Pressure-retarded osmosis for power generation from s

Energy and Environmental Science 9, 31-48 DOI: 10.1039/c5ee02985f

Citation Report

#	Article	IF	CITATIONS
1	Aspects of Mathematical Modelling of Pressure Retarded Osmosis. Membranes, 2016, 6, 13.	1.4	13
2	Modeling and emulation of an osmotic power system. , 2016, , .		1
3	Multistage Pressure-Retarded Osmosis. Journal of Non-Equilibrium Thermodynamics, 2016, 41, .	2.4	16
4	Salinity gradient power: Optimization of nanopore size. Electrochimica Acta, 2016, 219, 790-797.	2.6	41
5	Salinity Gradients for Sustainable Energy: Primer, Progress, and Prospects. Environmental Science & Technology, 2016, 50, 12072-12094.	4.6	261
6	Critical impact of permeate-to-feed ratio and feed flow rate fraction on performance of pressure-retarded osmosis process. Desalination, 2016, 399, 128-137.	4.0	5
7	Improvement of the energy generation by pressure retarded osmosis. Energy, 2016, 116, 1323-1333.	4.5	16
8	Utilization of the Donnan potential induced by reverse salt flux in pressure retarded osmosis systems. Physical Chemistry Chemical Physics, 2016, 18, 23469-23473.	1.3	6
9	Investigations of inorganic and organic fouling behaviors, antifouling and cleaning strategies for pressure retarded osmosis (PRO) membrane using seawater desalination brine and wastewater. Water Research, 2016, 103, 264-275.	5.3	62
10	Reverse Osmosis–Pressure Retarded Osmosis hybrid system: Modelling, simulation and optimization. Desalination, 2016, 389, 78-97.	4.0	54
11	Examining the potential for energy-positive bulk-water infrastructure to provide long-term urban water security: A systems approach. Journal of Cleaner Production, 2017, 143, 557-566.	4.6	21
12	Conceptual designs of integrated process for simultaneous production of potable water, electricity, and salt. Desalination, 2017, 409, 96-107.	4.0	5
13	Harvesting Natural Salinity Gradient Energy for Hydrogen Production Through Reverse Electrodialysis Power Generation. Journal of Electrochemical Energy Conversion and Storage, 2017, 14, .	1.1	10
14	On the present and future economic viability of stand-alone pressure-retarded osmosis. Desalination, 2017, 408, 133-144.	4.0	37
15	Large scale energy storage using multistage osmotic processes: approaching high efficiency and energy density. Sustainable Energy and Fuels, 2017, 1, 599-614.	2.5	7
16	Finding better draw solutes for osmotic heat engines: Understanding transport of ions during pressure retarded osmosis. Desalination, 2017, 421, 32-39.	4.0	19
17	Removal of emerging micropollutants by activated sludge process and membrane bioreactors and the effects of micropollutants on membrane fouling: A review. Journal of Environmental Chemical Engineering, 2017, 5, 2395-2414.	3.3	196
18	Techno-economic assessment of a closed-loop osmotic heat engine. Journal of Membrane Science, 2017, 535, 178-187.	4.1	37

#	Article	IF	CITATIONS
19	Mass transport of various membrane configurations in pressure retarded osmosis (PRO). Journal of Membrane Science, 2017, 537, 160-176.	4.1	21
20	Osmotic energy recovery from Reverse Osmosis using two-stage Pressure Retarded Osmosis. Energy, 2017, 132, 213-224.	4.5	23
21	Study of corrosion using long period fiber gratings coated with iron exposed to salty water. , 2017, , .		1
22	Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science, 2017, 356, .	6.0	1,864
23	Construction of TiO2@graphene oxide incorporated antifouling nanofiltration membrane with elevated filtration performance. Journal of Membrane Science, 2017, 533, 279-288.	4.1	171
24	High power densities created from salinity differences by combining electrode and Donnan potentials in a concentration flow cell. Energy and Environmental Science, 2017, 10, 1003-1012.	15.6	55
25	Energy recovery from two-stage SWRO plant using PRO without external freshwater feed stream: Theoretical analysis. Renewable Energy, 2017, 105, 84-95.	4.3	18
26	Highly crosslinked, chlorine tolerant polymer network entwined graphene oxide membrane for water desalination. Journal of Materials Chemistry A, 2017, 5, 1533-1540.	5.2	96
27	Desalination by Reverse Osmosis. Green Chemistry and Sustainable Technology, 2017, , 155-199.	0.4	2
28	Energy Efficiency and Performance Limiting Effects in Thermo-Osmotic Energy Conversion from Low-Grade Heat. Environmental Science & Technology, 2017, 51, 12925-12937.	4.6	82
29	Pressure-retarded osmosis with wastewater concentrate feed: Fouling process considerations. Journal of Membrane Science, 2017, 542, 233-244.	4.1	36
30	Next-Generation Nanoporous Materials: Progress and Prospects for Reverse Osmosis and Nanofiltration. Industrial & Engineering Chemistry Research, 2017, 56, 10526-10551.	1.8	91
31	Limiting extractable energy from pressure retarded osmosis with different pretreatment costs for feed and draw solutions. Journal of Membrane Science, 2017, 544, 208-212.	4.1	4
32	Reducing specific energy consumption of seawater desalination: Staged RO or RO-PRO?. Desalination, 2017, 422, 124-133.	4.0	23
33	Pressure retarded osmosis process for power generation: Feasibility, energy balance and controlling parameters. Applied Energy, 2017, 206, 303-311.	5.1	42
34	Osmotic Heat Engine Using Thermally Responsive Ionic Liquids. Environmental Science & Technology, 2017, 51, 9403-9409.	4.6	18
35	Real-Time Emulation of a Pressure-Retarded Osmotic Power Generation System. IEEE Transactions on Industry Applications, 2017, 53, 5768-5776.	3.3	8
36	Comparison of spacer-less and spacer-filled reverse electrodialysis. Journal of Renewable and Sustainable Energy, 2017, 9, .	0.8	17

		LFORT	
#	Article	IF	CITATIONS
37	New avenues for the large-scale harvesting of blue energy. Nature Reviews Chemistry, 2017, 1, .	13.8	383
38	Tuning water content in polymer dopes to boost the performance of outer-selective thin-film composite (TFC) hollow fiber membranes for osmotic power generation. Journal of Membrane Science, 2017, 524, 97-107.	4.1	49
39	Membrane-based seawater desalination: Present and future prospects. Desalination, 2017, 401, 16-21.	4.0	500
40	Design and fabrication of inner-selective thin-film composite (TFC) hollow fiber modules for pressure retarded osmosis (PRO). Separation and Purification Technology, 2017, 172, 32-42.	3.9	43
41	Introduction to PRO for energy conversion applications including an electric equivalent circuit. IET Renewable Power Generation, 2017, 11, 115-122.	1.7	4
42	Towards 1 kW power production in a reverse electrodialysis pilot plant with saline waters and concentrated brines. Journal of Membrane Science, 2017, 522, 226-236.	4.1	158
43	Optical fiber sensor for early warning of corrosion of metal structures. , 2017, , .		2
44	Theoretical Analysis of Pressure Retarded Membrane Distillation (PRMD) Process for Simultaneous Production of Water and Electricity. Industrial & Engineering Chemistry Research, 2017, 56, 14888-14901.	1.8	27
45	Harnessing â€~Blue energy': A Review on Techniques and Preliminary Analysis. MATEC Web of Conferences, 2017, 131, 04013.	0.1	5
46	Importance and Significance of UF/MF Membrane Systems in Desalination Water Treatment. , 0, , .		6
47	2.5 Forward Osmosis and Forward Osmosis Membranes. , 2017, , 95-123.		7
48	Implementing Salinity Gradient Energy at River Mouths. , 2017, , 153-171.		0
49	Integration of PRO into Desalination Processes. , 2017, , 129-151.		4
50	High performance asymmetric capacitive mixing with oppositely charged carbon electrodes for energy production from salinity differences. Journal of Materials Chemistry A, 2017, 5, 20374-20380.	5.2	31
51	3.8 Membrane-Based Processes for Sustainable Power Generation Using Water: Pressure-Retarded Osmosis (PRO), Reverse Electrodialysis (RED), and Capacitive Mixing (CAPMIX). , 2017, , 206-248.		17
52	Electric Power Generation through the Direct Interaction of Pristine Grapheneâ€Oxide with Water Molecules. Small, 2018, 14, e1704473.	5.2	138
53	Heat and Work of the Chemical Systems. Journal of Engineering Thermophysics, 2018, 27, 72-81.	0.6	2
54	Seasonal Variations in River Water Properties and Their Impact on Mixing Energies and Pressure Retarded Osmosis. Environmental Engineering Science, 2018, 35, 1075-1086.	0.8	5

#	Article	IF	CITATIONS
55	A trimethylamine–carbon dioxide draw solution for osmotic engines. AICHE Journal, 2018, 64, 3369-3375.	1.8	4
56	Numerical analysis of performance of ideal counter-current flow pressure retarded osmosis. Desalination, 2018, 433, 41-47.	4.0	10
57	Integral hollow fiber membrane with chemical cross-linking for pressure retarded osmosis operated in the orientation of active layer facing feed solution. Journal of Membrane Science, 2018, 550, 163-172.	4.1	21
58	Beneficial Use of Highly Saline Produced Water in Pressure-Retarded Osmosis. Environmental Engineering Science, 2018, 35, 472-483.	0.8	4
59	A first estimate for a pressure retarded osmosis-driven thermosyphon. Solar Energy, 2018, 159, 962-965.	2.9	4
60	Techno-economic evaluation of various RO+PRO and RO+FO integrated processes. Applied Energy, 2018, 212, 1038-1050.	5.1	74
61	Osmotic Power Generation. , 2018, , 481-489.		0
62	Long-run operation of a reverse electrodialysis system fed with wastewaters. Journal of Environmental Management, 2018, 217, 871-887.	3.8	55
63	The forward osmosis-pressure retarded osmosis (FO-PRO) hybrid system: A new process to mitigate membrane fouling for sustainable osmotic power generation. Journal of Membrane Science, 2018, 559, 63-74.	4.1	61
64	Ocean thermal energy conversion by deliberate seawater salinization. International Journal of Energy Research, 2018, 42, 499-507.	2.2	5
65	Osmotic's potential: An overview of draw solutes for forward osmosis. Desalination, 2018, 434, 100-120.	4.0	198
66	Deliberate Salinization of Seawater for Desalination of Seawater. Journal of Energy Resources Technology, Transactions of the ASME, 2018, 140, .	1.4	7
67	Real-Time Early Warning Strategies for Corrosion Mitigation in Harsh Environments. Journal of Lightwave Technology, 2018, 36, 1152-1158.	2.7	4
68	Membranes and processes for forward osmosis-based desalination: Recent advances and future prospects. Desalination, 2018, 434, 81-99.	4.0	130
69	Recent progress in the use of renewable energy sources to power water desalination plants. Desalination, 2018, 435, 97-113.	4.0	433
70	Module scale-up and performance evaluation of thin film composite hollow fiber membranes for pressure retarded osmosis. Journal of Membrane Science, 2018, 548, 398-407.	4.1	32
71	A grand challenge for membrane desalination: More water, less carbon. Desalination, 2018, 426, 155-163.	4.0	65
72	Towards sustainability in water-energy nexus: Ocean energy for seawater desalination. Renewable and Sustainable Energy Reviews, 2018, 82, 3833-3847.	8.2	114

#	Article	IF	CITATIONS
73	Systematic analysis and optimization of power generation in pressure retarded osmosis: Effect of multistage design. AICHE Journal, 2018, 64, 144-152.	1.8	16
74	9. Blue energy. , 2018, , 289-308.		ο
75	Low-Grade Waste Heat Recovery via an Osmotic Heat Engine by Using a Freestanding Graphene Oxide Membrane. ACS Omega, 2018, 3, 15501-15509.	1.6	12
76	Emerging Membrane Technologies for Water and Energy Sustainability: Future Prospects, Constrains and Challenges. Energies, 2018, 11, 2997.	1.6	76
77	Recent Advance on Draw Solutes Development in Forward Osmosis. Processes, 2018, 6, 165.	1.3	62
78	Low Carbon Desalination by Innovative Membrane Materials and Processes. Current Pollution Reports, 2018, 4, 251-264.	3.1	8
79	GreenPRO: A novel fertiliser-driven osmotic power generation process for fertigation. Desalination, 2018, 447, 158-166.	4.0	19
80	Economic framework for net power density and levelized cost of electricity in pressure-retarded osmosis. Desalination, 2018, 448, 13-20.	4.0	27
81	Pressure-Retarded Osmosis Thermosyphon. Journal of Solar Energy Engineering, Transactions of the ASME, 2018, 140, .	1.1	0
82	Effects of Divalent Cations on Electrical Membrane Resistance in Reverse Electrodialysis for Salinity Power Generation. Industrial & Engineering Chemistry Research, 2018, 57, 15803-15810.	1.8	25
83	Model-based optimization and comparative analysis of open-loop and closed-loop RO-PRO desalination systems. Desalination, 2018, 446, 83-93.	4.0	7
84	Channelizing the osmotic energy of proximate sea bittern for concentration of seawater by forward osmosis under realistic conditions to conserve land requirement for solar sea salt production. Journal of Membrane Science, 2018, 567, 329-338.	4.1	4
85	Development of High-Flux and Robust Reinforced Aliphatic Polyketone Thin-Film Composite Membranes for Osmotic Power Generation: Role of Reinforcing Materials. Industrial & Engineering Chemistry Research, 2018, 57, 13528-13538.	1.8	12
86	A Short Review on Hydrogen, Biofuel, and Electricity Production Using Seawater as a Medium. Energy & Fuels, 2018, 32, 6423-6437.	2.5	53
87	Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage. Applied Energy, 2018, 225, 290-331.	5.1	214
88	Membrane Distillation, Forward Osmosis, and Pressure-Retarded Osmosis Through Polymer Membranes. , 2018, , 323-346.		1
89	Dual-layered nanocomposite membrane incorporating graphene oxide and halloysite nanotube for high osmotic power density and fouling resistance. Journal of Membrane Science, 2018, 564, 382-393.	4.1	43
90	Sulfonated hyperbranched polyglycerol grafted membranes with antifouling properties for sustainable osmotic power generation using municipal wastewater. Journal of Membrane Science, 2018, 563, 521-530.	4.1	31

#	Article	IF	CITATIONS
91	A freestanding graphene oxide membrane for efficiently harvesting salinity gradient power. Carbon, 2018, 138, 410-418.	5.4	31
92	Flat-Sheet Membrane for Power Generation and Desalination Based on Salinity Gradient. , 2018, , 155-174.		3
93	Recent Issues Relative to a Low Salinity Pressure-Retarded Osmosis Process and Suggested Technical Solutions. , 2018, , 273-295.		0
94	A simulation study with a new performance index for pressure-retarded osmosis processes hybridized with seawater reverse osmosis and membrane distillation. Desalination, 2018, 444, 118-128.	4.0	19
95	Optimization of multi-stage hybrid RO-PRO membrane processes at the water–energy nexus. Chemical Engineering Research and Design, 2018, 137, 1-9.	2.7	16
96	Practical limit of energy production from seawater by full-scale pressure retarded osmosis. Energy, 2018, 158, 373-382.	4.5	22
97	Salinity Gradient Energy from Expansion and Contraction of Poly(allylamine hydrochloride) Hydrogels. ACS Applied Materials & Interfaces, 2018, 10, 22218-22225.	4.0	24
98	Dilution of seawater using dewatered construction water in a hybrid forward osmosis system. Journal of Cleaner Production, 2018, 195, 365-373.	4.6	21
99	Membrane distillation hybrids for water production and energy efficiency enhancement: A critical review. Applied Energy, 2019, 254, 113698.	5.1	126
100	2D materials as an emerging platform for nanopore-based power generation. Nature Reviews Materials, 2019, 4, 588-605.	23.3	253
101	Hydro-Osmotic Pressure. Doklady Physical Chemistry, 2019, 484, 1-3.	0.2	1
102	Cost-oriented optimization of osmotic dilution based on concentration-dependent hydraulic pressure. Desalination, 2019, 467, 113-124.	4.0	8
103	On the application of the Spiegler-Kedem model to forward osmosis. BMC Chemical Engineering, 2019, 1, .	3.4	5
104	Ion Transport in Nanofluidic Devices for Energy Harvesting. Joule, 2019, 3, 2364-2380.	11.7	255
105	Pasado, presente y futuro de la desalación en España. IngenierÃa Del Agua, 2019, 23, 199.	0.2	23
106	On the feasibility of ocean brine pool power stations. International Journal of Energy Research, 2019, 43, 9049-9054.	2.2	2
107	Effects of water pretreatment on the extractable salinity gradient energy at river mouths: the case of Magdalena River, Caribbean Sea. Journal of Ocean Engineering and Marine Energy, 2019, 5, 227-240.	0.9	11
108	On osmotic heat powered cycles driven by thermal saturation-precipitation of aqueous solutions. Energy, 2019, 186, 115830.	4.5	5

#	ARTICLE	IF	CITATIONS
109	Thermally responsive ionic liquids and polymeric ionic liquids: emerging trends and possibilities. Current Opinion in Chemical Engineering, 2019, 25, 43-50.	3.8	23
110	A unique permeate gap membrane distillation system for combined fresh water and power production. Energy Procedia, 2019, 160, 170-177.	1.8	5
111	Optimization of module pressure retarded osmosis membrane for maximum energy extraction. Journal of Water Process Engineering, 2019, 32, 100935.	2.6	25
112	Modeling and Simulation Studies Analyzing the Pressure-Retarded Osmosis (PRO) and PRO-Hybridized Processes. Energies, 2019, 12, 243.	1.6	20
113	A variable-stiffness tendril-like soft robot based on reversible osmotic actuation. Nature Communications, 2019, 10, 344.	5.8	130
114	Increasing osmotic power and energy with maximum power point tracking. Applied Energy, 2019, 238, 683-695.	5.1	8
115	Desalination Technologies. , 2019, , 11-34.		12
116	Hydrogen-Bond-Mediated Self-Assembly of Carbon-Nitride-Based Photo-Fenton-like Membranes for Wastewater Treatment. Environmental Science & Technology, 2019, 53, 6981-6988.	4.6	79
117	Energy generation and storage by salinity gradient power: A model-based assessment. Journal of Energy Storage, 2019, 24, 100755.	3.9	22
118	Thin-film composite hollow fiber membranes incorporated with graphene oxide in polyethersulfone support layers for enhanced osmotic power density. Desalination, 2019, 464, 63-75.	4.0	37
119	An optimization strategy for a forward osmosis-reverse osmosis hybrid process for wastewater reuse and seawater desalination: A modeling study. Desalination, 2019, 463, 40-49.	4.0	49
120	Modeling and simulation of the dual stage pressure retarded osmosis systems. Desalination, 2019, 460, 28-40.	4.0	11
121	Melamine-based covalent organic framework-incorporated thin film nanocomposite membrane for enhanced osmotic power generation. Desalination, 2019, 459, 10-19.	4.0	72
122	Tailoring the porous structure of hollow fiber membranes for osmotic power generation applications via thermally assisted nonsolvent induced phase separation. Journal of Membrane Science, 2019, 579, 329-341.	4.1	20
123	On the understanding and feasibility of "Breakthrough―Osmosis. Scientific Reports, 2019, 9, 16464.	1.6	8
124	Powering reversible actuators using forward osmosis membranes: feasibility study and modeling. Separation Science and Technology, 2019, 54, 128-142.	1.3	4
125	Further investigation of simultaneous fresh water production and power generation concept by permeate gap membrane distillation system. Journal of Membrane Science, 2019, 572, 230-245.	4.1	17
126	Tackle reverse solute flux in forward osmosis towards sustainable water recovery: reduction and perspectives. Water Research, 2019, 149, 362-374.	5.3	89

#	Article	IF	CITATIONS
127	A critical review on saline wastewater treatment by membrane bioreactor (MBR) from a microbial perspective. Chemosphere, 2019, 220, 1150-1162.	4.2	150
128	Mitigation of inorganic fouling on pressure retarded osmosis (PRO) membranes by coagulation pretreatment of the wastewater concentrate feed. Journal of Membrane Science, 2019, 572, 658-667.	4.1	30
129	Carbonized peat moss electrodes for efficient salinity gradient energy recovery in a capacitive concentration flow cell. Electrochimica Acta, 2019, 294, 240-248.	2.6	19
130	Surface nano-engineered wheat straw for portable and adjustable water purification. Science of the Total Environment, 2019, 655, 1028-1036.	3.9	9
131	Predicting potential of pressure retarded osmosis power for different estuaries in Turkey. Environmental Progress and Sustainable Energy, 2019, 38, 13085.	1.3	4
132	Bio-Inspired Supramolecular Membranes: A Pathway to Separation and Purification of Emerging Pollutants. Separation and Purification Reviews, 2020, 49, 20-36.	2.8	18
133	Towards a low-energy seawater reverse osmosis desalination plant: A review and theoretical analysis for future directions. Journal of Membrane Science, 2020, 595, 117607.	4.1	154
134	Simultaneous Clean Water and Power Production from Seawater Using Osmosis: Process Simulation and Techno-economic Analysis. Innovative Renewable Energy, 2020, , 121-137.	0.2	1
135	Examining the commercially available hydrophobic membranes in combined desalination and power generation through permeate gap membrane distillation. Desalination, 2020, 474, 114149.	4.0	7
136	Facultative hybrid RO-PRO concept to improve economic performance of PRO: Feasibility and maximizing efficiency. Desalination, 2020, 478, 114268.	4.0	18
137	Solar evaporation for simultaneous steam and power generation. Journal of Materials Chemistry A, 2020, 8, 513-531.	5.2	132
138	Hydrodynamic slip enhanced nanofluidic reverse electrodialysis for salinity gradient energy harvesting. Desalination, 2020, 477, 114263.	4.0	22
139	Bio-inspired Nanocomposite Membranes for Osmotic Energy Harvesting. Joule, 2020, 4, 247-261.	11.7	177
140	Performance of a thermally regenerative ammonia-based flow battery with 3D porous electrodes: Effect of reactor and electrode design. Electrochimica Acta, 2020, 331, 135442.	2.6	27
141	Salinityâ€Gradient Power Generation with Ionized Wood Membranes. Advanced Energy Materials, 2020, 10, 1902590.	10.2	83
142	Minimal and zero liquid discharge with reverse osmosis using low-salt-rejection membranes. Water Research, 2020, 170, 115317.	5.3	102
143	Design of a Water Salinity Difference Detector for Monitoring Instantaneous Salinity Changes in Aquaculture. IEEE Sensors Journal, 2020, 20, 3242-3248.	2.4	2
144	Thermolytic osmotic heat engine for low-grade heat harvesting: Thermodynamic investigation and potential application exploration. Applied Energy, 2020, 259, 114192.	5.1	11

#	Article	IF	CITATIONS
145	Hybrid technologies: The future of energy efficient desalination – A review. Desalination, 2020, 495, 114659.	4.0	129
146	Zwitterionic Hydrogel-Impregnated Membranes with Polyamide Skin Achieving Superior Water/Salt Separation Properties. ACS Applied Materials & Interfaces, 2020, 12, 49192-49199.	4.0	15
147	Energy recovery modeling of pressure-retarded osmosis systems with membrane modules compatible with high salinity draw streams. Desalination, 2020, 493, 114624.	4.0	10
148	Membrane structure-dependent limiting flux behavior and membrane selectivity loss during gypsum scaling: Implications for pressure-retarded osmosis operation and membrane design. Desalination, 2020, 492, 114644.	4.0	10
149	Thermodynamic analysis and material design to enhance chemo-mechanical coupling in hydrogels for energy harvesting from salinity gradients. Journal of Applied Physics, 2020, 128, .	1.1	8
150	Combined geothermal heat and pressure retarded osmosis as a new green power system. Energy Conversion and Management, 2020, 226, 113504.	4.4	15
151	Nanoscale Ion Regulation in Woodâ€Based Structures and Their Device Applications. Advanced Materials, 2021, 33, e2002890.	11.1	75
152	Energy recovery through reverse electrodialysis: Harnessing the salinity gradient from the flushing of human urine. Water Research, 2020, 186, 116320.	5.3	17
153	Water–energy nexus for estuarine systems with seasonal salinity variations: a thermodynamic feasibility analysis of reverse osmosis (RO)–pressure retarded osmosis (PRO) combinations. Water Science and Technology: Water Supply, 2020, 20, 2415-2427.	1.0	3
154	Enhanced water permeability and osmotic power generation with sulfonate-functionalized porous polymer-incorporated thin film nanocomposite membranes. Desalination, 2020, 496, 114756.	4.0	26
155	Generation of Osmotic Power from Membrane Technology. Handbook of Environmental Chemistry, 2020, , 253-271.	0.2	2
156	Reliable and Novel Approach Based on Thermodynamic Property Estimation of Low to High Salinity Aqueous Sodium Chloride Solutions for Water-Energy Nexus Applications. Industrial & Engineering Chemistry Research, 2020, 59, 16029-16042.	1.8	8
157	A novel empirical method for predicting concentration polarization in forward osmosis for single and multicomponent draw solutions. Desalination, 2020, 494, 114668.	4.0	22
158	Pool pressureâ€retarded osmosis. International Journal of Energy Research, 2020, 44, 7841-7845.	2.2	1
159	Increased power density with low salt flux using organic draw solutions for pressure-retarded osmosis at elevated temperatures. Desalination, 2020, 484, 114420.	4.0	22
160	Pressure-retarded osmosis for enhanced oil recovery. Desalination, 2020, 491, 114568.	4.0	9
161	Energy for desalination: A state-of-the-art review. Desalination, 2020, 491, 114569.	4.0	247
162	Water flux increase by inverting the membrane from its normal position – Is it occurring in FO and PRO?. Journal of Water Process Engineering, 2020, 37, 101366.	2.6	10

#	Article	IF	CITATIONS
163	A comprehensive review of the feasibility of pressure retarded osmosis: Recent technological advances and industrial efforts towards commercialization. Desalination, 2020, 491, 114501.	4.0	43
164	Viability of pressure-retarded osmosis for harvesting energy from salinity gradients. Renewable and Sustainable Energy Reviews, 2020, 131, 109999.	8.2	13
165	Nanofluidics coming of age. Nature Materials, 2020, 19, 254-256.	13.3	255
166	Two-Dimensional Ti ₃ C ₂ T <i>_x</i> MXene/GO Hybrid Membranes for Highly Efficient Osmotic Power Generation. Environmental Science & Technology, 2020, 54, 2931-2940.	4.6	41
167	High energy density of flexible graphene supercapacitors with discharge times controlled by silica microparticles. Synthetic Metals, 2020, 261, 116327.	2.1	6
168	Anti-biofouling effect of a thin film nanocomposite membrane with a functionalized-carbon-nanotube-blended polymeric support for the pressure-retarded osmosis process. RSC Advances, 2020, 10, 5697-5703.	1.7	11
169	Durability and Recoverability of Soft Lithographically Patterned Hydrogel Molds for the Formation of Phase Separation Membranes. Micromachines, 2020, 11, 108.	1.4	6
170	Improved anti-biofouling performance of pressure retarded osmosis (PRO) by dosing with chlorhexidine gluconate. Desalination, 2020, 481, 114376.	4.0	16
171	Coupled water, charge and salt transport in heterogeneous nano-fluidic systems. Soft Matter, 2020, 16, 1527-1537.	1.2	14
172	Electrochemical nitrate removal with simultaneous magnesium recovery from a mimicked RO brine assisted by in situ chloride ions. Journal of Hazardous Materials, 2020, 388, 122085.	6.5	42
173	Engineering the interlayer spacing of molybdenum disulfide for efficient salinity gradient energy recovery in concentration flow cells. Electrochimica Acta, 2020, 342, 136103.	2.6	4
174	Energetic and economic feasibility of a combined membrane-based process for sustainable water and energy systems. Applied Energy, 2020, 264, 114699.	5.1	23
175	Pressure retarded osmosis coupled with activated sludge process for wastewater treatment: Performance and fouling behaviors. Bioresource Technology, 2020, 307, 123224.	4.8	9
176	Thin film composite on fluorinated thermally rearranged polymer nanofibrous membrane achieves power density of 87ÂWÂmâ^'2 in pressure retarded osmosis, improving economics of osmotic heat engine. Journal of Membrane Science, 2020, 607, 118120.	4.1	20
177	Sustainable membrane technology for resource recovery from wastewater: Forward osmosis and pressure retarded osmosis. Journal of Water Process Engineering, 2021, 39, 101758.	2.6	31
178	Ultra-thin pore-filling membranes with mirror-image wave patterns for improved power density and reduced pressure drops in stacks of reverse electrodialysis. Journal of Membrane Science, 2021, 620, 118885.	4.1	17
179	Harnessing the osmotic energy of cane molasses by forward osmosis: process studies and implications for a sugar mill. International Journal of Environmental Studies, 2021, 78, 247-270.	0.7	3
180	Optimization of the number of cell pairs to design efficient reverse electrodialysis stack. Desalination, 2021, 497, 114676.	4.0	24

#	Article	IF	CITATIONS
181	High-performance and durable pressure retarded osmosis membranes fabricated using hydrophilized polyethylene separators. Journal of Membrane Science, 2021, 619, 118796.	4.1	31
182	Comparison of fouling characteristics between reverse electrodialysis (RED) and pressure retarded osmosis (PRO). Desalination, 2021, 497, 114648.	4.0	14
183	Salinity gradient energy generation by pressure retarded osmosis: A review. Desalination, 2021, 500, 114841.	4.0	52
184	Thermal associated pressure-retarded osmosis processes for energy production: A review. Science of the Total Environment, 2021, 757, 143731.	3.9	15
185	Capacitive deionized hybrid systems for wastewater treatment and desalination: A review on synergistic effects, mechanisms and challenges. Chemical Engineering Journal, 2021, 417, 128129.	6.6	32
186	Recent development of pressure retarded osmosis membranes for water and energy sustainability: A critical review. Water Research, 2021, 189, 116666.	5.3	40
188	Recent developments in pressure retarded osmosis for desalination and power generation. Renewable and Sustainable Energy Reviews, 2021, 138, 110492.	8.2	53
189	Oppositely charged aligned bacterial cellulose biofilm with nanofluidic channels for osmotic energy harvesting. Nano Energy, 2021, 80, 105554.	8.2	52
190	Facile modification of aliphatic polyketoneâ€based thinâ€film composite membrane for threeâ€dimensional and comprehensive antifouling in activeâ€layerâ€facingâ€drawâ€solution mode. Journal of Applied Polymer Science, 2021, 138, 49711.	1.3	5
191	Understanding Membrane Fouling in Electrically Driven Energy Conversion Devices. Energies, 2021, 14, 212.	1.6	7
192	Demonstration of Power Generation from Fertilizer Solutions via Pressure-Retarded Osmosis. Transactions of the ASABE, 2021, 64, 495-505.	1.1	2
193	Performance of a thermally regenerative ammonia-based battery using gradient-porous copper foam electrodes. Science China Technological Sciences, 2021, 64, 696-704.	2.0	6
194	Frontiers of Membrane Desalination Processes for Brackish Water Treatment: A Review. Membranes, 2021, 11, 246.	1.4	38
195	Does Pressure-Retarded Osmosis Help Reverse Osmosis in Desalination?. Industrial & Engineering Chemistry Research, 2021, 60, 4366-4374.	1.8	2
196	Artifact of "Breakthrough―osmosis: comment on the local Spiegler-Kedem-Katchalsky equations with constant coefficients. Scientific Reports, 2021, 11, 5051.	1.6	5
197	Nanofluidic Membranes to Address the Challenges of Salinity Gradient Power Harvesting. ACS Nano, 2021, 15, 5838-5860.	7.3	97
198	Optimisation of renewable energy powered reverse osmosis desalination systems: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 2021, 140, 110712.	8.2	107
199	Harvesting blue energy with carbon electrodes of asymmetric nanopore distributions. Nano Energy, 2021, 82, 105766.	8.2	5

#	Article	IF	CITATIONS
200	Pressure retarded osmosis: Advancement, challenges and potential. Journal of Water Process Engineering, 2021, 40, 101950.	2.6	23
201	Viability of Harvesting Salinity Gradient (Blue) Energy by Nanopore-Based Osmotic Power Generation. Engineering, 2022, 9, 51-60.	3.2	21
202	A fluidized-bed reactor for enhanced mass transfer and increased performance in thermally regenerative batteries for low-grade waste heat recovery. Journal of Power Sources, 2021, 495, 229815.	4.0	10
203	Modeling and Optimization of Membrane Process for Salinity Gradient Energy Production. Separations, 2021, 8, 64.	1.1	3
204	A compact hybrid batch/semi-batch reverse osmosis (HBSRO) system for high-recovery, low-energy desalination. Desalination, 2021, 504, 114976.	4.0	22
205	Current progress in membranes for fuel cells and reverse electrodialysis. Mendeleev Communications, 2021, 31, 423-432.	0.6	33
206	Thermodynamic limits of using fertilizer osmosis to produce mechanical work via pressure retarded osmosis. Journal of Membrane Science, 2021, 629, 119268.	4.1	7
207	Low-Cost Utility Scale Offshore Energy Storage. Lecture Notes in Civil Engineering, 2022, , 383-395.	0.3	0
208	Energy Lost in a Hydrogel Osmotic Engine Due to a Pressure Drop. Industrial & Engineering Chemistry Research, 2021, 60, 13348-13357.	1.8	3
209	Alkalinity Concentration Swing for Direct Air Capture of Carbon Dioxide. ChemSusChem, 2021, 14, 4439-4453.	3.6	10
210	A framework for blue energy enabled energy storage in reverse osmosis processes. Desalination, 2021, 511, 115088.	4.0	7
211	Osmotic engine converting energy from salinity difference to a hydraulic accumulator by utilizing polyelectrolyte hydrogels. Energy, 2021, 232, 121055.	4.5	5
212	Evaluation of pretreatment and membrane configuration for pressure-retarded osmosis application to produced water from the petroleum industry. Desalination, 2021, 516, 115219.	4.0	5
213	High energy recovery from salinity gradients in a concentration flow cell enhanced by bioelectrochemical currents. Chemical Engineering Journal, 2021, 426, 130826.	6.6	3
214	Energy production by salinity exchange in polyelectrolyte-coated electrodes. Temperature effects. Sustainable Energy and Fuels, 2021, 5, 3321-3329.	2.5	4
215	Nanopore-Based Power Generation from Salinity Gradient: Why It Is Not Viable. ACS Nano, 2021, 15, 4093-4107.	7.3	101
216	Principle and theoretical background of pressure-retarded osmosis process. , 2021, , 187-202.		0
217	On the importance of selectivity and support layer compaction in pressure retarded osmosis. Desalination, 2021, 498, 114804.	4.0	8

#	Article	IF	CITATIONS
218	Recovered Energy from Salinity Gradients Utilizing Various Poly(Acrylic Acid)-Based Hydrogels. Polymers, 2021, 13, 645.	2.0	12
219	Salinity Gradient Power. , 2022, , 50-79.		3
220	Pressure Retarded Osmosis Power Units Modelling for Power Flow Analysis of Electric Distribution Networks. Energies, 2021, 14, 6649.	1.6	0
221	Aramid Nanofiber Membranes for Energy Harvesting from Proton Gradients. Advanced Functional Materials, 2022, 32, 2102080.	7.8	29
222	Accurate Determination of Electrical Potential on Ion Exchange Membranes in Reverse Electrodialysis. Separations, 2021, 8, 170.	1.1	4
223	The present and future of SWRO-PRO hybrid desalination technology development. Journal of the Korean Society of Water and Wastewater, 2016, 30, 401-408.	0.3	1
224	Osmotic Power Generation., 2017,, 1-9.		0
225	Membrane Permeability Threshold for Osmotic Power Plant Efficiency. Journal of Contemporary Urban Affairs, 2017, 1, 49-53.	0.5	0
226	Using Thermodynamics Principles to Optimize Performance of Capacitive Mixing Cycles for Salinity Gradient Energy Generation. , 2019, , .		0
227	Reverse osmosis and forward osmosis in integrated systems. , 2020, , 261-280.		0
228	Thermodynamics of Solutions. Springer Textbooks in Earth Sciences, Geography and Environment, 2020, , 217-282.	0.1	0
229	Hybrid RO-PRO for Energy-Efficient Desalination. , 2020, , 1-32.		0
230	Introductory Chapter: An Overview of Recent Advances in Membrane Technologies. , 0, , .		2
231	Current status and future directions of self-assembled block copolymer membranes for molecular separations. Soft Matter, 2021, 17, 10405-10415.	1.2	8
232	Rational design of high power density "Blue Energy Harvester―pressure retarded osmosis (PRO) membranes using artificial intelligence-based modeling and optimization. Energy Conversion and Management, 2022, 253, 115160.	4.4	8
233	Increased ion transport and high-efficient osmotic energy conversion through aqueous stable graphitic carbon nitride/cellulose nanofiber composite membrane. Carbohydrate Polymers, 2022, 280, 119023.	5.1	28
234	Membrane-based indirect power generation technologies for harvesting salinity gradient energy - A review. Desalination, 2022, 525, 115485.	4.0	17
235	Off-grid hybrid systems based on combined conventional and unconventional technologies: Design, analyses, and illustrative examples. , 2022, , 189-218.		Ο

#	Article	IF	Citations
236	Transport phenomena in electrodialysis/reverse electrodialysis processes. , 2022, , 91-109.		0
237	Membranes for blue energy conversion by pressure-retarded osmosis (PRO). , 2022, , 17-90.		0
238	Flux Increase Occurring When an Ultrafiltration Membrane Is Flipped from a Normal to an Inverted Position—Experiments and Theory. Membranes, 2022, 12, 129.	1.4	4
239	Bipolar membrane-assisted reverse electrodialysis for high power density energy conversion via acid-base neutralization. Journal of Membrane Science, 2022, 647, 120288.	4.1	19
240	Continuous power production using flowable electrodes based on waste-heat assisted capacitive mixing. Applied Thermal Engineering, 2022, 206, 118094.	3.0	3
241	Desalination Process Design Assisted by Osmotic Power for High Water Recovery and Low Energy Consumption. ACS Sustainable Chemistry and Engineering, 2022, 10, 2409-2419.	3.2	4
242	An electrochemical system for salinity gradient energy harvesting. Energy Conversion and Management, 2022, 255, 115315.	4.4	6
243	Energy Targeting of Pressure-Retarded Osmosis with Non-Zero Driving Force: A Novel Thermodynamically Oriented Method. SSRN Electronic Journal, 0, , .	0.4	0
244	Predicting the performance of spiral-wound membranes in pressure-retarded osmosis processes. Renewable Energy, 2022, 189, 66-77.	4.3	9
245	Reverse osmosis and forward osmosis fouling: a comparison. Discover Chemical Engineering, 2021, 1, 1.	1.1	4
246	Principles and Materials of Mixing Entropy Battery and Capacitor for Future Harvesting Salinity Gradient Energy. ACS Applied Energy Materials, 2022, 5, 3979-4001.	2.5	6
247	Visualization of Concentration Gradients and Colloidal Dynamics under Electrodiffusiophoresis. Langmuir, 2022, 38, 5663-5673.	1.6	8
248	Harnessing blue energy with COF membranes. Nature Nanotechnology, 2022, 17, 564-566.	15.6	14
249	Impact of Reservoir Heterogeneity on Diluted Geothermal Brine Reinjection. Energies, 2022, 15, 3321.	1.6	0
250	Study of Pressure Retarded Osmosis Process in Hollow Fiber Membrane: Cylindrical Model for Description of Energy Production. Energies, 2022, 15, 3558.	1.6	1
251	Focus on using nanopore technology for societal health, environmental, and energy challenges. Nano Research, 2022, 15, 9906-9920.	5.8	11
252	Multilayered Graphene-Coated Metal Current Collectors with High Electrical Conductivity and Corrosion Resistivity for Flow-Electrode Capacitive Mixing. ACS Sustainable Chemistry and Engineering, 2022, 10, 7625-7634.	3.2	7
253	A sustainable approach in water desalination with the integration of renewable energy sources: Environmental engineering challenges and perspectives. Environmental Advances, 2022, 9, 100281.	2.2	20

#	Article	IF	CITATIONS
254	Simulation tool for full-scale PRO systems using SWMMs. Desalination, 2022, 541, 116025.	4.0	6
255	A systematic methodology for targeting the thermodynamic limit of pressure-retarded osmosis with non-zero driving force. Journal of Cleaner Production, 2022, 375, 133905.	4.6	Ο
256	Ammonia crossover in thermally regenerative ammonia-based batteries for low-grade waste heat recovery. Journal of Power Sources, 2022, 548, 232085.	4.0	9
257	Coupling of forward osmosis with desalination technologies: System-scale analysis at the water-energy nexus. Desalination, 2022, 543, 116083.	4.0	10
258	Forthcoming Opportunities for Obtaining Energy from New Renewable Sources in Romania. Lecture Notes in Electrical Engineering, 2022, , 45-53.	0.3	0
259	Evaluation of low energy consumption control for seawater desalination on Penghu Island. Energy and Environment, 2024, 35, 142-162.	2.7	0
260	Feasibility of thin film nanocomposite membranes for clean energy using pressure retarded osmosis and reverse electrodialysis. Energy Nexus, 2022, 7, 100141.	3.3	8
261	Low-Concentration Ozonation as a Feed Pretreatment Strategy to Reduce Organic Fouling in Pressure-Retarded Osmosis. Industrial & Engineering Chemistry Research, 0, , .	1.8	1
262	Nanochannels and nanoporous membranes in reverse electrodialysis for harvesting osmotic energy. Applied Physics A: Materials Science and Processing, 2022, 128, .	1.1	2
263	Fulvic and alginic acid separation during pressure retarded osmosis: Governing effects and fouling mechanisms. Separation and Purification Technology, 2023, 306, 122692.	3.9	4
264	A charge-free and membrane-free hybrid capacitive mixing system for salinity gradient energy harvesting. Journal of Materials Chemistry A, 2023, 11, 3388-3398.	5.2	3
265	Fluidics for energy harvesting: from nano to milli scales. Lab on A Chip, 2023, 23, 1034-1065.	3.1	5
266	Chemiosomotic flow in a soft conical nanopore: harvesting enhanced blue energy. Soft Matter, 2023, 19, 1152-1163.	1.2	7
267	Techno-Economic Analysis towards Full-Scale Pressure Retarded Osmosis Plants. Energies, 2023, 16, 325.	1.6	3
268	Electrochemical Conversion of Salinity Gradient Energy via Molybdenum Disulfide Electrode. Journal of the Electrochemical Society, 0, , .	1.3	0
269	Effectively using heat to thermally enhance pressure retarded osmosis. Desalination, 2023, 556, 116570.	4.0	2
271	Fluids and Electrolytes under Confinement in Single-Digit Nanopores. Chemical Reviews, 2023, 123, 2737-2831.	23.0	32
272	Quantifying the Benefits of Membranes with Ultrahigh Vapor Permeability for Membrane Distillation. ACS ES&T Engineering, 2023, 3, 981-988.	3.7	3

		CITATION REPORT		
#	Article	IF	CITATIONS	
273	Emerging membrane technologies for low-cost desalination. Water Management, 0, , 1-21.	0.4	0	
274	Comparison of Energy Efficiency between Atmospheric Batch Pressure-Retarded Osmosis and Single-Stage Pressure-Retarded Osmosis. Membranes, 2023, 13, 354.	1.4	Ο	