A predictive model of hospitalization cost after cerebra

Journal of NeuroInterventional Surgery 8, 316-322 DOI: 10.1136/neurintsurg-2014-011575

Citation Report

#	Article	IF	CITATIONS
1	Cost of Treatment of Cerebral Aneurysm Embolization: Study of Associated Factors. Neurology and Therapy, 2016, 5, 145-154.	1.4	7
2	Medicare expenditures for elderly patients undergoing surgical clipping or endovascular intervention for subarachnoid hemorrhage. Journal of Neurosurgery, 2017, 126, 805-810.	0.9	13
3	Medicare expenditures for elderly patients undergoing surgical clipping or endovascular intervention for unruptured cerebral aneurysms. Journal of NeuroInterventional Surgery, 2017, 9, 324-328.	2.0	7
4	Total Hospital Costs and Length of Stay of Endovascular Coiling Versus Neurosurgical Clipping for Unruptured Intracranial Aneurysms: Systematic Review and Meta-Analysis. World Neurosurgery, 2018, 115, 393-399.	0.7	25
5	A Systematic Review and Meta-Analysis on Economic Comparison Between Endovascular Coiling Versus Neurosurgical Clipping for Ruptured Intracranial Aneurysms. World Neurosurgery, 2018, 113, 269-275.	0.7	24
6	Cost Analysis of Endovascular Coiling and Surgical Clipping for the Treatment of Ruptured Intracranial Aneurysms. World Neurosurgery, 2019, 124, e125-e130.	0.7	10
7	Analysis of Treatment Cost Variation Among Multiple Neurosurgical Procedures Using the Value-Driven Outcomes Database. World Neurosurgery, 2019, 126, e914-e920.	0.7	16
8	Re-evaluating the Weekend Effect on SAH: A Nationwide Analysis of the Association Between Mortality and Weekend Admission. Neurocritical Care, 2019, 30, 293-300.	1.2	14
9	Procedural Clinical Complications, Case-Fatality Risks, and Risk Factors in Endovascular and Neurosurgical Treatment of Unruptured Intracranial Aneurysms. JAMA Neurology, 2019, 76, 282.	4.5	134
10	Racial and Ethnic Disparities in Treatment Outcomes of Patients with Ruptured or Unruptured Intracranial Aneurysms. Journal of Racial and Ethnic Health Disparities, 2019, 6, 345-355.	1.8	5
11	Evaluation of disease severity and treatment intensity as cost drivers for ruptured intracranial aneurysms. Acta Neurochirurgica, 2020, 162, 157-167.	0.9	2
12	Cerebrovascular bypass for ruptured aneurysms: A case series. Journal of Clinical Neuroscience, 2021, 85, 106-114.	0.8	4
13	Predictors of High Profit and High Deficit Outliers under SwissDRG of a Tertiary Care Center. PLoS ONE, 2015, 10, e0140874.	1.1	18
14	Proposing a validated clinical app predicting hospitalization cost for extracranial-intracranial bypass surgery. PLoS ONE, 2017, 12, e0186758.	1.1	7
15	Correlation of perioperative risk scores with hospital costs in neurosurgical patients. Journal of Neurosurgery, 2020, 132, 818-824.	0.9	1
16	Evaluation of aneurysm rupture risk based upon flowrate-independent hemodynamic parameters: a multi-center pilot study. Journal of NeuroInterventional Surgery, 2023, 15, 695-700.	2.0	3
17	Cost Comparison of Microsurgery vs Endovascular Treatment for Ruptured Intracranial Aneurysms: A Propensity-Adjusted Analysis. Neurosurgery, 2022, 91, 470-476.	0.6	4
19	Prediction of cerebral aneurysm rupture risk by machine learning algorithms: a systematic review and meta-analysis of 18,670 participants. Neurosurgical Review, 2024, 47, .	1.2	2