A multicomponent molecular approach to artificial pho fullerenes and endohedral metallofullerenes

Chemical Society Reviews 45, 612-630 DOI: 10.1039/c5cs00774g

Citation Report

#	Article	IF	CITATIONS
2	Efficient Energy-Conversion Materials for the Future: Understanding and Tailoring Charge-Transfer Processes in Carbon Nanostructures. CheM, 2016, 1, 531-556.	11.7	78
3	Exciton Migration and Surface Trapping for a Photonic Crystal Displaying Chargeâ€Recombination Fluorescence. Chemistry - A European Journal, 2016, 22, 15420-15429.	3.3	13
4	Synthetically tuneable biomimetic artificial photosynthetic reaction centres that closely resemble the natural system in purple bacteria. Chemical Science, 2016, 7, 6534-6550.	7.4	22
5	Prolonged Charge Separated States in Twisted Stacks of All-Carbon Donor and Acceptor Chromophores. Journal of Physical Chemistry Letters, 2016, 7, 4751-4756.	4.6	19
6	The Driving Force of Photoinduced Charge Separation in Metalâ€Clusterâ€Encapsulated Triphenylamineâ€[80]fullerenes. Chemistry - A European Journal, 2016, 22, 17305-17310.	3.3	5
7	Design and photochemical study of supramolecular donor–acceptor systems assembled via metal–ligand axial coordination. Coordination Chemistry Reviews, 2016, 322, 104-141.	18.8	172
8	Stabilising the lowest energy charge-separated state in a {metal chromophore – fullerene} assembly: a tuneable panchromatic absorbing donor–acceptor triad. Chemical Science, 2016, 7, 5908-5921.	7.4	15
9	Effects of Lewis Acids on Photoredox Catalysis. Asian Journal of Organic Chemistry, 2017, 6, 397-409.	2.7	26
10	Persistent Charge-Separated States in Self-Assembled Twisted Nonsymmetric Donor–Acceptor Triads. Journal of Physical Chemistry C, 2017, 121, 4765-4777.	3.1	19
11	Trinuclear Ruthenium Macrocycles: Toward Supramolecular Water Oxidation Catalysis in Pure Water. ACS Energy Letters, 2017, 2, 288-293.	17.4	41
12	Nanocarbons as Electron Donors and Acceptors in Photoinduced Electron-Transfer Reactions. ECS Journal of Solid State Science and Technology, 2017, 6, M3055-M3061.	1.8	17
13	Implementation of Singleâ€Walled Carbon Nanohorns into Solar Cell Schemes. Advanced Energy Materials, 2017, 7, 1601883.	19.5	22
14	Solar energy conversion: From natural to artificial photosynthesis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017, 31, 36-83.	11.6	228
15	Exploring the scope of the Gewald reaction: Expansion to a four-component process. Tetrahedron Letters, 2017, 58, 1408-1412.	1.4	19
16	Energy versus Electron Transfer: Controlling the Excitation Transfer in Molecular Triads. Chemistry - A European Journal, 2017, 23, 4917-4922.	3.3	20
17	Increased Charge Separation Rates with Increasing Donor–Acceptor Distance in Molecular Triads: The Effect of Solvent Polarity. Journal of Physical Chemistry C, 2017, 121, 9220-9229.	3.1	17
18	A Tunable Cyclic Container: Guestâ€Induced Conformational Switching, Efficient Guest Exchange, and Selective Isolation of C ₇₀ from a Fullerene Mixture. Chemistry - an Asian Journal, 2017, 12, 1824-1835.	3.3	20
19	Covalently Modified Graphenes in Catalysis, Electrocatalysis and Photoresponsive Materials. Chemistry - A European Journal, 2017, 23, 15244-15275.	3.3	39

#	Article	IF	CITATIONS
20	Review—Single-Walled Carbon Nanohorn-Based Dye-Sensitized Solar Cells. ECS Journal of Solid State Science and Technology, 2017, 6, M3140-M3147.	1.8	6
21	Dithiafulvenylâ€Extended <i>N</i> â€Heterotriangulenes and Their Interaction with C ₆₀ : Cooperative Fluorescence. Chemistry - A European Journal, 2017, 23, 12353-12362.	3.3	8
22	Through-Space Ultrafast Photoinduced Electron Transfer Dynamics of a C ₇₀ -Encapsulated Bisporphyrin Covalent Organic Polyhedron in a Low-Dielectric Medium. Journal of the American Chemical Society, 2017, 139, 4286-4289.	13.7	58
23	Semiconductor, molecular and hybrid systems for photoelectrochemical solar fuel production. Journal of Energy Chemistry, 2017, 26, 219-240.	12.9	48
24	Influence of Anion Delocalization on Electron Transfer in a Covalent Porphyrin Donor–Perylenediimide Dimer Acceptor System. Journal of the American Chemical Society, 2017, 139, 749-756.	13.7	68
25	Channeling Exciton Migration into Electron Transfer in Formamidinium Lead Bromide Perovskite Nanocrystal/Fullerene Composites. Angewandte Chemie - International Edition, 2017, 56, 1214-1218.	13.8	42
26	Channeling Exciton Migration into Electron Transfer in Formamidinium Lead Bromide Perovskite Nanocrystal/Fullerene Composites. Angewandte Chemie, 2017, 129, 1234-1238.	2.0	15
27	Bio-directed morphology engineering towards hierarchical 1D to 3D macro/meso/nanoscopic morph-tunable carbon nitride assemblies for enhanced artificial photosynthesis. Journal of Materials Chemistry A, 2017, 5, 2195-2203.	10.3	21
28	Confirming the key role of Ar ⁺ ion bombardment in the growth feature of nanostructured carbon materials by PECVD. Nanotechnology, 2017, 28, 475601.	2.6	4
29	Self-Assembled Peptide-Carbon Nitride Hydrogel as a Light-Responsive Scaffold Material. Biomacromolecules, 2017, 18, 3551-3556.	5.4	64
30	Effects of Dispersion Forces on Structure and Photoinduced Charge Separation in Organic Photovoltaics. Journal of Physical Chemistry C, 2017, 121, 20134-20140.	3.1	14
31	Increasing the lifetimes of charge separated states in porphyrin–fullerene polyads. Physical Chemistry Chemical Physics, 2017, 19, 24018-24028.	2.8	10
32	Efficient Photoinduced Energy and Electron Transfer in Zn ^{II} –Porphyrin/Fullerene Dyads with Interchromophoric Distances up to 2.6 nm and No Wireâ€like Connectivity. Chemistry - A European Journal, 2017, 23, 14200-14212.	3.3	14
33	Synthesis and characterization of a highly stable zinc phenylporphyrin Isoxazoline-[60] fullerene dyad: Impact of coordination on the redox and fluorescence properties. Inorganic Chemistry Communication, 2017, 84, 134-137.	3.9	7
34	A nanosized Mn oxide/boron nitride composite as a catalyst for water oxidation. New Journal of Chemistry, 2017, 41, 10627-10633.	2.8	11
35	Direct estimation of the transfer integral for photoinduced electron transfer from TD DFT calculations. Physical Chemistry Chemical Physics, 2017, 19, 31007-31010.	2.8	3
36	Photoinduced Electron Transfer in 9â€5ubstituted 10â€Methylacridinium Ions. Chemistry - A European Journal, 2017, 23, 1306-1317.	3.3	45
37	Synthesis and Photoinduced Electronâ€Transfer Reactions in a La ₂ @ <i>I_h</i> â€C ₈₀ –Phenoxazine Conjugate. ChemPlusChem, 2017, 82, 1067-1072.	2.8	11

#	Article	IF	CITATIONS
38	On the regioselectivity of the Diels–Alder cycloaddition to C ₆₀ in high spin states. Physical Chemistry Chemical Physics, 2018, 20, 11577-11585.	2.8	10
39	Direct detection of the photoinduced charge-separated state in a Ru(<scp>ii</scp>) bis(terpyridine)–polyoxometalate molecular dyad. Chemical Communications, 2018, 54, 2970-2973.	4.1	21
40	Assemblies of Boron Dipyrromethene/Porphyrin, Phthalocyanine, and C ₆₀ Moieties as Artificial Models of Photosynthesis: Synthesis, Supramolecular Interactions, and Photophysical Studies. Chemistry - A European Journal, 2018, 24, 3862-3872.	3.3	16
41	Coexistence of distinct intramolecular electron transfer pathways in polyoxometalate based molecular triads. Physical Chemistry Chemical Physics, 2018, 20, 11740-11748.	2.8	8
42	Tuning the Carbon Nanotube Selectivity: Optimizing Reduction Potentials and Distortion Angles in Perylenediimides. Journal of the American Chemical Society, 2018, 140, 5427-5433.	13.7	12
43	Artificial Photosynthesis: Learning from Nature. ChemPhotoChem, 2018, 2, 148-160.	3.0	51
44	Fullerenes – how 25 years of charge transfer chemistry have shaped our understanding of (interfacial) interactions. Chemical Society Reviews, 2018, 47, 702-714.	38.1	101
45	Katalyse der Kohlenstoffdioxidâ€Photoreduktion an Nanoschichten: Grundlagen und Herausforderungen. Angewandte Chemie, 2018, 130, 7734-7752.	2.0	27
46	Immobilization of Molecular Catalysts for Enhanced Redox Catalysis. ChemCatChem, 2018, 10, 1686-1702.	3.7	35
47	Optical properties and structural morphology of one-dimensional perylenediimide derivatives. Journal of Luminescence, 2018, 196, 455-461.	3.1	6
48	Catalysis of Carbon Dioxide Photoreduction on Nanosheets: Fundamentals and Challenges. Angewandte Chemie - International Edition, 2018, 57, 7610-7627.	13.8	361
49	Artificial Photosynthesis for Production of ATP, NAD(P)H, and Hydrogen Peroxide. ChemPhotoChem, 2018, 2, 121-135.	3.0	29
50	Noncovalent complexes of <i>I</i> _h â^²C ₈₀ fullerene with phthalocyanines. Fullerenes Nanotubes and Carbon Nanostructures, 2018, 26, 69-75.	2.1	21
51	Exploiting Intermolecular Interactions between Alkyl-Functionalized Redox-Active Molecule Pairs to Enhance Interfacial Electron Transfer. Journal of the American Chemical Society, 2018, 140, 13935-13944.	13.7	18
52	Mimicry and functions of photosynthetic reaction centers. Biochemical Society Transactions, 2018, 46, 1279-1288.	3.4	26
53	Covalent Radical Pairs as Spin Qubits: Influence of Rapid Electron Motion between Two Equivalent Sites on Spin Coherence. Journal of the American Chemical Society, 2018, 140, 13011-13021.	13.7	29
54	Synthesis of arrays containing porphyrin, chlorin, and perylene-imide constituents for panchromatic light-harvesting and charge separation. RSC Advances, 2018, 8, 23854-23874.	3.6	22
55	Spin Signature of the C ₆₀ Fullerene Anion: A Combined X- and D-Band EPR and DFT Study. Journal of Physical Chemistry Letters, 2018, 9, 3915-3921.	4.6	8

	CITATION	CITATION REPORT	
# 56	ARTICLE Selective prepared carbon nanomaterials for advanced photocatalytic application in environmental pollutant treatment and hydrogen production. Applied Catalysis B: Environmental, 2018, 239, 408-424.	lF 20.2	Citations
57	Ultrastrong Absorption Meets Ultraweak Absorption: Unraveling the Energy-Dissipative Routes for Dye-Sensitized Upconversion Luminescence. Journal of Physical Chemistry Letters, 2018, 9, 4625-4631.	4.6	48
58	The electronic structures and excitation properties of three meso-pentafluorophenyl substituted zinc porphyrin–fullerene dyad. Journal of Molecular Structure, 2018, 1173, 398-405.	3.6	13
59	Interfacing tetrapyridyl-C ₆₀ with porphyrin dimers <i>via</i> π-conjugated bridges: artificial photosynthetic systems with ultrafast charge separation. Physical Chemistry Chemical Physics, 2018, 20, 21269-21279.	2.8	10
60	Small Carbon Quantum Dots, Large Photosynthesis Enhancement. Journal of Agricultural and Food Chemistry, 2018, 66, 9159-9161.	5.2	29
61	Expeditious Preparation of Open age Fullerenes by Rhodium(I) atalyzed [2+2+2] Cycloaddition of Diynes and C ₆₀ : An Experimental and Theoretical Study. Chemistry - A European Journal, 2018, 24, 10653-10661.	3.3	28
62	Photoactive Porphyrinâ€Based Metalâ€Organic Framework Nanosheets. European Journal of Inorganic Chemistry, 2019, 2019, 4815-4819.	2.0	13
63	Combining Zinc Phthalocyanines, Oligo(<i>p</i> â€Phenylenevinylenes), and Fullerenes to Impact Reorganization Energies and Attenuation Factors. ChemPhysChem, 2019, 20, 2806-2815.	2.1	6
64	Single-Electron Lanthanide-Lanthanide Bonds Inside Fullerenes toward Robust Redox-Active Molecular Magnets. Accounts of Chemical Research, 2019, 52, 2981-2993.	15.6	100
65	Porphyrinoid–Fullerene Hybrids as Candidates in Artificial Photosynthetic Schemes. Journal of Carbon Research, 2019, 5, 57.	2.7	17
66	Remote control of electronic coupling – modification of excited-state electron-transfer rates in Ru(tpy) ₂ -based donor–acceptor systems by remote ligand design. Chemical Communications, 2019, 55, 2273-2276.	4.1	6
67	Kinetics and mechanisms of catalytic water oxidation. Dalton Transactions, 2019, 48, 779-798.	3.3	42
68	Progress and development in structural and optoelectronic tunability of supramolecular nonbonded fullerene assemblies. Journal of Materials Chemistry C, 2019, 7, 6194-6216.	5.5	35
69	Intermolecular packing and charge transfer in metallofullerene/porphyrin cocrystals. Chemical Communications, 2019, 55, 6018-6021.	4.1	9
70	Exohedral functionalization of endohedral metallofullerenes: Interplay between inside and outside. Coordination Chemistry Reviews, 2019, 388, 406-439.	18.8	54
71	Study of the photoresponse of a titanium anode coated with solution-processed fullerene-containing metal porphyrin/phthalocyanine films. Journal of Molecular Liquids, 2019, 280, 382-388.	4.9	18
72	Photodriven Oxidation of Water by Plastoquinone Analogs with a Nonheme Iron Catalyst. Journal of the American Chemical Society, 2019, 141, 6748-6754.	13.7	25
73	Metal-Free Synthesis of <i>N</i> -Alkyl-2,5-Unsubstituted/Monosubstituted Fulleropyrrolidines: Reaction of [60]Fullerene with Paraformaldehyde and Amines. Journal of Organic Chemistry, 2019, 84, 2922-2932.	3.2	10

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
74	Graphene and its Hybrids for Photocatalysis. Current Graphene Science, 2019, 2, 79-96.	0.5	1
75	Photoresponsive triazole-based donor–acceptor molecules: color change and heat/air-stable diradicals. Journal of Materials Chemistry C, 2019, 7, 3100-3104.	5.5	25
76	The role of the central metal ion of ethane-bridged bis-porphyrins in histidine sensing. Journal of Colloid and Interface Science, 2019, 533, 762-770.	9.4	18
77	Van der Waals effects on structure and optical properties in organic photovoltaics. International Journal of Quantum Chemistry, 2019, 119, e25883.	2.0	8
78	Visible light promoted porphyrin-based metal-organic adduct. Journal of Porphyrins and Phthalocyanines, 2020, 24, 758-764.	0.8	0
79	Photocatalytic redox reactions with metalloporphyrins. Journal of Porphyrins and Phthalocyanines, 2020, 24, 21-32.	0.8	17
80	Mono- and Tripodal Porphyrins: Investigation on the Influence of the Number of Pyrene Anchors in Carbon Nanotube and Graphene Hybrids. Journal of the American Chemical Society, 2020, 142, 1895-1903.	13.7	30
81	Cyclic metalloporphyrin dimers: Conformational flexibility, applications and future prospects. Coordination Chemistry Reviews, 2020, 405, 213117.	18.8	27
82	Photoinduced Generation of Superoxidants for the Oxidation of Substrates with High Câ^'H Bond Dissociation Energies. ChemPhotoChem, 2020, 4, 271-281.	3.0	3
83	Resonance-Enhanced Charge Delocalization in Carbazole–Oligoyne–Oxadiazole Conjugates. Journal of the American Chemical Society, 2020, 142, 18769-18781.	13.7	12
84	Photocatalytic Hydrogen Evolution from Plastoquinol Analogues as a Potential Functional Model of Photosystem I. Inorganic Chemistry, 2020, 59, 14838-14846.	4.0	10
85	The structure of ScC2 (X̃2A1): A combined Fourier transform microwave/millimeter-wave spectroscopic and computational study. Journal of Chemical Physics, 2020, 153, 034304.	3.0	5
86	How To Make Nitroaromatic Compounds Glow: Nextâ€Generation Large Xâ€Shaped, Centrosymmetric Diketopyrrolopyrroles. Angewandte Chemie, 2020, 132, 16238-16247.	2.0	5
87	Synergie von elektrostatischen und Ï€â€Ï€â€Wechselwirkungen für die Verwirklichung von künstlichen photosynthetischen Modellsystemen auf Nanoâ€Ebene. Angewandte Chemie, 2020, 132, 18946-18955.	2.0	4
88	Synergy of Electrostatic and π–π Interactions in the Realization of Nanoscale Artificial Photosynthetic Model Systems. Angewandte Chemie - International Edition, 2020, 59, 18786-18794.	13.8	10
89	Controlling the Charge Transfer Mechanism and Efficiency by Means of Different C 70 Regioisomeric Adducts. Small Structures, 2020, 1, 2000012.	12.0	2
90	Solution-phase molecular recognition of an azafullerene-quinoline dyad by a face-to-face porphyrin-dimer tweezer. RSC Advances, 2020, 10, 31720-31729.	3.6	1
91	Photoinduced Electron Transfer and Energy Transfer Processes in a Flexible BODIPY-C ₆₀ Dyad. Journal of Physical Chemistry B, 2020, 124, 9396-9410.	2.6	16

#	Article	IF	CITATIONS
92	Generation of Long-Lived Photoinduced Charge Separation in a Supramolecular Toroidal Assembly. Journal of Physical Chemistry B, 2020, 124, 9546-9555.	2.6	5
93	Facile access to amino-substituted cyclopentafullerenes: novel reaction of [60]fullerene with β-substituted propionaldehydes and secondary amines in the absence/presence of magnesium perchlorate. Organic and Biomolecular Chemistry, 2020, 18, 6866-6880.	2.8	7
94	The intermolecular anthracene-transfer in a regiospecific antipodal C ₆₀ difunctionalization. Organic and Biomolecular Chemistry, 2020, 18, 4090-4103.	2.8	1
95	How To Make Nitroaromatic Compounds Glow: Nextâ€Generation Large Xâ€Shaped, Centrosymmetric Diketopyrrolopyrroles. Angewandte Chemie - International Edition, 2020, 59, 16104-16113.	13.8	30
96	Covalent interactions depend on the distances between metals and fullerenes for thermodynamically stable M@C ₇₈ (M = La, Ce, and Sm). Inorganic Chemistry Frontiers, 2020, 7, 2538-2547.	6.0	7
97	Collecting up to 115% of Singlet-Fission Products by Single-Walled Carbon Nanotubes. ACS Nano, 2020, 14, 8875-8886.	14.6	7
98	Panchromatic light funneling through the synergy in hexabenzocoronene–(metallo)porphyrin–fullerene assemblies to realize the separation of charges. Chemical Science, 2020, 11, 7123-7132.	7.4	9
99	Computational Study on O–O Bond Formation on a Mononuclear Nonâ€Heme Iron Center. European Journal of Inorganic Chemistry, 2020, 2020, 2573-2581.	2.0	2
100	Recent advances in conjugated microporous polymers for photocatalysis: designs, applications, and prospects. Journal of Materials Chemistry A, 2020, 8, 6434-6470.	10.3	140
101	Understanding and Controlling Short- and Long-Range Electron/Charge-Transfer Processes in Electron Donor–Acceptor Conjugates. Journal of the American Chemical Society, 2020, 142, 7898-7911.	13.7	39
102	Organic linkage controls the photophysical properties of covalent photosensitizer–polyoxometalate hydrogen evolution dyads. Sustainable Energy and Fuels, 2020, 4, 4688-4693.	4.9	5
103	Bioinspired artificial photosynthesis systems. Tetrahedron, 2020, 76, 131024.	1.9	21
104	Control of Energy Transfer Between Pyrene―and Peryleneâ€Nucleosides by the Sequence of DNAâ€Templated Supramolecular Assemblies. ChemistryOpen, 2020, 9, 389-392.	1.9	9
105	Stereoselective synthesis of amino-substituted cyclopentafullerenes promoted by magnesium perchlorate/ferric perchlorate. Organic and Biomolecular Chemistry, 2020, 18, 964-974.	2.8	7
106	Effects of a Central Atom and Peripheral Substituents on Photoinduced Electron Transfer in the Phthalocyanine–Fullerene Donor–Acceptor Solution-Processable Dyads. Journal of Physical Chemistry C, 2020, 124, 4010-4023.	3.1	27
107	Discovery of a Fullerene–Polyoxometalate Hybrid Exhibiting Enhanced Photocurrent Response. Inorganic Chemistry, 2020, 59, 5266-5270.	4.0	8
108	Yield—not only Lifetime—of the Photoinduced Chargeâ€5eparated State in Iridium Complex–Polyoxometalate Dyads Impact Their Hydrogen Evolution Reactivity. Chemistry - A European Journal, 2020, 26, 8045-8052.	3.3	20
109	Fullerenes as Key Components for Lowâ€Dimensional (Photo)electrocatalytic Nanohybrid Materials. Angewandte Chemie - International Edition, 2021, 60, 122-141.	13.8	64

#	Article	IF	CITATIONS
110	Photon―and Chargeâ€Management in Advanced Energy Materials: Combining 0D, 1D, and 2D Nanocarbons as well as Bulk Semiconductors with Organic Chromophores. Advanced Energy Materials, 2021, 11, 2002831.	19.5	12
111	Fullerenes as Key Components for Lowâ€Dimensional (Photo)electrocatalytic Nanohybrid Materials. Angewandte Chemie, 2021, 133, 124-143.	2.0	11
112	Recent Developments in the Use of Heterogeneous Semiconductor Photocatalyst Based Materials for a Visible-Light-Induced Water-Splitting System—A Brief Review. Catalysts, 2021, 11, 160.	3.5	34
113	Metallofullerene photoswitches driven by photoinduced fullerene-to-metal electron transfer. Chemical Science, 2021, 12, 7818-7838.	7.4	7
114	Engineering 2D Photocatalysts toward Carbon Dioxide Reduction. Advanced Energy Materials, 2021, 11, 2003159.	19.5	130
115	Photoinduced Electron Transfer in a Self-Assembled Bis(β-cyclodextrin)-Linked Pyrene/Bis(adamantane)-Linked Methyl Viologen Donor–Acceptor System in Aqueous Solution. Journal of Physical Chemistry B, 2021, 125, 4428-4437.	2.6	5
116	Synthesis and photoinduced charge stabilization in molecular tetrads featuring covalently linked triphenylamine-oligothiophene-BODIPY-C60. Journal of Chemical Sciences, 2021, 133, 1.	1.5	3
117	Fullerotetrahydroquinolines: TfOH/TsOH â< H 2 Oâ€Mediated Oneâ€Pot Two‣tep Synthesis and N â€Alkylation/Acylation/Carboamidation Reaction. Advanced Synthesis and Catalysis, 2021, 363, 4399-4421.	4.3	6
118	Robust fluorogenic non-porphyrin interaction of Zn(II) and Hg(II) naphthadiaza-crown macrocyclic complexes with C60: Spectroscopic and dispersion-corrected DFT study. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 418, 113414.	3.9	4
119	Unexpected Formation of Metallofulleroids from Multicomponent Reactions, with Crystallographic and Computational Studies of the Cluster Motion. Angewandte Chemie, 2021, 133, 25473-25477.	2.0	5
120	Unexpected Formation of Metallofulleroids from Multicomponent Reactions, with Crystallographic and Computational Studies of the Cluster Motion. Angewandte Chemie - International Edition, 2021, 60, 25269-25273.	13.8	12
121	Molecular selectivity of indenopyridines for fullerenes: A comparative study. Journal of the Indian Chemical Society, 2021, 98, 100145.	2.8	0
122	Merging Carbon Nanostructures with Porphyrins. , 2021, , 1-46.		1
123	Charge Transfer and Spin Dynamics in a Zinc Porphyrin Donor Covalently Linked to One or Two Naphthalenediimide Acceptors. Journal of Physical Chemistry A, 2021, 125, 825-834.	2.5	6
124	Evaluation of charge-transfer rates in fullerene-based donor–acceptor dyads with different density functional approximations. Physical Chemistry Chemical Physics, 2021, 23, 5376-5384.	2.8	18
125	Supramolecular Purification and Regioselective Functionalization of Fullerenes and Endohedral Metallofullerenes. CheM, 2020, 6, 3219-3262.	11.7	38
126	Self-assembled cobalt(<scp>ii</scp>)porphyrin–fulleropyrrolidine triads <i>via</i> axial coordination with photoinduced electron transfer. New Journal of Chemistry, 2018, 42, 12449-12456.	2.8	31
127	Modulating the dynamics of Förster resonance energy transfer and singlet fission by variable molecular spacers. Nanoscale, 2020, 12, 23061-23068.	5.6	9

ARTICLE IF CITATIONS # Multicomponent Reactions Among Alkyl Isocyanides, sp Reactants, and sp2 Carbon Cages. Synlett, 2022, 128 1.8 5 33,907-912. On the Endocircular Li@C16 System. Frontiers in Chemistry, 2022, 10, 813563. 129 3.6 Regioisomer-Directed Self-Assembly of Alternating Copolymers for Highly Enhanced Photocatalytic 130 4.8 4 H₂ Evolution. ACS Macro Letters, 2022, 11, 434-440. Supramolecular Engineering of Crystalline Fullerene Microâ€/Nanoâ€Architectures. Advanced Materials, 2022, 34, e2200189. Merging Carbon Nanostructures with Porphyrins., 2022, , 219-264. 132 0 Molecular-Modified Photocathodes for Applications in Artificial Photosynthesis and Solar-to-Fuel Technologies. Chemical Reviews, 2022, 122, 16051-16109. 134 The Fundamentals of Organic Photophysics and Photochemistry., 2022, , 31-63. 0 Ultrafast time-resolved spectroscopy elucidating photo-driven electron and energy transfer processes in a broadband light-absorbing BODIPY-C60-distyryl BODIPY triad. European Physical Journal: 2.6 Special Topics, 2023, 232, 2131-2144. 136 Organic–Inorganic Porphyrinoid Frameworks for Biomolecule Sensing. ACS Sensors, 2023, 8, 443-464. 7.8 1 Metal Atoms (Li, Na, and K) Tuning the Configuration of Pyrrole for the Selective Recognition of C₆₀. Inorganic Chemistry, 2023, 62, 4618-4624. Efficient Charge-Transfer Studies for Selective Detection of Bilirubin Biomolecules Using 138 3 2.6 CsPbBr₃ as the Fluorescent Probe. Journal of Physical Chemistry B, 2023, 127, 2138-2145. Revisiting the Mechanisms of Charge Transport in Solutions of Redox-Active Molecules Using Computer Simulations: When and Why Do Analytical Theories Fail?. Journal of Physical Chemistry B, 2.6 2023, 127, 2968-2978. Interfullerene Electronic Interactions and Excited-State Dynamics in Fullerene Dumbbell Conjugates. 140 13.7 2 Journal of the American Chemical Society, 2023, 145, 14190-14195. Insight into the interaction of host–guest structures for pyrrole-based metal compounds and C70. 141 Journal of Chemical Physics, 2024, 160, .

CITATION REPORT