Global warming-related tree growth decline and mortal plateau

Climatic Change 134, 163-176 DOI: 10.1007/s10584-015-1531-y

Citation Report

#	Article	IF	CITATIONS
1	Climate Change Increases Drought Stress of Juniper Trees in the Mountains of Central Asia. PLoS ONE, 2016, 11, e0153888.	2.5	32
2	Elevation Pattern in Growth Coherency on the Southeastern Tibetan Plateau. PLoS ONE, 2016, 11, e0163201.	2.5	25
3	Landscape Features and Processes Influencing Forest Pest Dynamics. Current Landscape Ecology Reports, 2016, 1, 19-29.	2.2	14
4	Summer Temperature Drives Radial Growth of Alpine Shrub Willows on the Northeastern Tibetan Plateau. Arctic, Antarctic, and Alpine Research, 2016, 48, 461-468.	1.1	15
5	Responses to climate change in radial growth of Picea schrenkiana along elevations of the eastern Tianshan Mountains, northwest China. Dendrochronologia, 2016, 40, 117-127.	2.2	44
6	Blue intensity parameters derived from Ponderosa pine tree rings characterize intra-annual density fluctuations and reveal seasonally divergent water limitations. Trees - Structure and Function, 2016, 30, 1403-1415.	1.9	40
7	Greening and browning of the Himalaya: Spatial patterns and the role of climatic change and human drivers. Science of the Total Environment, 2017, 587-588, 326-339.	8.0	71
8	Higher climate warming sensitivity of Siberian larch in small than large forest islands in the fragmented Mongolian forest steppe. Global Change Biology, 2017, 23, 3675-3689.	9.5	33
9	Age structure and trends in annual stem increment of Larix sibirica in two neighboring Mongolian forest–steppe regions differing in land use history. Trees - Structure and Function, 2017, 31, 1973-1986.	1.9	11
10	Tree growth response of Fokienia hodginsii to recent climate warming and drought in southwest China. International Journal of Biometeorology, 2017, 61, 2085-2096.	3.0	13
11	Synoptic-scale circulation patterns during summer derived from tree rings in mid-latitude Asia. Climate Dynamics, 2017, 49, 1917-1931.	3.8	7
12	Lingering response of radial growth of Picea crassifolia to climate at different altitudes in the Qilian Mountains, Northwest China. Trees - Structure and Function, 2017, 31, 455-465.	1.9	20
13	Reconstructed annual mean temperatures for the northeastern margin of the Tibetan Plateau: associations with the East Asian monsoons and volcanic events. International Journal of Climatology, 2017, 37, 3044-3056.	3.5	5
14	Climate-growth response of Chinese white pine (Pinus armandii) at different age groups in the Baiyunshan National Nature Reserve, central China. Dendrochronologia, 2018, 49, 102-109.	2.2	23
15	Recent growth trends of black pine (Pinus nigra J.F. Arnold) in the eastern mediterranean. Forest Ecology and Management, 2018, 412, 21-28.	3.2	18
16	Tree rings reveal a major episode of forest mortality in the late 18th century on the Tibetan Plateau. Global and Planetary Change, 2018, 163, 44-50.	3.5	19
17	Anthropogenic-management could mitigate declines in growth and survival of Qinghai spruce (Picea) Tj ETQq0 C Meteorology, 2018, 250-251, 118-126.	0 rgBT /C 4.8	verlock 10 Tf 10
18	Critical temperature and precipitation thresholds for the onset of xylogenesis of Juniperus przewalskii in a semi-arid area of the north-eastern Tibetan Plateau. Annals of Botany. 2018. 121. 617-624.	2.9	83

#	Article	IF	CITATIONS
19	Enhanced sprout-regeneration offsets warming-induced forest mortality through shortening the generation time in semiarid birch forest. Forest Ecology and Management, 2018, 409, 298-306.	3.2	14
20	Weakening Relationship Between Vegetation Growth Over the Tibetan Plateau and Largeâ€Scale Climate Variability. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 1247-1259.	3.0	19
21	Growth response of Abies georgei to climate increases with elevation in the central Hengduan Mountains, southwestern China. Dendrochronologia, 2018, 47, 1-9.	2.2	41
22	Early monsoon failure and mid-summer dryness induces growth cessation of lower range margin Picea crassifolia. Trees - Structure and Function, 2018, 32, 1401-1413.	1.9	12
23	Geographical patterns and drivers of growth dynamics of Quercus variabilis. Forest Ecology and Management, 2018, 429, 256-266.	3.2	12
24	Relationships between Tree Age and Climate Sensitivity of Radial Growth in Different Drought Conditions of Qilian Mountains, Northwestern China. Forests, 2018, 9, 135.	2.1	27
25	Species- and Elevation-Dependent Growth Responses to Climate Warming of Mountain Forests in the Qinling Mountains, Central China. Forests, 2018, 9, 248.	2.1	24
26	Moisture-Limited Tree Growth for a Subtropical Himalayan Conifer Forest in Western Nepal. Forests, 2018, 9, 340.	2.1	32
27	Increased growth of Qinghai spruce in northwestern China during the recent warming hiatus. Agricultural and Forest Meteorology, 2018, 260-261, 9-16.	4.8	49
28	Physiological and Growth Responses to Increasing Drought of an Endangered Tree Species in Southwest China. Forests, 2019, 10, 514.	2.1	10
29	The Vulnerability of Qilian Juniper to Extreme Drought Events. Frontiers in Plant Science, 2019, 10, 1191.	3.6	13
30	Different ways to die in a changing world: Consequences of climate change for tree species performance and survival through an ecophysiological perspective. Ecology and Evolution, 2019, 9, 11979-11999.	1.9	57
31	Differential Trends of Qinghai Spruce Growth with Elevation in Northwestern China during the Recent Warming Hiatus. Forests, 2019, 10, 712.	2.1	17
32	Spatial patterns of precipitation-induced moisture availability and their effects on the divergence of conifer stem growth in the western and eastern parts of China's semi-arid region. Forest Ecology and Management, 2019, 451, 117524.	3.2	19
33	Impact of air drought on photosynthesis efficiency of the Siberian crabapple (Malus baccata L. Borkh.) in the forest-steppe zone of Transbaikalia, Russia. Journal of Arid Land, 2019, 11, 255-266.	2.3	1
34	A 1556 year-long early summer moisture reconstruction for the Hexi Corridor, Northwestern China. Science China Earth Sciences, 2019, 62, 953-963.	5.2	46
35	Effect of altitude on climate–growth relationships of Chinese white pine (Pinus armandii) in the northern Funiu Mountain, central China. Climatic Change, 2019, 154, 273-288.	3.6	15
36	Fire facilitates warming-induced upward shifts of alpine treelines by altering interspecific interactions. Trees - Structure and Function, 2019, 33, 1051-1061.	1.9	15

#	Article	IF	Citations
37	Increased El Niño–Southern Oscillation sensitivity of tree growth on the southern Tibetan Plateau since the 1970s. International Journal of Climatology, 2019, 39, 3465-3475.	3.5	3
38	Growth rate rather than growing season length determines wood biomass in dry environments. Agricultural and Forest Meteorology, 2019, 271, 46-53.	4.8	59
39	Trees do not always act their age: size-deterministic tree ring standardization for long-term trend estimation in shade-tolerant trees. Biogeosciences, 2019, 16, 4815-4827.	3.3	13
40	Divergent Growth Responses to Warming between Stand-Grown and Open-Grown Trees in a Dryland Montane Forest in Northwestern China. Forests, 2019, 10, 1133.	2.1	7
41	Recent tree growth decline unprecedented over the last four centuries in a Tibetan juniper forest. Journal of Forestry Research, 2019, 30, 1429-1436.	3.6	12
42	Past the climate optimum: Recruitment is declining at the world's highest juniper shrublines on the Tibetan Plateau. Ecology, 2019, 100, e02557.	3.2	27
43	Tree resilience to drought increases in the Tibetan Plateau. Global Change Biology, 2019, 25, 245-253.	9.5	85
44	Recent rising temperatures drive younger and southern Korean pine growth decline. Science of the Total Environment, 2019, 649, 1105-1116.	8.0	39
45	Drought limitation on tree growth at the Northern Hemisphere's highest tree line. Dendrochronologia, 2019, 53, 40-47.	2.2	29
46	Assessing the stability of radial growth responses to climate change by two dominant conifer trees species in the Tianshan Mountains, northwest China. Forest Ecology and Management, 2019, 433, 667-677.	3.2	38
47	Growth response of alpine treeline forests to a warmer and drier climate on the southeastern Tibetan Plateau. Agricultural and Forest Meteorology, 2019, 264, 73-79.	4.8	42
48	Age- and region-related response of radial growth to climate warming and a warming hiatus. Trees - Structure and Function, 2020, 34, 199-212.	1.9	3
49	Growth response of Abies spectabilis to climate along an elevation gradient of the Manang valley in the central Himalayas. Journal of Forestry Research, 2020, 31, 2245-2254.	3.6	20
50	Longâ€ŧerm physiological and growth responses of Himalayan fir to environmental change are mediated by mean climate. Clobal Change Biology, 2020, 26, 1778-1794.	9.5	49
51	Negative growth responses to temperature of sympatric species converge under warming conditions on the southeastern Tibetan Plateau. Trees - Structure and Function, 2020, 34, 395-404.	1.9	11
52	Effects of canopy position on climate-growth relationships of Qinghai spruce in the central Qilian mountains, northwestern China. Dendrochronologia, 2020, 64, 125756.	2.2	5
53	Moisture-driven changes in the sensitivity of the radial growth of Picea crassifolia to temperature, northeastern Tibetan Plateau. Dendrochronologia, 2020, 64, 125761.	2.2	16
54	Fifty Years of Change in a Coniferous Forest in the Qilian Mountains, China—Advantages of High-Definition Remote Sensing. Forests, 2020, 11, 1188.	2.1	4

#	Article	IF	CITATIONS
55	Radial growth of Qinghai spruce (Picea crassifolia Kom.) and its leading influencing climate factor varied along a moisture gradient. Forest Ecology and Management, 2020, 476, 118474.	3.2	14
56	Recent decline of high altitude coniferous growth due to thermo-hydraulic constrains: evidence from the Miyaluo Forest Reserve, Western Sichuan Plateau of China. Dendrochronologia, 2020, 63, 125751.	2.2	8
57	Extreme climate historical variation based on tree-ring width record in the Tianshan Mountains of northwestern China. International Journal of Biometeorology, 2020, 64, 2127-2139.	3.0	5
58	Tree growth responses and resilience after the 1950-Zayu-Medog earthquake, southeast Tibetan Plateau. Dendrochronologia, 2020, 62, 125724.	2.2	11
59	Asymmetric impacts of dryness and wetness on tree growth and forest coverage. Agricultural and Forest Meteorology, 2020, 288-289, 107980.	4.8	13
60	Warming-induced unprecedented high-elevation forest growth over the monsoonal Tibetan Plateau. Environmental Research Letters, 2020, 15, 054011.	5.2	23
61	Growth Trends of Coniferous Species along Elevational Transects in the Central European Alps Indicate Decreasing Sensitivity to Climate Warming. Forests, 2020, 11, 132.	2.1	11
62	A 241-Year Cryptomeria fortune Tree-Ring Chronology in Humid Subtropical China and Its Linkages with the Pacific Decadal Oscillation. Atmosphere, 2020, 11, 247.	2.3	7
63	Drought-induced tree growth decline in the desert margins of Northwestern China. Dendrochronologia, 2020, 60, 125685.	2.2	17
64	Radial growth response of Pinus yunnanensis to rising temperature and drought stress on the Yunnan Plateau, southwestern China. Forest Ecology and Management, 2020, 474, 118357.	3.2	18
65	Elevational differences in the net primary productivity response to climate constraints in a dryland mountain ecosystem of northwestern China. Land Degradation and Development, 2020, 31, 2087-2103.	3.9	34
66	Abies spectabilis shows stable growth relations to temperature, but changing response to moisture conditions along an elevation gradient in the central Himalaya. Dendrochronologia, 2020, 60, 125675.	2.2	26
67	Greater risk of hydraulic failure due to increased drought threatens pine plantations in Horqin Sandy Land of northern China. Forest Ecology and Management, 2020, 461, 117980.	3.2	26
68	Weather underground: Subsurface hydrologic processes mediate tree vulnerability to extreme climatic drought. Clobal Change Biology, 2020, 26, 3091-3107.	9.5	35
69	Spring Moisture Availability is the Major Limitation for Pine Forest Productivity in Southwest China. Forests, 2020, 11, 446.	2.1	3
70	Divergent tree radial growth at alpine coniferous forest ecotone and corresponding responses to climate change in northwestern China. Ecological Indicators, 2021, 121, 107052.	6.3	13
71	Tree-ring based minimum temperature reconstruction on the southeastern Tibetan Plateau. Quaternary Science Reviews, 2021, 251, 106712.	3.0	17
72	Warming-induced radial growth reduction in Betula albosinensis, eastern Qilian Mountains, China. Ecological Indicators, 2021, 120, 106956.	6.3	7

#	Article	IF	CITATIONS
73	The Taihang Mountain Region of North China is Experiencing A Significant Warming Trend. Sustainability, 2021, 13, 856.	3.2	3
74	Stand age related dissimilarity in radial growth of a moisture-sensitive forest tree species is greater under a lower drought limitation. Forest Ecology and Management, 2021, 482, 118895.	3.2	6
75	Threshold responses of juniper tree growth and regeneration to climate warming and drought stress at alpine treeline. Trees - Structure and Function, 2021, 35, 1081-1083.	1.9	2
76	Climatic control on the growth and regeneration of Juniperus przewalskii at alpine treeline in the eastern Qilian Mountains, northwest China. Trees - Structure and Function, 2021, 35, 1085-1097.	1.9	10
77	Dynamic response to climate change in the radial growth of Picea schrenkiana in western Tien Shan, China. Journal of Forestry Research, 2022, 33, 147-157.	3.6	9
78	Climate-induced reversal of tree growth patterns at a tropical treeline. Science Advances, 2021, 7, .	10.3	19
79	Spatial and temporal differences in the response of Larix sibirica to climate change in the central Altai Mountains. Dendrochronologia, 2021, 67, 125827.	2.2	6
80	A Tree-Ring-Based Assessment of Pinus armandii Adaptability to Climate Using Two Statistical Methods in Mt. Yao, Central China during 1961–2016. Forests, 2021, 12, 780.	2.1	1
81	Predicting the responses of subalpine forest landscape dynamics to climate change on the eastern Tibetan Plateau. Global Change Biology, 2021, 27, 4352-4366.	9.5	15
82	Comparison of the Radial Growth Response of Picea crassifolia to Climate Change in Different Regions of the Central and Eastern Qilian Mountains. Forests, 2021, 12, 1015.	2.1	4
83	Projection of vegetation distribution to 1.5°C and 2°C of global warming on the Tibetan Plateau. Global and Planetary Change, 2021, 202, 103525.	3.5	18
84	Drought stress mitigation by nitrogen in boreal forests inferred from stable isotopes. Global Change Biology, 2021, 27, 5211-5224.	9.5	15
85	Nighttime warming alleviates the incidence of juniper forest growth decline on the Tibetan Plateau. Science of the Total Environment, 2021, 782, 146924.	8.0	8
86	Comparison of the response stability of Siberian larch to climate change in the Altai and Tianshan. Ecological Indicators, 2021, 128, 107823.	6.3	9
87	Patterns of species and phylogenetic diversity in Picea purpurea forests under different levels of disturbance on the northeastern Qinghai-Tibetan Plateau. Global Ecology and Conservation, 2021, 30, e01779.	2.1	1
88	Frequent locally absent rings indicate increased threats of extreme droughts to semi-arid Pinus tabuliformis forests in North China. Agricultural and Forest Meteorology, 2021, 308-309, 108601.	4.8	1
89	Climate-growth pattern of Pinus tabulaeformis plantations and their resilience to drought events in the Loess Plateau. Forest Ecology and Management, 2021, 499, 119642.	3.2	13
90	The majority of tree growth on the monsoonal Tibetan Plateau has benefited from recent summer warming. Catena, 2021, 207, 105649.	5.0	3

		CITATION REPORT		
#	Article		IF	Citations
91	Evaluation of the response stability of two dominant conifer species to climate change southern margin of the Tengger Desert. Global Ecology and Conservation, 2021, 25, eC	in the)1439.	2.1	2
92	Contrasting growth responses of Qilian juniper (<i>Sabina przewalskii</i>) and Qingha (<i>Picea crassifolia</i>) to CO2 fertilization despite common water-use efficiency incr northeastern Qinghai–Tibetan plateau. Tree Physiology, 2021, 41, 992-1003.	i spruce eases at the	3.1	20
93	The Distribution Patterns of Timberline and Its Response to Climate Change in the Hims of Resources and Ecology, 2020, 11, 342.	alayas. Journal	0.4	3
94	The World's Mountains in the Anthropocene. Sustainable Development Goals Serie	s, 2022, , 1-144.	0.4	3
95	Intra-and interannual climate variability drives the radial growth of <i>Pinus wallichiana Nepalese Himalayas. Plant Ecology and Diversity, 2020, 13, 391-400.</i>	in the	2.4	2
96	The Radial Growth of Picea wilsonii Was More Restricted by Precipitation Due to Climat Mt. Guandi, China. Forests, 2021, 12, 1602.	te Warming on	2.1	2
97	Factors Driving Changes in Vegetation in Mt. Qomolangma (Everest): Implications for t of Protected Areas. Remote Sensing, 2021, 13, 4725.	he Management	4.0	3
98	Long-term growth trends of Abies delavayi and its physiological responses to a warming Cangshan Mountains, southwestern China. Forest Ecology and Management, 2022, 50	g climate in the 15, 119943.	3.2	14
99	Dynamics of the alpine timberline and its response to climate change in the Hengduan the period 1985–2015. Ecological Indicators, 2022, 135, 108589.	mountains over	6.3	11
100	Contribution of winter precipitation to tree growth persists until the late growing sease Karakoram of northern Pakistan. Journal of Hydrology, 2022, 607, 127513.	on in the	5.4	18
101	Growth-climate sensitivity of two pine species shows species-specific changes along te moisture gradients in southwest China. Agricultural and Forest Meteorology, 2022, 31	mperature and 8, 108907.	4.8	10
102	MaxEnt Modelling and Impact of Climate Change on Habitat Suitability Variations of Ec Important Chilgoza Pine (Pinus gerardiana Wall.) in South Asia. Forests, 2022, 13, 715.	conomically	2.1	61
103	Did stand opening 60 years ago predispose a European beech population to death?. Tre People, 2022, 8, 100265.	ees, Forests and	1.9	2
104	Alpine treelines as ecological indicators of global climate change: Who has studied? Wh studied?. Ecological Informatics, 2022, 70, 101691.	hat has been	5.2	9
105	Tree rings reveal a growth-decline event in A.D. 1875–1883 in a Tibetan plateau junip Dendrochronologia, 2022, 74, 125981.	per forest.	2.2	1
106	Divergent Tree Growth and the Response to Climate Warming and Humidification in th Mountains, China. Forests, 2022, 13, 886.	e Tianshan	2.1	5
107	Climate sustained the evolution of a stable postglacial woody cover over the Tibetan Pl and Planetary Change, 2022, 215, 103880.	ateau. Global	3.5	3
108	Climate change on potential suitable areas for typical Pinaceae species on the Western Plateau. Geocarto International, 2022, 37, 14739-14757.	Sichuan	3.5	0

#	Article	IF	CITATIONS
109	Mapping Cork Oak Mortality Using Multitemporal High-Resolution Satellite Imagery. Remote Sensing, 2022, 14, 2750.	4.0	5
110	Timing and Order of Extreme Drought and Wetness Determine Bioclimatic Sensitivity of Tree Growth. Earth's Future, 2022, 10, .	6.3	7
111	Responses of radial growth of Picea crassifolia to climate change over three periods at different elevations in the Qilian Mountains, northwest China. Trees - Structure and Function, 2022, 36, 1721-1734.	1.9	3
112	Radial growth response of Quercus liaotungensis to climate change–a case study on the central Loess Plateau, China. Trees - Structure and Function, 2022, 36, 1811-1822.	1.9	1
113	The Climate-Growth Relationship between Picea smithiana (Wall.) Boiss. and Abies pindrow (Royle ex) Tj ETQq0 C) 0 _{.rg} BT /O	verlock 10 T

	Warming induced drought leade to tree growth decline in subtropics: Evidence from tree rings in		
114	central China. Frontiers in Plant Science, 0, 13, .	3.6	14
115	Tree growth and intrinsic water use efficiency of Chinese pine plantations along a precipitation gradient in northern China. Forest Ecology and Management, 2023, 528, 120609.	3.2	4
116	Divergent tree radial growth patterns of Qinghai spruce (Picea crassifolia) at the alpine timberline along a moisture gradient in the Qilian mountains, Northwest China. Agricultural and Forest Meteorology, 2023, 328, 109240.	4.8	1
117	Biodiversity and ecological network of epiphytic bryophytes and their host trees in the forests of the southeastern Qinghai-Tibet Plateau. Ecological Indicators, 2023, 146, 109781.	6.3	3
118	Divergent responses of Qinghai spruce (Picea crassifolia) to recent warming along elevational gradients in the central Qilian Mountains, Northwest China. Journal of Chinese Geography, 2023, 33, 151-168.	3.9	3
119	Climatic control of high-resolution stem radius changes in a drought-limited southern boreal forest. Trees - Structure and Function, 2023, 37, 797-810.	1.9	0
120	Sensitivity of radial growth of subalpine conifer trees to climate warming on the southeastern Tibetan Plateau. Clobal Ecology and Conservation, 2023, 43, e02470.	2.1	0
121	Evaluation and prediction of ecological carrying capacity in the Qilian Mountain National Park, China. Journal of Environmental Management, 2023, 339, 117856.	7.8	6
122	Species mixing enhances the resistance of Robinia pseudoacacia L. to drought events in semi-arid regions: Evidence from China's Loess Plateau. Science of the Total Environment, 2023, 869, 161796.	8.0	1
123	Inconsistent Growth Responses of Alpine Rhododendron Shrubs to Climate Change at Two Sites on the Eastern Tibetan Plateau. Forests, 2023, 14, 331.	2.1	1
124	Responses of the Distribution Pattern of the Suitable Habitat of Juniperus tibetica Komarov to Climate Change on the Qinghai-Tibet Plateau. Forests, 2023, 14, 434.	2.1	3
125	Increasing tree growth in subalpine forests of central China due to earlier onset of the thermal growing season. Agricultural and Forest Meteorology, 2023, 333, 109391.	4.8	4
126	Enhanced Variability and Declining Trend of Soil Moisture Since the 1880s on the Southeastern Tibetan Plateau. Water Resources Research, 2023, 59	4.2	2

#	Article	IF	CITATIONS
127	Linkage between spruce forest decline and cloud cover increase in the Qilian Mountains of the northeastern Tibetan Plateau. Trees - Structure and Function, 0, , .	1.9	0
128	Altitudinal Shifting of Apple Orchards with Adaption of Changing Climate in the Alpine Himalaya. Journal of the Indian Society of Remote Sensing, 2023, 51, 1135-1155.	2.4	1
129	Precipitation regulates the responses of xylem phenology of two dominant tree species to temperature in arid and semi-arid forest of the southern Altai Mountains. Science of the Total Environment, 2023, 886, 163951.	8.0	2
130	Management can mitigate drought legacy effects on the growth of a moisture-sensitive conifer tree species. Forest Ecology and Management, 2023, 544, 121196.	3.2	3
131	The impact of warming climate on Himalayan silver fir growth along an elevation gradient in the Mt. Everest region. Agricultural and Forest Meteorology, 2023, 339, 109575.	4.8	5
132	Influence of altitude and tree class on climate-growth relationships in a larch plantation in subtropical China. Journal of Forestry Research, 2023, 34, 1869-1880.	3.6	4
134	A Climate-Sensitive Transition Matrix Growth Model for Masson Pine (Pinus massoniana Lamb.) Natural Forests in Hunan Province, South-Central China. Forests, 2023, 14, 1539.	2.1	1
135	Missing rings of Qilian juniper associated with drought on the Northeastern Tibetan Plateau, China. Dendrochronologia, 2023, , 126127.	2.2	1
136	The key role of ecological resilience in radial growth processes of conifers under drought stress in the subalpine zone of marginal deserts. Science of the Total Environment, 2023, 903, 166864.	8.0	1
137	Climatic Warming-Induced Drought Stress Has Resulted in the Transition of Tree Growth Sensitivity from Temperature to Precipitation in the Loess Plateau of China. Biology, 2023, 12, 1275.	2.8	0
138	Species-specific, size-dependent, and environmentally modulated growth resilience to drought in conifer forests on the Eastern Tibetan Plateau. European Journal of Forest Research, 0, , .	2.5	0
139	Recent shift from dominant nitrogen to CO2 fertilization control on the growth of mature Qinghai spruce in China's Qilian Mountains. Agricultural and Forest Meteorology, 2023, 343, 109779.	4.8	1
140	Response sensitivity processes of conifers radial growth to climate factors based on tree ring width variations. Global Ecology and Conservation, 2023, 48, e02743.	2.1	0
141	Distinct Impact of Drought on Radial Growth at Different Heights and Parts of Populus euphratica in the Oasis at the Hinterland of the Taklimakan Desert. Forests, 2023, 14, 2338.	2.1	0
142	Divergent responses of Picea crassifolia Kom. in different forest patches to climate change in the northeastern Tibetan Plateau. Forest Ecosystems, 2023, 10, 100153.	3.1	0
143	Multiple Greenness Indexes Revealed the Vegetation Greening during the Growing Season and Winter on the Tibetan Plateau despite Regional Variations. Remote Sensing, 2023, 15, 5697.	4.0	0
144	Global warming leads to growth increase in Pinus sylvestris in the Kazakh steppe. Forest Ecology and Management, 2024, 553, 121635.	3.2	0
145	Responses of radial growth to climate change for two dominant artificial coniferous trees. Dendrochronologia, 2024, 83, 126163.	2.2	0

#	Article	IF	CITATIONS
146	Dieter Eckstein's bibliography and legacy of connection to wood biology and tree-ring science. Dendrochronologia, 2024, 83, 126165.	2.2	1
147	Intra-annual stem radial growth of Qinghai spruce and its environmental drivers in the Qilian Mountains, northwestern China. Science of the Total Environment, 2024, 915, 170093.	8.0	1
148	More tree growth reduction due to consecutive drought and its legacy effect for a semiarid larch plantation in Northwest China. Journal of Forestry Research, 2024, 35, .	3.6	0
149	Drought determines the growth stability of different dominant conifer species in Central Asia. Global and Planetary Change, 2024, 234, 104370.	3.5	0
151	Winter greening on the Tibetan Plateau induced by climate warming over 2000-2021. Forest Ecology and Management, 2024, 558, 121796.	3.2	0
152	Adaptive Distribution and Vulnerability Assessment of Endangered Maple Species on the Tibetan Plateau. Forests, 2024, 15, 491.	2.1	0

153

Responses to Climate Factors in the Radial Growth of Schrenk Spruce (<i>Picea) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 502 Td (Sch