Combination of Silver Nanoparticles and Curcumin Nar Anti-biofilm Activities

Journal of Agricultural and Food Chemistry 64, 2513-2522

DOI: 10.1021/acs.jafc.5b04559

Citation Report

#	Article	IF	CITATIONS
1	Identification of Quorum Sensing Signal Molecule of Lactobacillus del brueckii subsp. bulgaricus. Journal of Agricultural and Food Chemistry, 2016, 64, 9421-9427.	2.4	13
2	Functional Silver Nanocomposites as Broad-Spectrum Antimicrobial and Biofilm-Disrupting Agents. ACS Applied Materials & Early 1888 (2017), 9, 16834-16847.	4.0	62
3	An acid-free water-born quaternized chitosan/montmorillonite loaded into an innovative ultra-fine bead-free water-born nanocomposite nanofibrous scaffold; <i>in vitro</i> and <i>in vivo</i> approaches. Biomedical Materials (Bristol), 2017, 12, 045014.	1.7	4
4	Whether a novel drug delivery system can overcome the problem of biofilms in respiratory diseases?. Drug Delivery and Translational Research, 2017, 7, 179-187.	3.0	35
5	Azomethine based nano-chemicals: Development, in vitro and in vivo fungicidal evaluation against Sclerotium rolfsii, Rhizoctonia bataticola and Rhizoctonia solani. Bioorganic Chemistry, 2017, 70, 153-162.	2.0	29
6	Synthesis of Ag-Cu and Ag-Cu 2 O alloy nanoparticles using a seed-mediated polyol process, thermodynamic and kinetic aspects. Materials Chemistry and Physics, 2017, 189, 44-49.	2.0	12
7	Development of antibacterial paper coated with sodium hyaluronate stabilized curcumin-Ag nanohybrid and chitosan via polyelectrolyte complexation for medical applications. Materials Research Express, 2017, 4, 115401.	0.8	10
8	Inhibition of quorum sensing related virulence factors of Pseudomonas aeruginosa by pyridoxal lactohydrazone. Microbial Pathogenesis, 2017, 112, 103-110.	1.3	29
9	Synthesis, characterization and evaluation cytotoxic activity of silver nanoparticles synthesized by Chinese herbal Cornus officinalis via environment friendly approach. Environmental Toxicology and Pharmacology, 2017, 56, 56-60.	2.0	46
10	Inhibition of Bacterial Quorum Sensing Systems by Metal Nanoparticles. , 2017, , 123-138.		2
11	The silver lining: towards the responsible and limited usage of silver. Journal of Applied Microbiology, 2017, 123, 1068-1087.	1.4	35
12	Encapsulation of curcumin in polymeric nanoparticles for antimicrobial Photodynamic Therapy. PLoS ONE, 2017, 12, e0187418.	1.1	84
13	Hybrid Amniotic Membrane Dressing with Green Silver Nanoparticles as Bioengineered Skin for Wounds and Burns: A Pilot Studies. Journal of Biotechnology & Biomaterials, 2017, 07, .	0.3	7
14	Current Approaches for Exploration of Nanoparticles as Antibacterial Agents. , 0, , .		16
15	Combined effect of a natural flavonoid rutin from Citrus sinensis and conventional antibiotic gentamicin on Pseudomonas aeruginosa biofilm formation. Food Control, 2018, 90, 282-294.	2.8	56
16	Thermal shock susceptibility and regrowth ofPseudomonas aeruginosabiofilms. International Journal of Hyperthermia, 2018, 34, 168-176.	1.1	15
17	Ag/Fe3O4 nanocomposites penetrate and eradicate S. aureus biofilm in an in vitro chronic wound model. Colloids and Surfaces B: Biointerfaces, 2018, 163, 192-200.	2.5	39
18	Effects of low-level engineered nanoparticles on the quorum sensing of Pseudomonas aeruginosa PAO1. Environmental Science and Pollution Research, 2018, 25, 7049-7058.	2.7	19

#	ARTICLE	IF	Citations
19	Thiazolium-derivative functionalized silver nanocomposites for suppressing bacterial resistance and eradicating biofilms. New Journal of Chemistry, 2018, 42, 1316-1325.	1.4	8
20	Retention of Anticancer Activity of Curcumin after Conjugation with Fluorescent Gold Quantum Clusters: An in Vitro and in Vivo Xenograft Study. ACS Omega, 2018, 3, 4776-4785.	1.6	38
21	Antimicrobial and antibiofilm activity of curcumin-silver nanoparticles with improved stability and selective toxicity to bacteria over mammalian cells. Medical Microbiology and Immunology, 2018, 207, 39-53.	2.6	99
22	Pharmaceutical aspects of silver nanoparticles. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 115-126.	1.9	218
23	Impact of curcumin nanoformulation on its antimicrobial activity. Trends in Food Science and Technology, 2018, 72, 74-82.	7.8	98
24	A Water-Soluble Galactose-Decorated Cationic Photodynamic Therapy Agent Based on BODIPY to Selectively Eliminate Biofilm. Biomacromolecules, 2018, 19, 141-149.	2.6	39
25	Green synthesis and biological activity of silver–curcumin nanoconjugates. Future Medicinal Chemistry, 2018, 10, 2577-2588.	1.1	38
26	Keto–Enol Tautomerism of Temperature and pH Sensitive Hydrated Curcumin Nanoparticles: Their Role as Nanoreactors and Compatibility with Blood Cells. Journal of Agricultural and Food Chemistry, 2018, 66, 11974-11980.	2.4	18
27	Plant-Derived Drug Molecules as Antibacterial Agents. , 2018, , 143-171.		2
29	Biofabricated silver nanoparticles incorporated polymethyl methacrylate as a dental adhesive material with antibacterial and antibiofilm activity against Streptococcus mutans. 3 Biotech, 2018, 8, 404.	1.1	23
30	Nanoparticles as Quorum Sensing Inhibitor: Prospects and Limitations. , 2018, , 227-244.		9
31	Oligodynamic Effect of Silver Nanoparticles: a Review. BioNanoScience, 2018, 8, 951-962.	1.5	38
32	A Novel Antimicrobial Coating Represses Biofilm and Virulence-Related Genes in Methicillin-Resistant Staphylococcus aureus. Frontiers in Microbiology, 2018, 9, 221.	1.5	37
33	Efficacious fungicidal potential of composite derived from nano-aggregates of Cu-Diclofenac complexes and ZnO nanoparticles. Composites Communications, 2018, 10, 81-88.	3.3	11
34	Metal nanoparticles as potent antimicrobial nanomachetes with an emphasis on nanogold and nanosilver., 2018,, 487-521.		1
35	Attenuation of Pseudomonas aeruginosa biofilm by hordenine: a combinatorial study with aminoglycoside antibiotics. Applied Microbiology and Biotechnology, 2018, 102, 9745-9758.	1.7	25
36	Antimicrobial Photodynamic Therapy Mediated by Curcumin-Loaded Polymeric Nanoparticles in a Murine Model of Oral Candidiasis. Molecules, 2018, 23, 2075.	1.7	62
37	Block Copolymer Nanoparticles Remove Biofilms of Drug-Resistant Gram-Positive Bacteria by Nanoscale Bacterial Debridement. Nano Letters, 2018, 18, 4180-4187.	4.5	113

#	ARTICLE	IF	CITATIONS
38	<p>Evaluation of Nano-curcumin effects on expression levels of virulence genes and biofilm production of multidrug-resistant Pseudomonas aeruginosa isolated from burn wound infection in Tehran, Iran</p> . Infection and Drug Resistance, 2019, Volume 12, 2223-2235.	1.1	48
39	<p>The Droplet-Size Effect Of Squalene@cetylpyridinium Chloride Nanoemulsions On Antimicrobial Potency Against Planktonic And Biofilm MRSA</p> . International Journal of Nanomedicine, 2019, Volume 14, 8133-8147.	3.3	24
40	Composition, Antivirulence Activity, and Active Property Distribution of the Fruit of <i>Terminalia chebula</i> Retz. Journal of Food Science, 2019, 84, 1721-1729.	1.5	22
41	Advances in the Experimental and Theoretical Understandings of Antibiotic Conjugated Gold Nanoparticles for Antibacterial Applications. ChemistrySelect, 2019, 4, 6719-6738.	0.7	19
42	Metabolomic analysis of quorum sensing inhibitor hordenine on Pseudomonas aeruginosa. Applied Microbiology and Biotechnology, 2019, 103, 6271-6285.	1.7	25
43	Application of curcumin-loaded nanocarriers for food, drug and cosmetic purposes. Trends in Food Science and Technology, 2019, 88, 445-458.	7.8	148
44	Microbially synthesized nanoparticles as next generation antimicrobials: scope and applications. , 2019, , 485-524.		20
45	Gelatin-stabilized composites of silver nanoparticles and curcumin: characterization, antibacterial and antioxidant study. Science and Technology of Advanced Materials, 2019, 20, 276-290.	2.8	37
46	Biofilm inhibition and anti-quorum sensing activity of phytosynthesized silver nanoparticles against the nosocomial pathogen <i>Pseudomonas aeruginosa</i>). Biofouling, 2019, 35, 34-49.	0.8	88
47	Silver Nanoparticles: Synthesis and Application for Nanomedicine. International Journal of Molecular Sciences, 2019, 20, 865.	1.8	829
48	Functionalizing the surface of hydroxyapatite drug carrier with carboxylic acid groups to modulate the loading and release of curcumin nanoparticles. Materials Science and Engineering C, 2019, 99, 929-939.	3.8	44
49	Nano-curcumin incorporated polyethersulfone membranes for enhanced anti-biofouling in treatment of sewage plant effluent. Materials Science and Engineering C, 2019, 94, 258-269.	3.8	29
50	Transcriptome analysis of silver nanoparticles treated Staphylococcus aureus reveals potential targets for biofilm inhibition. Colloids and Surfaces B: Biointerfaces, 2019, 175, 487-497.	2.5	42
51	Red pepper Capsicum baccatum: source of antiadhesive and antibiofilm compounds against nosocomial bacteria. Industrial Crops and Products, 2019, 127, 148-157.	2.5	23
52	Role of Nanocurcumin as a Surface Modifying Agent with Excellent Preventive Effect on Device-Related CoNS Infections. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2020, 90, 29-35.	0.4	4
53	Synthesis of silver nanoparticles using oxidized amylose and combination with curcumin for enhanced antibacterial activity. Carbohydrate Polymers, 2020, 230, 115573.	5.1	45
54	Non-antibiotic antimicrobial agents to combat biofilm-forming bacteria. Journal of Global Antimicrobial Resistance, 2020, 21, 445-451.	0.9	53
55	Green Synthesis of Silver Nanoparticles Using Mushroom Flammulina velutipes Extract and Their Antibacterial Activity Against Aquatic Pathogens. Food and Bioprocess Technology, 2020, 13, 1908-1917.	2.6	25

#	ARTICLE	IF	CITATIONS
56	The role of nanotechnology in combating biofilm-based antibiotic resistance. Journal of Drug Delivery Science and Technology, 2020, 60, 101880.	1.4	58
57	Curcumin, a Natural Antimicrobial Agent with Strain-Specific Activity. Pharmaceuticals, 2020, 13, 153.	1.7	142
58	Effect of curcumin sorbed selenite substituted hydroxyapatite on osteosarcoma cells: An in vitro study. Journal of Drug Delivery Science and Technology, 2020, 60, 101963.	1.4	12
59	Facile Approach to Fabricate a Chemical Sensor Array Based on Nanocurcumin–Metal Ions Aggregates: Detection and Identification of DNA Nucleobases. ACS Omega, 2020, 5, 19331-19341.	1.6	8
60	Transcriptomic and proteomic profiling response of methicillin-resistant Staphylococcus aureus (MRSA) to a novel bacteriocin, plantaricin GZ1-27 and its inhibition of biofilm formation. Applied Microbiology and Biotechnology, 2020, 104, 7957-7970.	1.7	21
61	Biosynthesis and Chemical Characterization of Silver Nanoparticles Using Satureja Rechingeri Jamzad and Their Apoptotic Effects on AGS Gastric Cancer Cells. Journal of Cluster Science, 2021, 32, 1389-1399.	1.7	9
62	Chitosan nano-vehicles as biocompatible delivering tools for a new Ag(I)curcuminoid-Gboxin analog complex in cancer and inflammation therapy. International Journal of Biological Macromolecules, 2020, 165, 2750-2764.	3.6	28
63	<p>Specific Anti-biofilm Activity of Carbon Quantum Dots by Destroying P. gingivalis Biofilm Related Genes</p> . International Journal of Nanomedicine, 2020, Volume 15, 5473-5489.	3.3	37
64	Inactivation Efficacy of 405 nm LED Against Cronobacter sakazakii Biofilm. Frontiers in Microbiology, 2020, 11, 610077.	1.5	14
65	Nanocomposite cellulose fabrics with in situ generated silver nanoparticles by bioreduction method. Journal of Industrial Textiles, 2022, 51, 6258S-6275S.	1.1	6
66	Bacterial synthesized metal and metal salt nanoparticles in biomedical applications: An up and coming approach. Applied Organometallic Chemistry, 2020, 34, e5810.	1.7	18
67	A bacterial infection-microenvironment activated nanoplatform based on spiropyran-conjugated glycoclusters for imaging and eliminating of the biofilm. Chemical Engineering Journal, 2020, 399, 125787.	6.6	30
68	Antiâ€microbial activity of curcumin nanoformulations: New trends and future perspectives. Phytotherapy Research, 2020, 34, 1926-1946.	2.8	96
69	Characterization and evaluation of cytotoxic and apoptotic effects of green synthesis of silver nanoparticles using Artemisia Ciniformis on human gastric adenocarcinoma. Materials Today Communications, 2020, 24, 101011.	0.9	40
70	Biguanide-Derived Polymeric Nanoparticles Kill MRSA Biofilm and Suppress Infection <i>In Vivo</i> ACS Applied Materials & Samp; Interfaces, 2020, 12, 21231-21241.	4.0	44
71	Investigating the potential of endolysin loaded chitosan nanoparticles in the treatment of pneumococcal pneumonia. Journal of Drug Delivery Science and Technology, 2021, 61, 102142.	1.4	8
72	Gold Nanoparticles: Can They Be the Next Magic Bullet for Multidrug-Resistant Bacteria?. Nanomaterials, 2021, 11, 312.	1.9	70
73	Synergistic Effect of Biosynthesized Silver Nanoparticles and Natural Phenolic Compounds against Drug-Resistant Fish Pathogens and Their Cytotoxicity: An In Vitro Study. Marine Drugs, 2021, 19, 22.	2.2	16

#	Article	IF	CITATIONS
74	Current Research on Silver Nanoparticles: Synthesis, Characterization, and Applications. Journal of Nanomaterials, 2021, 2021, 1-23.	1.5	138
75	On improving the physiological stability of curcuminoids: Curcumininoid-silver nanoparticle complex as a better and efficient therapeutic agent. Nano Structures Nano Objects, 2021, 25, 100661.	1.9	1
76	Curcumin Loaded and Co-loaded Nanosystems: A Review from a Biological Activity Enhancement Perspective. Pharmaceutical Nanotechnology, 2021, 9, 85-100.	0.6	5
77	Potential therapeutic effect of synthesized AgNP using curcumin extract on CCl4-induced nephrotoxicity in male mice. Journal of King Saud University - Science, 2021, 33, 101356.	1.6	4
78	Novel Strategies to Combat Bacterial Biofilms. Molecular Biotechnology, 2021, 63, 569-586.	1.3	36
79	Evaluation of the effects of nano-curcumin on the expression of genes involved in biofilm formation in Staphylococcus epidermidis. Gene Reports, 2021, 23, 101026.	0.4	2
80	Acid-Induced Self-Catalyzing Platform Based on Dextran-Coated Copper Peroxide Nanoaggregates for Biofilm Treatment. ACS Applied Materials & Samp; Interfaces, 2021, 13, 29269-29280.	4.0	21
81	A comprehensive review of the therapeutic potential of curcumin nanoformulations. Phytotherapy Research, 2021, 35, 5527-5563.	2.8	26
82	Investigations of adsorption behavior and anti-cancer activity of curcumin on pure and platinum-functionalized B12N12 nanocages. Journal of Molecular Liquids, 2021, 334, 116516.	2.3	39
83	Biologically synthesized silver nanoparticles, mediated by <i>Bothriochloa laguroides</i> , inhibit biofilm formation and eradicate mature biofilm of <i>Yersinia enterocolitica</i> and <i>Staphylococcus aureus</i> . Journal of Applied Microbiology, 2022, 132, 209-220.	1.4	1
84	Antimicrobial Activity of Curcumin in Nanoformulations: A Comprehensive Review. International Journal of Molecular Sciences, 2021, 22, 7130.	1.8	60
85	Tyrosine-Templated Dual-Component Silver Nanomaterials Exhibit Photoluminescence and Versatile Antimicrobial Properties through ROS Generation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 36938-36947.	4.0	10
86	Mechanisms and guidelines on the sustainable engineering of self-assembling; nanostars and nanoflowers. Journal of Cleaner Production, 2021, 312, 127570.	4.6	3
87	In situ functionalizing calcium phosphate biomaterials with curcumin for the prevention of bacterial biofilm infections. Colloids and Surfaces B: Biointerfaces, 2021, 206, 111938.	2.5	4
88	Synergistic effect of curcumin-Cu and curcumin-Ag nanoparticle loaded niosome: Enhanced antibacterial and anti-biofilm activities. Bioorganic Chemistry, 2021, 115, 105116.	2.0	71
89	In situ thermoresponsive curcumin-loaded dual polymeric nanoassemblies for wound healing and care of femoral fracture after surgery. Materials Express, 2021, 11, 1691-1699.	0.2	0
90	A state-of-the-art review on the application of various pharmaceutical nanoparticles as a promising technology in cancer treatment. Arabian Journal of Chemistry, 2021, 14, 103352.	2.3	27
91	Local Delivery of Anti-biofilm Therapeutics. , 2020, , 477-510.		2

#	Article	IF	CITATIONS
92	Nanomaterials as a Novel Class of Anti-infective Agents that Attenuate Bacterial Quorum Sensing. , 2019, , 581-604.		2
93	Rapid and effective photodynamic treatment of biofilm infections using low doses of amoxicillin-coated gold nanoparticles. Photodiagnosis and Photodynamic Therapy, 2020, 31, 101811.	1.3	10
94	Promising treatment strategies to combat biofilm infections: an updated review. Biofouling, 2020, 36, 1159-1181.	0.8	6
95	Modeling bioaffinityâ€based targeted delivery of antimicrobials to Escherichia coli biofilms using yeast microparticles. Part II: Parameter evaluation and validation. Biotechnology and Bioengineering, 2022, 119, 247-256.	1.7	2
96	Improvement of anti-biofilm activities via co-delivery of curcumin and gentamicin in lipid-polymer hybrid nanoparticle. Journal of Biomaterials Science, Polymer Edition, 2022, 33, 174-196.	1.9	6
97	Modeling bioaffinityâ€based targeted delivery of antimicrobials to Escherichia coli biofilms using yeast microparticles. Part I: Model development and numerical simulation. Biotechnology and Bioengineering, 2022, 119, 236-246.	1.7	2
98	Environmental Toxicity of Nanomaterials., 0,,.		3
99	Nanotechnology-Inspired Bionanosystems for Valorization of Natural Origin Extracts. Sustainable Agriculture Reviews, 2020, , 47-71.	0.6	1
100	Efficacy of Anti-Biofilm Agents in Targeting ESKAPE Pathogens with a Focus on Antibiotic Drug Resistance. ACS Symposium Series, 2020, , 177-199.	0.5	3
101	Evaluation of anti-bacterial effects of nickel nanoparticles on biofilm production by. Iranian Journal of Microbiology, 2017, 9, 160-168.	0.8	11
102	Screening and validation of quorum quenching enzyme PF2571 from Pseudomonas fluorescens strain PF08 to inhibit the spoilage of red sea bream filets. International Journal of Food Microbiology, 2022, 362, 109476.	2.1	11
103	Antibacterial activity of curcumin and its essential nanoformulations against some clinically important bacterial pathogens: A comprehensive review. Biotechnology and Applied Biochemistry, 2022, 69, 2357-2386.	1.4	7
104	Fading of nanocurcumin-based configured biosensor array for differentiation of carrier proteins in biological fluids. Microchemical Journal, 2022, 175, 107169.	2.3	1
105	Advanced metal and carbon nanostructures for medical, drug delivery and bio-imaging applications. Nanoscale, 2022, 14, 3987-4017.	2.8	34
106	A Recent advances in nanoparticles as antibacterial agent. ADMET and DMPK, 2022, 10, 115-129.	1.1	27
107	Nano-Antibacterials Using Medicinal Plant Components: An Overview. Frontiers in Microbiology, 2021, 12, 768739.	1.5	11
118	An updated and comprehensive review on the potential health effects of curcumin-encapsulated micro/nanoparticles. Critical Reviews in Food Science and Nutrition, 2023, 63, 9731-9751.	5.4	12
119	Recent advances in biomedical applications of biogenic nanomaterials. Current Pharmaceutical Biotechnology, 2022, 23, .	0.9	1

#	ARTICLE	IF	CITATIONS
120	Knocking downÂPseudomonas aeruginosa virulence by oral hypoglycemic metformin nano emulsion. World Journal of Microbiology and Biotechnology, 2022, 38, .	1.7	4
121	Hyaluronic Acid-Based Nanomaterials as a New Approach to the Treatment and Prevention of Bacterial Infections. Frontiers in Bioengineering and Biotechnology, 0, 10 , .	2.0	10
122	Antibiofilm Activity of a <i>Curcuma zedoaria</i> Rosc Rhizome Extract against Methicillin-Resistant and Susceptible <i>Staphylococcus aureus</i> Microbiology and Biotechnology Letters, 2022, 50, 193-201.	0.2	0
123	Novel silver metformin nano-structure to impede virulence of Staphylococcus aureus. AMB Express, 2022, 12, .	1.4	4
124	Water Dynamics in Competitive Solvation Assisted Loading of Colloidal Curcumin Nanoparticles onto Mesoporous Silica Nanostructures. Particle and Particle Systems Characterization, 0, , 2200062.	1.2	1
125	Functional silver nanoparticles as broad-spectrum antimicrobial agents. New Journal of Chemistry, 2022, 46, 16387-16393.	1.4	5
126	Quorum Quenching Potential of Biogenic Silver Nanoparticles against Chromobacterium violaceum 4212. Journal of Pure and Applied Microbiology, 2022, 16, 2173-2196.	0.3	0
127	Liquid crystal precursor system as a vehicle for <scp>curcuminâ€mediated</scp> photodynamic inactivation of oral biofilms. Journal of Biophotonics, 2023, 16, .	1.1	1
128	A new approach to replace antibiotics with natural pigment derivatives: Surface modification on the titanium implants. Applied Surface Science, 2023, 608, 155122.	3.1	3
129	Effect of curcumin-loaded photoactivatable polymeric nanoparticle on peri-implantitis-related biofilm. Photodiagnosis and Photodynamic Therapy, 2022, 40, 103150.	1.3	9
130	Pseudomonas aeruginosa Clusters Toxic Nickel Nanoparticles to Enhance Survival. Microorganisms, 2022, 10, 2220.	1.6	1
131	Untargeted Metabolomic Approach of Curcuma longa to Neurodegenerative Phytocarrier System Based on Silver Nanoparticles. Antioxidants, 2022, 11, 2261.	2.2	8
132	Biosynthesis of nano-curcumin/nano-selenium composite and their potentialities as bactericides against fish-borne pathogens. Green Processing and Synthesis, 2022, 11, 1098-1107.	1.3	3
133	Microwave-Induced CuO Nanorods: A Comparative Approach between Curcumin, Quercetin, and Rutin to Study Their Antioxidant, Antimicrobial, and Anticancer Effects against Normal Skin Cells and Human Breast Cancer Cell Lines MCF-7 and T-47D. ACS Applied Bio Materials, 2022, 5, 5762-5778.	2.3	4
134	Biological Activity of Photodynamic Laser Radiation and Nickel Nanoparticles on Staphylococcus aureus Bacteria. BioNanoScience, 0, , .	1.5	0
135	Application of nanoparticles as quorum quenching agent against bacterial human pathogens. , 2023, , 261-284.		0