganic Bismuth Halide Perovskite-Like Materials A ₃ Bi ₂ I ₉ and A ₃ Bi _{1.8} Na _{0.2} I _{8.6} (A = Rb and Cs) for Low-Voltage Switching Resistive Memory. ACS Applied Materials & Interfaces, 2018, 10, 29741-29749.	4.0	88
172	Magnetic Metal-Nonstoichiometric Oxide Nanocomposites: Structure, Transport, and Memristive Properties. , 2018, , 427-464.		2
173	Effects of moisture and redox reactions in VCM and ECM resistive switching memories. Journal Physics D: Applied Physics, 2018, 51, 413001.	1.3	107
174	Reliable Multivalued Conductance States in TaO _{<i>x</i>/i>} Memristors through Oxygen Plasma-Assisted Electrode Deposition with in Situ-Biased Conductance State Transmission Electron Microscopy Analysis. ACS Applied Materials & Interfaces, 2018, 10, 29757-29765.	4.0	26
175	Enhanced magnetic modulation in HfO2-based resistive memory with an Hf top electrode. Applied Physics Letters, 2018, 113, 043502.	1.5	7
176	Nanoscale Potential Fluctuations in Zirconium Oxide and the Flash Memory Based on Electron and Hole Localization. Advanced Electronic Materials, 2018, 4, 1700592.	2.6	3
177	Experimental and theoretical studies of the physicochemical and mechanical properties of multi-layered TiN/SiC films: Temperature effects on the nanocomposite structure. Composites Part B: Engineering, 2018, 142, 85-94.	5.9	98
178	Review of Recently Progress on Neural Electronics and Memcomputing Applications in Intrinsic SiOx-Based Resistive Switching Memory. , 2018, , .		2
179	Effects of hydrogen annealing temperature on the resistive switching characteristics of HfOx thin films. Materials Science in Semiconductor Processing, 2018, 88, 207-213.	1.9	10
180	Nanoscale potential fluctuations in nonstoichiometrics tantalum oxide. Nanotechnology, 2018, 29, 425202.	1.3	9

#	Article	IF	CITATIONS
181	Electrical characteristics of interfacial barriers at metal—TiO ₂ contacts. Journal Physics D: Applied Physics, 2018, 51, 425101.	1.3	22
182	Understanding the Coexistence of Two Bipolar Resistive Switching Modes with Opposite Polarity in Pt/TiO ₂ /Ti/Pt Nanosized ReRAM Devices. ACS Applied Materials & Interfaces, 2018, 10, 29766-29778.	4.0	71
183	Investigating unipolar switching in Niobium oxide resistive switches: Correlating quantized conductance and mechanism. AIP Advances, 2018, 8, 085014.	0.6	13
184	Redox-based memristive metal-oxide devices. , 2018, , 489-522.		5
185	Research Update: Ab initio study on resistive memory device optimization trends: Dopant segregation effects and data retention in HfO2â^'x. APL Materials, 2018, 6, 058102.	2.2	6
186	Oxygen-ion-migration-modulated bipolar resistive switching and complementary resistive switching in tungsten/indium tin oxide/gold memory device. Japanese Journal of Applied Physics, 2018, 57, 064202.	0.8	4
187	Flexible Artificial Synaptic Devices Based on Collagen from Fish Protein with Spikeâ€Timingâ€Dependent Plasticity. Advanced Functional Materials, 2018, 28, 1800553.	7.8	124
188	Resistive switching in optoelectronic III-V materials based on deep traps. Scientific Reports, 2018, 8, 9483.	1.6	2
189	Formation of the Conducting Filament in TaO _{<i>x</i>} -Resistive Switching Devices by Thermal-Gradient-Induced Cation Accumulation. ACS Applied Materials & Interfaces, 2018, 10, 23187-23197.	4.0	35
190	Efficient and self-adaptive in-situ learning in multilayer memristor neural networks. Nature Communications, 2018, 9, 2385.	5.8	575
191	Resistivity control by the electrochemical removal of dopant atoms from a nanodot. Faraday Discussions, 2019, 213, 29-40.	1.6	8
192	Electrochemically prepared oxides for resistive switching memories. Faraday Discussions, 2019, 213, 165-181.	1.6	29
193	On the universality of the <i>I</i> – <i>V</i> switching characteristics in non-volatile and volatile resistive switching oxides. Faraday Discussions, 2019, 213, 183-196.	1.6	18
194	Chemically addressed switching measurements in graphene electrode memristive devices using in situ XPS. Faraday Discussions, 2019, 213, 231-244.	1.6	7
195	Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials, 2019, 5, 1900287.	2.6	135
196	Toward Electrochemical Studies on the Nanometer and Atomic Scales: Progress, Challenges, and Opportunities. ACS Nano, 2019, 13, 9735-9780.	7.3	32
197	Understanding memristive switching via in situ characterization and device modeling. Nature Communications, 2019, 10, 3453.	5.8	275
198	Direct-Write Lithiation of Silicon Using a Focused Ion Beam of Li ⁺ . ACS Nano, 2019, 13, 8012-8022.	7.3	6

#	Article	IF	CITATIONS
199	Functional Oxides for Photoneuromorphic Engineering: Toward a Solar Brain. Advanced Materials Interfaces, 2019, 6, 1900471.	1.9	31
200	A Pt/ITO/CeO2/Pt memristor with an analog, linear, symmetric, and long-term stable synaptic weight modulation. APL Materials, 2019, 7, 071113.	2.2	23
201	Synaptic-like conductivity and plasticity in epitaxially strained SrTiO3 films. Journal of Applied Physics, 2019, 125, 245106.	1.1	1
202	Nanoâ€Graphite Clusters Regulation for Reliability Improvement of Amorphous Carbonâ€Based Resistive Random Access Memory. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900278.	0.8	4
203	Memristive Circuit Design of Emotional Generation and Evolution Based on Skin-Like Sensory Processor. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13, 631-644.	2.7	52
204	An optical perspective on the thermal-activated ionic migration state and ionic jumping distance in glass. Journal of Materials Chemistry C, 2019, 7, 9211-9218.	2.7	4
205	Mechanism of memristive switching in OxRAM. , 2019, , 137-170.		7
206	Interface effects on memristive devices. , 2019, , 171-202.		7
207	Bifurcation analysis of a TaO memristor model. Journal Physics D: Applied Physics, 2019, 52, 505304.	1.3	14
208	Electrical model of multi-level bipolar Ta2O5/TaOx Bi-layered ReRAM. Microelectronics Journal, 2019, 93, 104616.	1.1	9
209	Volatile Resistive Switching Memory Based on Ag Ion Drift/Diffusion Part I: Numerical Modeling. IEEE Transactions on Electron Devices, 2019, 66, 3795-3801.	1.6	45
210	A Multi-level Memristor Based on Al-Doped HfO2 Thin Film. Nanoscale Research Letters, 2019, 14, 177.	3.1	38
211	Self-Assembled Naphthalimide Nanoparticles for Nonvolatile ReRAM Devices: An Efficient Approach toward High Performance Solution-Processed and All-Organic Two-Terminal Resistive Memory Devices. ACS Applied Electronic Materials, 2019, 1, 2437-2444.	2.0	8
212	Highly Robust Organometallic Small-Molecule-Based Nonvolatile Resistive Memory Controlled by a Redox-Gated Switching Mechanism. ACS Applied Materials & Interfaces, 2019, 11, 40332-40338.	4.0	50
213	One-Volt, Solution-Processed Organic Transistors with Self-Assembled Monolayer-Ta2O5 Gate Dielectrics. Materials, 2019, 12, 2563.	1.3	18
214	Competitive conductive mechanism of interstitial Ag and oxygen vacancies in Ag/Ta2O5/Pt stack. Journal of Applied Physics, 2019, 126, .	1.1	4
215	A bioinspired optoelectronically engineered artificial neurorobotics device with sensorimotor functionalities. Nature Communications, 2019, 10, 3873.	5.8	85
216	Metallic filamentary conduction in valence change-based resistive switching devices: the case of TaO _x thin film with <i>x</i> â^1⁄4 1. Nanoscale, 2019, 11, 16978-16990.	2.8	16

#	Article	IF	CITATIONS
217	Programmable, electroforming-free TiO _x /TaO _x heterojunction-based non-volatile memory devices. Nanoscale, 2019, 11, 18159-18168.	2.8	19
218	Electroforming-Free Bipolar Resistive Switching in GeSe Thin Films with a Ti-Containing Electrode. ACS Applied Materials & Interfaces, 2019, 11, 38910-38920.	4.0	13
219	NbOx based memristor as artificial synapse emulating short term plasticity. AIP Advances, 2019, 9, .	0.6	24
220	Keggin-type polyoxometalate cluster as an active component for redox-based nonvolatile memory. Nanoscale Horizons, 2019, 4, 697-704.	4.1	38
221	A solution processed metal–oxo cluster for rewritable resistive memory devices. Journal of Materials Chemistry C, 2019, 7, 843-852.	2.7	18
222	Recent Advances of Quantum Conductance in Memristors. Advanced Electronic Materials, 2019, 5, 1800854.	2.6	44
223	Tailored nanoplateau and nanochannel structures using solution-processed rutile TiO ₂ thin films for complementary and bipolar switching characteristics. Nanoscale, 2019, 11, 13815-13823.	2.8	30
224	An electrical characterisation methodology for identifying the switching mechanism in TiO2 memristive stacks. Scientific Reports, 2019, 9, 8168.	1.6	6
225	Eliminating negative-set behavior by adding a graphene blocking layer in resistive switching memory devices based on epoxy resin. Applied Physics Express, 2019, 12, 074006.	1.1	9
226	RRAM/memristor for computing. , 2019, , 539-583.		4
226 227	RRAM/memristor for computing. , 2019, , 539-583. Moisture effect on the diffusion of Cu ions in Cu/Ta ₂ O ₅ /Pt and Cu/SiO ₂ /Pt resistance switches: a first-principles study. Science and Technology of Advanced Materials, 2019, 20, 580-588.	2.8	4
	Moisture effect on the diffusion of Cu ions in Cu/Ta ₂ O ₅ /Pt and Cu/SiO ₂ /Pt resistance switches: a first-principles study. Science and Technology of	2.8 2.8	
227	Moisture effect on the diffusion of Cu ions in Cu/Ta ₂ O ₅ /Pt and Cu/SiO ₂ /Pt resistance switches: a first-principles study. Science and Technology of Advanced Materials, 2019, 20, 580-588. Memristive devices based on emerging two-dimensional materials beyond graphene. Nanoscale, 2019, 11,		10
227 228	Moisture effect on the diffusion of Cu ions in Cu/Ta ₂ O ₅ /Pt and Cu/SiO ₂ /Pt resistance switches: a first-principles study. Science and Technology of Advanced Materials, 2019, 20, 580-588. Memristive devices based on emerging two-dimensional materials beyond graphene. Nanoscale, 2019, 11, 12413-12435. Tunable PMA and Interfacial Microstructure Induced by a Hf(HfO 2) Interfacial Spacer in MTJs with	2.8	10 87
227 228 229	Moisture effect on the diffusion of Cu ions in Cu/Ta ₂ O ₅ /Pt and Cu/SiO ₂ /Pt resistance switches: a first-principles study. Science and Technology of Advanced Materials, 2019, 20, 580-588. Memristive devices based on emerging two-dimensional materials beyond graphene. Nanoscale, 2019, 11, 12413-12435. Tunable PMA and Interfacial Microstructure Induced by a Hf(HfO 2) Interfacial Spacer in MTJs with Two MgO Layers. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900089. Resistive switching memory integrated with amorphous carbon-based nanogenerators for	2.8 0.8	10 87 1
227 228 229 230	Moisture effect on the diffusion of Cu ions in Cu/Ta ₂ O ₅ /Pt and Cu/SiO ₂ /Pt resistance switches: a first-principles study. Science and Technology of Advanced Materials, 2019, 20, 580-588. Memristive devices based on emerging two-dimensional materials beyond graphene. Nanoscale, 2019, 11, 12413-12435. Tunable PMA and Interfacial Microstructure Induced by a Hf(HfO 2) Interfacial Spacer in MTJs with Two MgO Layers. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900089. Resistive switching memory integrated with amorphous carbon-based nanogenerators for self-powered device. Nano Energy, 2019, 63, 103793. Ge2Sb2Te5 nanobelts by femtosecond laser direct writing for resistive switching devices. Physica E:	2.8 0.8 8.2	10 87 1 111
227 228 229 230 231	 Moisture effect on the diffusion of Cu ions in Cu/Ta₂O₅/Pt and Cu/SiO₂/Pt resistance switches: a first-principles study. Science and Technology of Advanced Materials, 2019, 20, 580-588. Memristive devices based on emerging two-dimensional materials beyond graphene. Nanoscale, 2019, 11, 12413-12435. Tunable PMA and Interfacial Microstructure Induced by a Hf(HfO 2) Interfacial Spacer in MTJs with Two MgO Layers. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900089. Resistive switching memory integrated with amorphous carbon-based nanogenerators for self-powered device. Nano Energy, 2019, 63, 103793. Ge2Sb2Te5 nanobelts by femtosecond laser direct writing for resistive switching devices. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 114, 113577. A Review of Recent Applications of Ion Beam Techniques on Nanomaterial Surface Modification: Design 	2.8 0.8 8.2 1.3	10 87 1 111 3

#	Article	IF	CITATIONS
235	Multi-ReRAM Synapses for Artificial Neural Network Training. , 2019, , .		8
236	A Robust Nonvolatile Resistive Memory Device Based on a Freestanding Ultrathin 2D Imine Polymer Film. Advanced Materials, 2019, 31, e1902264.	11.1	117
237	Liquid-based memory and artificial synapse. Nanoscale, 2019, 11, 9726-9732.	2.8	23
238	Set transition statistics of different switching regimes of TaOx memristor. Journal of Electroceramics, 2019, 42, 118-123.	0.8	5
239	Fast Multifrequency Measurement of Nonlinear Conductance. Physical Review Applied, 2019, 11, .	1.5	7
240	Timeâ€Dependent Operations in Molecular Gap Atomic Switches. Physica Status Solidi (B): Basic Research, 2019, 256, 1900068.	0.7	14
241	Stable Metallic Enrichment in Conductive Filaments in TaO <i>_x</i> â€Based Resistive Switches Arising from Competing Diffusive Fluxes. Advanced Electronic Materials, 2019, 5, 1800954.	2.6	28
242	Flexible Transparent Organic Artificial Synapse Based on the Tungsten/Egg Albumen/Indium Tin Oxide/Polyethylene Terephthalate Memristor. ACS Applied Materials & Interfaces, 2019, 11, 18654-18661.	4.0	77
243	Ab Initio Simulation of Ta ₂ 0 ₅ : A High Symmetry Ground State Phase with Application to Interface Calculation. Annalen Der Physik, 2019, 531, 1800524.	0.9	12
244	The observation of resistive switching characteristics using transparent and biocompatible Cu ²⁺ -doped salmon DNA composite thin film. Nanotechnology, 2019, 30, 335203.	1.3	35
245	Memristive Synapses for Brainâ€Inspired Computing. Advanced Materials Technologies, 2019, 4, 1800544.	3.0	72
246	Active Electrode Redox Reactions and Device Behavior in ECM Type Resistive Switching Memories. Advanced Electronic Materials, 2019, 5, 1800933.	2.6	64
247	Recent Developments and Perspectives for Memristive Devices Based on Metal Oxide Nanowires. Advanced Electronic Materials, 2019, 5, 1800909.	2.6	94
248	Light Driven Active Transition of Switching Modes in Homogeneous Oxides/Graphene Heterostructure. Advanced Science, 2019, 6, 1900213.	5.6	5
249	Oxygen Vacancy Kinetics Mechanism of the Negative Forming-Free Process and Multilevel Resistance Based on Hafnium Oxide RRAM. Journal of Nanomaterials, 2019, 2019, 1-9.	1.5	12
250	A Comparative Study on the Diffusion Behaviors of Metal and Oxygen Ions in Metal-Oxide-Based Resistance Switches via ab Initio Molecular Dynamics Simulations. ACS Applied Electronic Materials, 2019, 1, 585-594.	2.0	14
251	Ionotronic Neuromorphic Devices for Bionic Neural Network Applications. Physica Status Solidi - Rapid Research Letters, 2019, 13, .	1.2	16
252	Structure and Properties of Combined Multilayer Coatings Based on Alternative Triple Nitride and Binary Metallic Layers. Lecture Notes in Mechanical Engineering, 2019, , 31-40.	0.3	Ο

#	Article	IF	CITATIONS
253	Controlling Resistive Switching by Using an Optimized MoS ₂ Interfacial Layer and the Role of Top Electrodes on Ascorbic Acid Sensing in TaO <i>_x</i> -Based RRAM. Langmuir, 2019, 35, 3897-3906.	1.6	36
254	Scalable 3D Ta:SiO x Memristive Devices. Advanced Electronic Materials, 2019, 5, 1800958.	2.6	2
255	Back-to-back Interface diodes induced symmetrical negative differential resistance and reversible bipolar resistive switching in β-CuSCN trigonal pyramid micro/nanoarray. Applied Surface Science, 2019, 480, 13-25.	3.1	5
256	An Electrical Characterisation Methodology for Benchmarking Memristive Device Technologies. Scientific Reports, 2019, 9, 19412.	1.6	19
257	Redox-based memristive devices for new computing paradigm. APL Materials, 2019, 7, 110903.	2.2	55
258	Impact of Line Edge Roughness on ReRAM Uniformity and Scaling. Materials, 2019, 12, 3972.	1.3	2
259	Inkjet assisted fabrication of planar biocompatible memristors. RSC Advances, 2019, 9, 35998-36004.	1.7	12
260	Nanoscale magnetization reversal by electric field-induced ion migration. MRS Communications, 2019, 9, 14-26.	0.8	7
261	Organic Memristor Utilizing Copper Phthalocyanine Nanowires with Infrared Response and Cation Regulating Properties. Advanced Electronic Materials, 2019, 5, 1800793.	2.6	44
262	A Robust Artificial Synapse Based on Organic Ferroelectric Polymer. Advanced Electronic Materials, 2019, 5, 1800600.	2.6	129
263	Forming-free artificial synapses with Ag point contacts at interface. Journal of Materiomics, 2019, 5, 296-302.	2.8	14
264	A Dual-Functional IGZO-Based Device With Schottky Diode Rectifying and Resistance Switching Behaviors. IEEE Electron Device Letters, 2019, 40, 24-27.	2.2	20
265	Ultrafast Multilevel Switching in Au/YIG/n‣i RRAM. Advanced Electronic Materials, 2019, 5, 1800418.	2.6	18
266	Resistive switching in sub-micrometric ZnO polycrystalline films. Nanotechnology, 2019, 30, 065707.	1.3	17
267	Emerging Memory Devices for Neuromorphic Computing. Advanced Materials Technologies, 2019, 4, 1800589.	3.0	307
268	Performanceâ€Enhancing Selector via Symmetrical Multilayer Design. Advanced Functional Materials, 2019, 29, 1808376.	7.8	56
269	Realizing Bidirectional Threshold Switching in Ag/Ta2O5/Pt Diffusive Devices for Selector Applications. Journal of Electronic Materials, 2019, 48, 517-525.	1.0	14
270	Controlled Nonvolatile Transition in Polyoxometalatesâ€Graphene Oxide Hybrid Memristive Devices. Advanced Materials Technologies, 2019, 4, 1800551.	3.0	19

#	Article	IF	CITATIONS
271	Annealing effect on the bipolar resistive switching memory of NiZn ferrite films. Journal of Alloys and Compounds, 2019, 779, 794-799.	2.8	28
272	In-Cap States and Band-Like Transport in Memristive Devices. Nano Letters, 2019, 19, 54-60.	4.5	22
273	Impact of oxide and electrode materials on the switching characteristics of oxide ReRAM devices. Faraday Discussions, 2019, 213, 87-98.	1.6	70
274	Challenges and Solutions in Emerging Memory Testing. IEEE Transactions on Emerging Topics in Computing, 2019, 7, 493-506.	3.2	32
275	Making reversible transformation from electronic to ionic resistive switching possible by applied electric field in an asymmetrical Al/TiO2/FTO nanostructure. Applied Surface Science, 2020, 502, 144124.	3.1	23
276	Nanoparticle Dynamics in Oxideâ€Based Memristive Devices. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900587.	0.8	3
277	Electrochemical and thermodynamic processes of metal nanoclusters enabled biorealistic synapses and leaky-integrate-and-fire neurons. Materials Horizons, 2020, 7, 71-81.	6.4	35
278	A Stateful Logic Family Based on a New Logic Primitive Circuit Composed of Two Antiparallel Bipolar Memristors. Advanced Intelligent Systems, 2020, 2, 1900082.	3.3	36
279	Silver/(sub-10 nm)hafnium-oxide-based resistive switching devices on silicon: characteristics and switching mechanism. Nanotechnology, 2020, 31, 165202.	1.3	8
280	Reliability of analog resistive switching memory for neuromorphic computing. Applied Physics Reviews, 2020, 7, .	5.5	199
281	Modeling Electrical Switching Behavior of Carbon Resistive Memory. IEEE Access, 2020, 8, 8735-8742.	2.6	4
282	Memristive synapses with high reproducibility for flexible neuromorphic networks based on biological nanocomposites. Nanoscale, 2020, 12, 720-730.	2.8	45
283	Capacitive effect: An original of the resistive switching memory. Nano Energy, 2020, 68, 104386.	8.2	102
284	Memristors Based on 2D Materials as an Artificial Synapse for Neuromorphic Electronics. Advanced Materials, 2020, 32, e2002092.	11.1	241
285	Barrier Layer Induced Switching Stability in Ga:ZnO Nanorods Based Electrochemical Metallization Memory. IEEE Nanotechnology Magazine, 2020, 19, 764-768.	1.1	15
286	Memristive Devices for Neuromorphic Applications: Comparative Analysis. BioNanoScience, 2020, 10, 834-847.	1.5	24
287	Polydopamine Film Selfâ€Assembled at Air/Water Interface for Organic Electronic Memory Devices. Advanced Materials Interfaces, 2020, 7, 2000979.	1.9	13
288	Temperature overshoot as the cause of physical changes in resistive switching devices during electro-formation. Journal of Applied Physics, 2020, 127, .	1.1	12

#	Article	IF	CITATIONS
289	Impact of the Atomic Layer-Deposited Ru Electrode Surface Morphology on Resistive Switching Properties of TaO _{<i>x</i>} -Based Memory Structures. ACS Applied Materials & Interfaces, 2020, 12, 55331-55341.	4.0	14
290	Evolution of the conductive filament with cycling in TaOx-based resistive switching devices. Journal of Applied Physics, 2020, 128, .	1.1	13
291	From Memristive Materials to Neural Networks. ACS Applied Materials & Interfaces, 2020, 12, 54243-54265.	4.0	56
292	Effects of top electrode material in hafnium-oxide-based memristive systems on highly-doped Si. Scientific Reports, 2020, 10, 19541.	1.6	14
293	On synapse intelligence emulated in a self-formed artificial synaptic network. Materials Horizons, 2020, 7, 2970-2977.	6.4	10
294	In Situ Transmission Electron Microscopy Study of Conductive Filament Formation in Copper Oxides. IEEE Transactions on Device and Materials Reliability, 2020, 20, 609-612.	1.5	0
295	Oxygen Vacancy Density Dependence with a Hopping Conduction Mechanism in Multilevel Switching Behavior of HfO ₂ -Based Resistive Random Access Memory Devices. ACS Applied Electronic Materials, 2020, 2, 3160-3170.	2.0	21
296	Simulation of Resistive Switching in Memristor Structures Based on Transition Metal Oxides. Russian Microelectronics, 2020, 49, 303-313.	0.1	5
297	Antiphase Boundaries Constitute Fast Cation Diffusion Paths in SrTiO ₃ Memristive Devices. Advanced Functional Materials, 2020, 30, 2004118.	7.8	19
298	Leadâ€Free Dualâ€Phase Halide Perovskites for Preconditioned Conductingâ€Bridge Memory. Small, 2020, 16, e2003225.	5.2	27
299	Comparison of diverse resistive switching characteristics and demonstration of transitions among them in Al-incorporated HfO ₂ -based resistive switching memory for neuromorphic applications. RSC Advances, 2020, 10, 31342-31347.	1.7	16
300	Truly Electroformingâ€Free Memristor Based on TiO ₂ â€CoO Phaseâ€Separated Oxides with Extremely High Uniformity and Low Power Consumption. Advanced Functional Materials, 2020, 30, 2007101.	7.8	26
301	Flexible full two-dimensional memristive synapses of graphene/WSe _{2â^'x} O _y /graphene. Physical Chemistry Chemical Physics, 2020, 22, 20658-20664.	1.3	16
302	In-Memory Logic Operations and Neuromorphic Computing in Non-Volatile Random Access Memory. Materials, 2020, 13, 3532.	1.3	31
303	Nonvolatile Memory and Artificial Synaptic Characteristics in Thinâ€Film Transistors with Atomic Layer Deposited HfOx Gate Insulator and ZnO Channel Layer. Advanced Electronic Materials, 2020, 6, 2000412.	2.6	13
304	Effect of Joule Heating on Resistive Switching Characteristic in AlOx Cells Made by Thermal Oxidation Formation. Nanoscale Research Letters, 2020, 15, 11.	3.1	61
305	Interfacial Resistance Characterization for Blade-Type Phase Change Random Access Memory. IEEE Transactions on Electron Devices, 2020, 67, 968-975.	1.6	11
306	Carbon resistive probe memory designed for ultra-high storage density. Nanotechnology, 2020, 31, 385204.	1.3	2

~		_	
C	ON	Repo	DT
<u> </u>		INLEO	IN I

#	ARTICLE	IF	CITATIONS
307	Improved uniformity in resistive switching behaviors by embedding Cu nanodots. Nanotechnology, 2020, 31, 405301.	1.3	8
308	On-Chip TaOx-Based Non-volatile Resistive Memory for in vitro Neurointerfaces. Frontiers in Neuroscience, 2020, 14, 94.	1.4	10
309	Substrate dependent resistive switching in amorphous-HfO _x memristors: an experimental and computational investigation. Journal of Materials Chemistry C, 2020, 8, 5092-5101.	2.7	25
310	Power-efficient neural network with artificial dendrites. Nature Nanotechnology, 2020, 15, 776-782.	15.6	141
311	Overview of Phase-Change Materials Based Photonic Devices. IEEE Access, 2020, 8, 121211-121245.	2.6	44
312	Electrical bistability in MoS2 nano-sheets doped polymeric nanocomposite films. Materials Today: Proceedings, 2020, 24, 2295-2301.	0.9	6
313	Modeling and Simulation of Resistive Random Access Memory With Graphene Electrode. IEEE Transactions on Electron Devices, 2020, 67, 915-921.	1.6	11
314	SiO ₂ /Ta ₂ O ₅ heterojunction ECM memristors: physical nature of their low voltage operation with high stability and uniformity. Nanoscale, 2020, 12, 4320-4327.	2.8	24
315	Low Power and Ultrafast Multi-State Switching in nc-Al Induced Al2O3/AlxOy Bilayer Thin Film RRAM Device. IEEE Access, 2020, 8, 16310-16315.	2.6	1
316	A Memristive Circuit Implementation of Eyes State Detection in Fatigue Driving Based on Biological Long Short-Term Memory Rule. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 2218-2229.	1.9	5
317	Moisture-powered memristor with interfacial oxygen migration for power-free reading of multiple memory states. Nano Energy, 2020, 71, 104628.	8.2	44
318	A comprehensive review on emerging artificial neuromorphic devices. Applied Physics Reviews, 2020, 7, ·	5.5	417
320	Resistive switching materials forÂinformation processing. Nature Reviews Materials, 2020, 5, 173-195.	23.3	668
321	Electrode-controlled confinement of conductive filaments in a nanocolumn embedded symmetric–asymmetric RRAM structure. Journal of Materials Chemistry C, 2020, 8, 1577-1582.	2.7	16
322	A Lowâ€Current and Analog Memristor with Ru as Mobile Species. Advanced Materials, 2020, 32, e1904599.	11.1	59
323	Electrolyte-gated transistors for synaptic electronics, neuromorphic computing, and adaptable biointerfacing. Applied Physics Reviews, 2020, 7, .	5.5	166
324	Brain-inspired computing with memristors: Challenges in devices, circuits, and systems. Applied Physics Reviews, 2020, 7, .	5.5	217
325	Lithiumâ€Battery Anode Gains Additional Functionality for Neuromorphic Computing through Metal–Insulator Phase Separation. Advanced Materials, 2020, 32, e1907465.	11.1	43

#	Article	IF	CITATIONS
326	Conductive-bridging random-access memories for emerging neuromorphic computing. Nanoscale, 2020, 12, 14339-14368.	2.8	46
327	Enhanced reliability through regulation of electrode resistance in indium tin oxide/HfO /TiN resistive memories. Materials Science in Semiconductor Processing, 2020, 116, 105103.	1.9	2
328	Nanoscale All-Oxide-Heterostructured Bio-inspired Optoresponsive Nociceptor. Nano-Micro Letters, 2020, 12, 83.	14.4	33
329	Colossal current and voltage tunability in an organic memristor via electrode engineering. Applied Materials Today, 2020, 19, 100626.	2.3	18
330	Thermodynamic reassessment of the Mo–Hf and Mo–Zr systems supported by first-principles calculations. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2020, 69, 101766.	0.7	11
331	An organic approach to low energy memory and brain inspired electronics. Applied Physics Reviews, 2020, 7, .	5.5	39
332	Bioinspired bio-voltage memristors. Nature Communications, 2020, 11, 1861.	5.8	144
333	In-memory Learning with Analog Resistive Switching Memory: A Review and Perspective. Proceedings of the IEEE, 2021, 109, 14-42.	16.4	96
334	Roadmap on emerging hardware and technology for machine learning. Nanotechnology, 2021, 32, 012002.	1.3	104
335	Long-term and short-term plasticity of Ta2O5/HfO2 memristor for hardware neuromorphic application. Journal of Alloys and Compounds, 2021, 850, 156675.	2.8	57
336	Recent Progress in Solutionâ€Based Metal Oxide Resistive Switching Devices. Advanced Materials, 2021, 33, e2004328.	11.1	99
337	Bottomâ€Electrode Nanoasperities as a Root of the Highâ€Performance Resistiveâ€&witching Effect. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2000461.	1.2	3
338	Memristive device with highly continuous conduction modulation and its underlying physical mechanism for electronic synapse application. Science China Materials, 2021, 64, 179-188.	3.5	5
339	A dual-functional Ta/TaO _x /Ru device with both nonlinear selector and resistive switching behaviors. RSC Advances, 2021, 11, 18241-18245.	1.7	4
340	Wide range modulation of synaptic weight in thin-film transistors with hafnium oxide gate insulator and indium-zinc oxide channel layer for artificial synapse application. Nanoscale, 2021, 13, 11370-11379.	2.8	5
341	Applications and Impacts of Nanoscale Thermal Transport in Electronics Packaging. Journal of Electronic Packaging, Transactions of the ASME, 2021, 143, .	1.2	38
342	A Review of Resistive Switching Devices: Performance Improvement, Characterization, and Applications. Small Structures, 2021, 2, 2000109.	6.9	94
343	Control of zeolite microenvironment for propene synthesis from methanol. Nature Communications, 2021, 12, 822.	5.8	23

#	Article	IF	CITATIONS
344	Theory and experimental verification of configurable computing with stochastic memristors. Scientific Reports, 2021, 11, 4218.	1.6	15
345	Ferroelectric Synaptic Transistor Network for Associative Memory. Advanced Electronic Materials, 2021, 7, 2001276.	2.6	52
346	Resistive Switching Characteristic Improvement in a Single-Walled Carbon Nanotube Random Network Embedded Hydrogen Silsesquioxane Thin Films for Flexible Memristors. International Journal of Molecular Sciences, 2021, 22, 3390.	1.8	8
347	Piezotronics enabled artificial intelligence systems. JPhys Materials, 2021, 4, 022003.	1.8	5
348	Bipolar Resistive Switching in Junctions of Gallium Oxide and p-type Silicon. Nano Letters, 2021, 21, 2666-2674.	4.5	24
349	Optical Interpretation of a Second-Order Phase Transition Induced by Thermal-Driven Li ⁺ Migration via Configurational Entropy in CaTiO ₃ :Li ⁺ ,Yb ³⁺ ,Er ³⁺ . Journal of Physical Chemistry C, 2021, 125, 6916-6922.	1.5	4
350	Oxygen Vacancy-Dependent Synaptic Dynamic Behavior of TiO <i> _x </i> -Based Transparent Memristor. IEEE Transactions on Electron Devices, 2021, 68, 1950-1955.	1.6	25
351	Stimuliâ€Responsive Memristive Materials for Artificial Synapses and Neuromorphic Computing. Advanced Materials, 2021, 33, e2006469.	11.1	88
352	Room temperature memristive switching in nano-patterned LaAlO3/SrTiO3 wires with laterally defined gates. Applied Physics Letters, 2021, 118, .	1.5	5
353	Measurement of changes in resistance of a Ag2+δS nano-island on removal of dopant δ-Ag atoms. Japanese Journal of Applied Physics, 2021, 60, SE1001.	0.8	1
354	Voltage controlled awakening of memristor-like dynamic current–voltage loops of ferroelectric triglycine sulfate. Applied Physics Letters, 2021, 118, 192902.	1.5	1
355	Hybrid oxide brain-inspired neuromorphic devices for hardware implementation of artificial intelligence. Science and Technology of Advanced Materials, 2021, 22, 326-344.	2.8	14
356	Multi-level characteristics of TiOx transparent non-volatile resistive switching device by embedding SiO2 nanoparticles. Scientific Reports, 2021, 11, 9883.	1.6	7
357	Irreversible Resistive State Switching in Devices with a Homoleptic Cobalt(II) Complex Active Layer. Chemistry - an Asian Journal, 2021, 16, 1545-1552.	1.7	4
358	Negative Photoconductance Effect: An Extension Function of the TiO <i>_x</i> â€Based Memristor. Advanced Science, 2021, 8, 2003765.	5.6	94
359	High-performance complementary resistive switching in ferroelectric film. AIP Advances, 2021, 11, 065202.	0.6	1
360	Interface Carriers and Enhanced Electronâ€Phonon Coupling Effect in Al ₂ O ₃ /TiO ₂ Heterostructure Revealed by Resonant Inelastic Soft Xâ€Ray Scattering. Advanced Functional Materials, 2021, 31, 2104430.	7.8	5
361	Dual modulation STM: Simultaneous high-resolution mapping of the differential conductivity and local tunnel barrier height demonstrated on Au(111). Journal of Applied Physics, 2021, 129, 225301.	1.1	Ο

#	Article	IF	CITATIONS
362	Ferroelectricâ€Like Behavior in TaN/Highâ€k/Si System Based on Amorphous Oxide. Advanced Electronic Materials, 2021, 7, 2100414.	2.6	12
363	Induced Complementary Resistive Switching in Forming-Free TiO _{<i>x</i>} /TiO ₂ /TiO _{<i>x</i>} Memristors. ACS Applied Materials & Interfaces, 2021, 13, 43022-43029.	4.0	14
364	Memristive Devices and Circuits. , 2022, , 1-17.		0
365	Artificial Astrocyte Memristor with Recoverable Linearity for Neuromorphic Computing. Advanced Electronic Materials, 2022, 8, 2100669.	2.6	10
366	Deconvolution of Phonon Scattering by Ferroelectric Domain Walls and Point Defects in a PbTiO ₃ Thin Film Deposited in a Composition-Spread Geometry. ACS Applied Materials & Interfaces, 2021, 13, 45679-45685.	4.0	5
367	To the Issue of the Memristor's HRS and LRS States Degradation and Data Retention Time. Russian Microelectronics, 2021, 50, 311-325.	0.1	23
368	High performance and low power consumption resistive random access memory with Ag/Fe ₂ O ₃ /Pt structure. Nanotechnology, 2021, 32, 505715.	1.3	9
369	Imaging Dielectric Breakdown in Valence Change Memory. Advanced Functional Materials, 2022, 32, 2102313.	7.8	10
370	Survey on the benefits of using memristors for PUFs. International Journal of Parallel, Emergent and Distributed Systems, 2022, 37, 40-67.	0.7	1
371	Emerging of two-dimensional materials in novel memristor. Frontiers of Physics, 2022, 17, 1.	2.4	37
372	Transverse barrier formation by electrical triggering of a metal-to-insulator transition. Nature Communications, 2021, 12, 5499.	5.8	12
373	Optical and oxide modification of CsFAMAPbIBr memristor achieving low power consumption. Journal of Alloys and Compounds, 2022, 891, 162096.	2.8	8
374	Metal-induced progressive alteration of conducting states in memristors for implementing an efficient analog memory: a DFT-supported experimental approach. Journal of Materials Chemistry C, 2021, 9, 3136-3144.	2.7	2
375	TiO2 in memristors and resistive random access memory devices. , 2021, , 507-526.		2
376	Enhancing the synaptic properties of low-power and forming-free HfOx/TaOy/HfOx resistive switching devices. Microelectronic Engineering, 2020, 229, 111358.	1.1	22
377	Exchange of Ions across the TiN/TaO <i>_x</i> Interface during Electroformation of TaO <i>_x</i> -Based Resistive Switching Devices. ACS Applied Materials & Interfaces, 2020, 12, 27378-27385.	4.0	12
378	Review of resistive switching mechanisms for memristive neuromorphic devices*. Chinese Physics B, 2020, 29, 097305. Prediction of new ground-state crystal structure of complimath	0.7	18
379	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi mathvariant="normal">T<mml:msub><mml:mi mathvariant="normal">a<mml:mn>2</mml:mn></mml:mi </mml:msub><mml:msub><mml:mi mathvariant="normal">O<mml:mn>5</mml:mn></mml:mi </mml:msub></mml:mi </mml:mrow> .	0.9	19

ARTICLE IF CITATIONS Routes for increasing endurance and retention in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>HfO</mml:mi><mml:mn>2</mml:mr0.9/mml:msub></mr 380 -based resistive switching memories. Physical Review Materials, 2018, 2, . Active Memristive Layer Deposition via Mn(II)-Assisted Anodic Oxidation of Titanium. ECS Journal of Solid State Science and Technology, 2020, 9, 054004. Dynamic Analysis and Circuit Realization of a Novel No-Equilibrium 5D Memristive Hyperchaotic System 382 0.9 16 with Hidden Extreme Multistability. Complexity, 2020, 2020, 1-16. Memristive TiO2: Synthesis, Technologies, and Applications. Frontiers in Chemistry, 2020, 8, 724. 1.8 Design of Materials Configuration for Optimizing Redoxâ€Based Resistive Switching Memories. 384 11.1 28 Advanced Materials, 2022, 34, e2105022. Probing Electrochemistry at the Nanoscale: In Situ TEM and STM Characterizations of Conducting Filaments in Memristive Devices. Kluwer International Series in Electronic Materials: Science and 0.3 Technology, 2022, , 87-120. Reset Switching Statistics of TaOx-Based Memristor. Kluwer International Series in Electronic 386 0.3 0 Materials: Science and Technology, 2022, , 187-195. Neuromorphic Devices and Networks Based on Memristors with Ionic Dynamics., 2019,, 527-554. 388 389 Brain-Inspired Memristive Neural Networks for Unsupervised Learning., 2019,, 495-525. 1 Compliance-Current Manipulation of Dual-Filament Switching in a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mi>Ta</mml:mi><mml:mo>/</mml:mo><mml:msub><mml:mi>Ta</mml:mi><mml:mn>2</mml:mo> mathvariant="normal">O</mml:mi></mml:mrow></mml:mrow></mml:mn>5</mml:mn></mml:msub><mml:mo>/</mml:mo> A Variety of Functional Devices Realized by Ionic Nanoarchitectonics, Complementing Electronics 391 22 2.6 Components. Advanced Electronic Materials, 2022, 8, 2100645. Nanoscale Electrochemical Studies: How Can We Use the Atomic Switch. Advances in Atom and Single 0.0 Molecule Machines, 2020, , 73-93. Atomistic Simulations for Understanding Microscopic Mechanism of Resistive Switches. Advances in 393 0.0 0 Atom and Single Molecule Machines, 2020, , 95-125. Resistive-switching and memory in halide perovskite nanoparticles through a corona-poling approach: Necessity of type-I coreâ \in shell structures. Applied Physics Letters, 2021, 119, . 394 1.5 Memristor modeling: challenges in theories, simulations, and device variability. Journal of Materials 395 2.7 89 Chemistry C, 2021, 9, 16859-16884. Control the stability in chaotic circuit coupled by memristor in different branch circuits. AEU -International Journal of Electronics and Communications, 2022, 145, 154074. Memristive Behaviors Dominated by Reversible Nucleation Dynamics of Phaseâ€Change Nanoclusters. 397 5.23 Small, 2022, , 2105070. Improved Al2O3 RRAM performance based on SiO2/MoS2 quantum dots hybrid structure. Applied 398 1.5 Physics Letters, 2022, 120, .

# 399	ARTICLE Multiphysics Simulation of Crosstalk Effect in Resistive Random Access Memory with Different Metal Oxides. Micromachines, 2022, 13, 266.	IF 1.4	CITATIONS 0
400	Behavioral Model of Molecular Gap-Type Atomic Switches and Its SPICE Integration. Circuits and Systems, 2022, 13, 1-12.	0.1	0
401	The effect of external stimuli on the performance of memristive oxides. , 2022, , 361-398.		0
402	Excellent Hzo Ferroelectric Thin Films on Flexible Pet Substrate. SSRN Electronic Journal, 0, , .	0.4	0
403	Resistive switching in metal-oxide memristive materials and devices. , 2022, , 33-78.		0
404	Introduction to non-volatile memory. , 2022, , 1-32.		4
405	Three typical types of alternating l–V curves in ITO/BiFeO3/Al2O3/Ag multilayer structure. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	1.1	1
406	Review on role of nanoscale HfO2 switching material in resistive random access memory device. Emergent Materials, 2022, 5, 489-508.	3.2	5
407	Polyelectrolyte Bilayer-Based Transparent and Flexible Memristor for Emulating Synapses. ACS Applied Materials & Interfaces, 2022, 14, 14541-14549.	4.0	13
408	Improved analog switching characteristics of Ta ₂ O ₅ -based memristor using indium tin oxide buffer layer for neuromorphic computing. Nanotechnology 2022, 33, 245202. Application of the Quantum-Point-Contact Formals to Model the Filameritary Conduction in	1.3	8
409	<pre><mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Ta</mml:mi></mml:math><mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Callmath/MathML" display="inline" overflow="scroll"><mml:mi>></mml:mi></mml:mi></mml:math><mml:math><mml:math><mml:math></mml:math></mml:math></mml:math><</pre>	1.5	5
410	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"> <mml:mrow> Temperature and ambient atmosphere dependent electrical characterization of sputtered IrO2/TiO2/IrO2 capacitors. Journal of Applied Physics, 2022, 131, .</mml:mrow>	1.1	3
411	Evolution of the conductive filament system in HfO2-based memristors observed by direct atomic-scale imaging. Nature Communications, 2021, 12, 7232.	5.8	85
412	Neuromorphic Dynamics at the Nanoscale in Silicon Suboxide RRAM. Frontiers in Nanotechnology, 2021, 3, .	2.4	3
413	Intrinsic RESET Speed Limit of Valence Change Memories. ACS Applied Electronic Materials, 2021, 3, 5563-5572.	2.0	15
414	Nonvolatile Resistive Switching in Layered InSe via Electrochemical Cation Diffusion. Advanced Electronic Materials, 2022, 8, .	2.6	8
415	Reconfigurable Synaptic and Neuronal Functions in a V/VO <i>_x</i> /HfWO <i>_x</i> /Pt Memristor for Nonpolar Spiking Convolutional Neural Network. Advanced Functional Materials, 2022, 32, .	7.8	25
416	Atomic scale switches based on solid state ionics. Advances in Physics: X, 2022, 7, .	1.5	3

#	Article	IF	CITATIONS
417	Quantum Conductance in Memristive Devices: Fundamentals, Developments, and Applications. Advanced Materials, 2022, 34, e2201248.	11.1	31
418	Enhanced mobility of cations and anions in the redox state: The polaronium mechanism. Acta Materialia, 2022, 232, 117941.	3.8	14
419	Interface state-dependent synaptic characteristics of Pt/CeO2/Pt memristors controlled by post-deposition annealing. Materials Science in Semiconductor Processing, 2022, 147, 106718.	1.9	6
421	Factors Determining the Resistive Switching Behavior of Transparent InGaZnOâ€Based Memristors. Physica Status Solidi - Rapid Research Letters, 2022, 16, .	1.2	10
422	Methods of controlling operation modes in Pt/TaO _x /Ta ₂ O ₅ /Pt resistive switching cells. Japanese Journal of Applied Physics, 2022, 61, SM1006.	0.8	1
423	Solidâ€ S tate Iontronic Devices: Mechanisms and Applications. Advanced Materials Technologies, 2022, 7, ·	3.0	17
424	Low energy non-volatile look-up table using 2 bit ReRAM for field programmable gate array. Semiconductor Science and Technology, 2022, 37, 065022.	1.0	4
425	Controlling resistive switching behavior in the solution processed SiO2-x device by the insertion of TiO2 nanoparticles. Scientific Reports, 2022, 12, 8405.	1.6	3
426	Assessing the optoelectronic performance of d-orbital doped cubic HfO2: The case of W, Nb, and Mo. Optik, 2022, 264, 169341.	1.4	1
427	Building Green Memristor Using Protonated Polydopamine with Enhanced Bipolar Resistive Switching Performance and Environmental Robustness. SSRN Electronic Journal, 0, , .	0.4	0
428	Uniform, fast, and reliable CMOS compatible resistive switching memory. Journal of Semiconductors, 2022, 43, 054102.	2.0	2
429	Ta/HfO2-based Memristor and Crossbar Arrays for In-Memory Computing. , 2022, , 167-188.		1
430	The trend of emerging non-volatile TCAM for parallel search and AI applications. , 2022, 1, 100012.		3
431	Colloidal MoS2 quantum dots for high-performance low power resistive memory devices with excellent temperature stability. Applied Physics Letters, 2022, 120, .	1.5	8
432	Electroforming-Free Y ₂ O ₃ Memristive Crossbar Array with Low Variability. ACS Applied Electronic Materials, 2022, 4, 3080-3087.	2.0	12
433	The role of Al atoms in resistive switching for Al/ZnO/Pt Resistive Random Access Memory (RRAM) device. Surfaces and Interfaces, 2022, 31, 102099.	1.5	6
434	Dimensionalityâ€Dependent Resistive Switching in 0D and 2D Cs ₃ Sb ₂ I ₉ : Energyâ€Efficient Synaptic Functions with the Layeredâ€Phase. Advanced Electronic Materials, 2022, 8, .	2.6	6
435	Effect of Electrode Nanopatterning on the Functional Properties of Ta/TaO _{<i>x</i>} /Pt Resistive Memory Devices. ACS Applied Nano Materials, 2022, 5, 8594-8601.	2.4	6

#	Article	IF	CITATIONS
436	Excellent HZO ferroelectric thin films on flexible PET substrate. Journal of Alloys and Compounds, 2022, 919, 165872.	2.8	8
437	Exploring the Ligand Functionality, Electronic Band Gaps, and Switching Characteristics of Single Wellsâ€"Dawsonâ€Type Polyoxometalates on Gold. Advanced Materials Interfaces, 2022, 9, .	1.9	7
438	Nanoionic memristive phenomena in metal oxides: the valence change mechanism. Advances in Physics, 2021, 70, 155-349.	35.9	60
439	Resistive switching properties of Mn-doped amorphous Nb2O5 thin films for resistive RAM application. Materials Science in Semiconductor Processing, 2022, 152, 107059.	1.9	5
440	Natural biomaterial-based memristor bearing protonated polydopamine with enhanced bipolar resistive switching performance and environmental robustness. Journal of Alloys and Compounds, 2022, 925, 166783.	2.8	12
442	Wear-out and breakdown of Ta2O5/Nb:SrTiO3 stacks. Solid-State Electronics, 2022, 198, 108462.	0.8	0
443	A flexible resistive switching device for logical operation applications in wearable systems. Materials Today Chemistry, 2022, 26, 101169.	1.7	9
444	Performance Enhancement of Nonvolatile Resistive Switching Memory device Made from WO _X /ZnO Bilayer Structure. , 2022, , .		0
445	Disentangling ionic and electronic contributions to the switching dynamics of memristive <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>Pr</mml:mi> <mml:m devices by employing a two-resistor model. Physical Review Materials, 2022, 6, .</mml:m </mml:msub></mml:mrow></mml:math 	ro 0/.9 <mm< td=""><td>l:m2n>0.7</td></mm<>	l:m2n>0.7
446	Nanoscale Networks of Metal Oxides by Polymer Imprinting and Templating for Future Adaptable Electronics. ACS Applied Nano Materials, 2022, 5, 13349-13360.	2.4	1
447	Role of defects in resistive switching dynamics of memristors. MRS Communications, 2022, 12, 531-542.	0.8	2
448	A Singlet-Diradical Co(III)-Dimer as a Nonvolatile Resistive Switching Device: Synthesis, Redox-Induced Interconversion, and Current–Voltage Characteristics. Journal of the American Chemical Society, 2022, 144, 20442-20451.	6.6	5
449	Porphyrinâ€Based Metal–Organic Frameworks for Neuromorphic Electronics. Small Structures, 2023, 4,	6.9	18
450	Synergistic Approach of Interfacial Layer Engineering and READ-Voltage Optimization in HfO ₂ -Based FeFETs for In-Memory-Computing Applications. ACS Applied Electronic Materials, 2022, 4, 5292-5300.	2.0	12
451	Resistive switching of two-dimensional NiAl-layered double hydroxides and memory logical functions. Journal of Alloys and Compounds, 2023, 933, 167745.	2.8	3
452	Lightâ€Mediated Multiâ€Level Flexible Copper Iodide Resistive Random Access Memory for Formingâ€Free, Ultraâ€Low Power Data Storage Application. Advanced Functional Materials, 2023, 33, .	7.8	6
453	Crystalline Unipolymer Monolayer with High Modulus and Conductivity. Angewandte Chemie - International Edition, 2023, 62, .	7.2	5
454	Biomemristor based on a natural medicinal plant (Tinospora cordifolia) and their phototunable resistive switching properties integrated with carbon quantum dots. Applied Physics A: Materials	1.1	1

		CITATION REPORT		
#	Article		IF	Citations
455	Nanoenabled Trainable Systems: From Biointerfaces to Biomimetics. ACS Nano, 2022, 1	.6, 19651-19664.	7.3	5
456	Oxygen vacancy dynamics in Pt/TiO _x /TaO _y /Pt memristors: exe environment and internal electromigration. Nanotechnology, 2023, 34, 095202.	change with the	1.3	2
457	Crystalline Unipolymer Monolayer with High Modulus and Conductivity. Angewandte C	hemie, 0, , .	1.6	0
458	Resistive switching in neem (Azadirachta indica) thin film for a cost-effective and washa biomemristor. Journal of Materials Science: Materials in Electronics, 2023, 34, .	ble	1.1	3
459	Natural DNA biopolymer synaptic emulator for neuromorphic computing. Organic Elect 114, 106745.	ronics, 2023,	1.4	1
460	Tunable electrical field-induced metal-insulator phase separation in LiCoO2 synaptic tra operating in post-percolation region. Nano Energy, 2023, 108, 108199.	nsistor	8.2	2
461	C–N-codoped Sb2Te3 chalcogenides for reducing writing current of phase-change de Physics Letters, 2020, 117, .	vices. Applied	1.5	2
462	A novel second generation current conveyor (CCII)-based high frequency memristor mo Microelectronic Engineering, 2023, 271-272, 111938.	del.	1.1	0
463	Yield improvement in fabrication of a molecular-gap atomic switch by eliminating poten current paths. Japanese Journal of Applied Physics, 0, , .	tial leakage	0.8	0
464	Oxide Memristors for Brain-inspired Computing. Wuji Cailiao Xuebao/Journal of Inorgan 2023, 38, 1149.	ic Materials,	0.6	1
465	Ta2O5 doping effects on the property improvement of HfOx-based RRAMs using co-spu deposition method. Materials Characterization, 2023, 199, 112786.	ıttering	1.9	1
466	Simultaneously elevating the resistive switching performance and thermal/irradiative stabiomemorizer based on twisted carboxylated multi-walled carbon nanotube-chitosan co Journal of Alloys and Compounds, 2023, 952, 169934.		2.8	1
467	A storage-efficient SNN–CNN hybrid network with RRAM-implemented weights for tra recognition. Engineering Applications of Artificial Intelligence, 2023, 123, 106232.	affic signs	4.3	4
468	Review on metal halide perovskite-based optoelectronic synapses. Photonics Research,	2023, 11, 787.	3.4	7
469	Interfacing Biology and Electronics with Memristive Materials. Advanced Materials, 202	3, 35, .	11.1	7
470	Biomemristor with Phototunable Resistive Switching Characteristics of a Neem (Azadira	ichta) Tj ETQq1 1 0.7843	14 ₁ .gBT /C	Verlock 10
471	Asymmetric Resistive Switching of Bilayer HfO _{<i>x</i>} /AlO _{<i>y</i>< AlO_{<i>y</i>}/HfO_{<i>x</i>} Memristors: The Oxide Layer Charac Performance Optimization for Digital Set and Analog Reset Switching. ACS Applied Elec Materials, 2023, 5, 1859-1865.}	cteristics and	2.0	9
472	Emerging memristive neurons for neuromorphic computing and sensing. Science and To Advanced Materials, 2023, 24, .	echnology of	2.8	9

#	Article	IF	CITATIONS
473	<scp>Polymerâ€based</scp> neuromorphic devices: resistive switches and organic electrochemical transistors. Polymer International, 2023, 72, 609-618.	1.6	3
474	Direct Imaging of Ion Migration in Amorphous Oxide Electronic Synapses with Intrinsic Analog Switching Characteristics. ACS Applied Materials & Interfaces, 2023, 15, 16842-16852.	4.0	1
475	Chemical Influence of Carbon Interface Layers in Metal/Oxide Resistive Switches. ACS Applied Materials & Interfaces, 2023, 15, 18528-18536.	4.0	3
476	A Physics of Failure, Kinetic Simulation Model for Reliability of RRAM. , 2023, , .		0
477	Resistive switching and role of interfaces in memristive devices based on amorphous NbOx by anodic oxidation. Physical Chemistry Chemical Physics, 0, , .	1.3	1
482	Material instabilities in the T _a O _x -based resistive switching devices (Invited). , 2023, , .		0
488	Temperature Dependent Thermal Properties of Thin Film Hafnium Oxide. , 2023, , .		0
490	Emerging memristive artificial neuron and synapse devices for the neuromorphic electronics era. Nanoscale Horizons, 2023, 8, 1456-1484.	4.1	4
492	Porous crystalline materials for memories and neuromorphic computing systems. Chemical Society Reviews, 2023, 52, 7071-7136.	18.7	14
499	Low Frequency 1/ <i>f</i> Conductance Noise in Memristors. , 2023, , 121-148.		0
510	Memristive devices. , 2023, , .		0
517	Nanoscale memristor devices: materials, fabrication, and artificial intelligence. Journal of Materials Chemistry C, 2024, 12, 3770-3810.	2.7	1