Core–shell microcapsules of solid lipid nanoparticles enhanced oral delivery of curcumin

Colloids and Surfaces B: Biointerfaces 140, 161-168 DOI: 10.1016/j.colsurfb.2015.12.040

Citation Report

#	Article	IF	CITATIONS
1	Amine functionalized cubic mesoporous silica nanoparticles as an oral delivery system for curcumin bioavailability enhancement. Nanotechnology, 2016, 27, 505605.	1.3	40
2	Freeze-dried eudragit-hyaluronan multicompartment liposomes to improve the intestinal bioavailability of curcumin. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 107, 49-55.	2.0	56
3	Exploring the use of nanocarrier systems to deliver the magical molecule; Curcumin and its derivatives. Journal of Controlled Release, 2016, 225, 1-30.	4.8	155
4	Silica-based systems for oral delivery of drugs, macromolecules and cells. Advances in Colloid and Interface Science, 2017, 249, 346-362.	7.0	114
5	Effect of Meso vs Macro Size of Hierarchical Porous Silica on the Adsorption and Activity of Immobilized Î ² -Galactosidase. Langmuir, 2017, 33, 3333-3340.	1.6	26
6	Synthesis of nanostructured alumina with ultrahigh pore volume for pH-dependent release of curcumin. RSC Advances, 2017, 7, 38935-38944.	1.7	12
7	Tunable pH and redox-responsive drug release from curcumin conjugated γ-polyglutamic acid nanoparticles in cancer microenvironment. Colloids and Surfaces B: Biointerfaces, 2017, 159, 809-819.	2.5	25
8	Spray-drying of curcumin-loaded octenylsuccinated corn dextrin micelles stabilized with maltodextrin. Powder Technology, 2017, 307, 56-62.	2.1	23
9	Formation of chitosan nanoparticles to encapsulate krill oil (Euphausia superba) for application as a dietary supplement. Food Hydrocolloids, 2017, 63, 27-34.	5.6	79
10	Liposomal curcumin and its application in cancer. International Journal of Nanomedicine, 2017, Volume 12, 6027-6044.	3.3	258
11	Supercritical carbon dioxide-developed silk fibroin nanoplatform for smart colon cancer therapy. International Journal of Nanomedicine, 2017, Volume 12, 7751-7761.	3.3	38
12	Isotherm and Kinetic Studies of L-Phenylalanine Adsorption onto Porous Nanosilica. Materials Today: Proceedings, 2018, 5, 3193-3201.	0.9	7
13	Hansen solubility parameters (HSP) for prescreening formulation of solid lipid nanoparticles (SLN): <i>in vitro</i> testing of curcumin-loaded SLN in MCF-7 and BT-474 cell lines. Pharmaceutical Development and Technology, 2018, 23, 96-105.	1.1	39
14	Engineering nanomaterials to overcome the mucosal barrier by modulating surface properties. Advanced Drug Delivery Reviews, 2018, 124, 150-163.	6.6	120
15	Evaluation of anti-inflammatory activity and biocompatibility of curcumin loaded mesoporous silica nanoparticles as an oral drug delivery system. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2018, 9, 035007.	0.7	9
16	Lipid-coated mesoporous silica microparticles for the controlled delivery of β-galactosidase into intestines. Journal of Materials Chemistry B, 2018, 6, 5633-5639.	2.9	17
17	Sol-gel Silica Nanoparticles in Medicine: A Natural Choice. Design, Synthesis and Products. Molecules, 2018, 23, 2021.	1.7	106
18	Mesoporous Silica Nanoparticles: A Comprehensive Review on Synthesis and Recent Advances. Pharmaceutics, 2018, 10, 118.	2.0	573

#	Article	IF	CITATIONS
19	Antimalarial Activity of Orally Administered Curcumin Incorporated in Eudragit®-Containing Liposomes. International Journal of Molecular Sciences, 2018, 19, 1361.	1.8	44
20	Oral Curcumin via Hydrophobic Porous Silicon Carrier: Preparation, Characterization, and Toxicological Evaluation in Vivo. ACS Applied Materials & Interfaces, 2019, 11, 31661-31670.	4.0	14
21	Chitosan modified mesoporous silica nanoparticles as a versatile drug carrier with pH dependent properties. AIP Conference Proceedings, 2019, , .	0.3	4
22	<p>Formulation, Characterization And Evaluation Of Curcumin- Loaded PLGA- TPGS Nanoparticles For Liver Cancer Treatment</p> . Drug Design, Development and Therapy, 2019, Volume 13, 3569-3578.	2.0	38
23	Highly Efficient In Vivo Cancer Therapy by an Implantable Magnet Triboelectric Nanogenerator. Advanced Functional Materials, 2019, 29, 1808640.	7.8	92
24	Triggering Tautomerization of Curcumin by Confinement into Liposomes. ChemPhotoChem, 2019, 3, 1034-1041.	1.5	14
25	Oral Drug Delivery Technologies—A Decade of Developments. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 529-543.	1.3	37
26	<p>Evaluation of Intestinal Absorption Mechanism and Pharmacokinetics of Curcumin-Loaded Galactosylated Albumin Nanoparticles</p> . International Journal of Nanomedicine, 2019, Volume 14, 9721-9730.	3.3	26
27	Enhancing oral bioavailability of poorly soluble drugs with mesoporous silica based systems: opportunities and challenges. Drug Development and Industrial Pharmacy, 2019, 45, 349-358.	0.9	56
28	Nano-Curcumin Simultaneously Protects the Blood–Brain Barrier and Reduces M1 Microglial Activation During Cerebral Ischemia–Reperfusion Injury. ACS Applied Materials & Interfaces, 2019, 11, 3763-3770.	4.0	85
29	Multifunctional curcumin-loaded mesoporous silica nanoparticles for cancer chemoprevention and therapy. Microporous and Mesoporous Materials, 2020, 291, 109540.	2.2	71
30	Solid lipid nanoparticles and nanostructured lipid carriers in oral cancer drug delivery. Journal of Drug Delivery Science and Technology, 2020, 55, 101458.	1.4	66
31	Plant-Derived Natural Products in Cancer Research: Extraction, Mechanism of Action, and Drug Formulation. Molecules, 2020, 25, 5319.	1.7	53
32	Enhancing the Cellular Uptake and Antibacterial Activity of Rifampicin through Encapsulation in Mesoporous Silica Nanoparticles. Nanomaterials, 2020, 10, 815.	1.9	24
33	Formulating octyl methoxycinnamate in hybrid lipid-silica nanoparticles: An innovative approach for UV skin protection. Heliyon, 2020, 6, e03831.	1.4	24
34	A way to introducing a hydrophilic bioactive agent into model lipid membranes. The role of cetyl palmitate in the interaction of curcumin with 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine monolayers. Journal of Molecular Liquids, 2020, 308, 113040.	2.3	9
35	Construction of a novel "ball-and-rod―MSNs-pp-PEG system: a promising antitumor drug delivery system with a particle size switchable function. Chemical Communications, 2020, 56, 4785-4788.	2.2	8
36	pH-Triggered Drug Release Controlled by Poly(Styrene Sulfonate) Growth Hollow Mesoporous Silica Nanoparticles. ACS Omega, 2020, 5, 4261-4269.	1.6	43

CITATION REPORT

#	Article	IF	CITATIONS
37	Solid lipid nanoparticles: a review on recent perspectives and patents. Expert Opinion on Therapeutic Patents, 2020, 30, 179-194.	2.4	179
38	Morphology and microstructural analysis of bioactive-loaded micro/nanocarriers via microscopy techniques; CLSM/SEM/TEM/AFM. Advances in Colloid and Interface Science, 2020, 280, 102166.	7.0	69
39	Transmission electron microscopy (TEM) of nanoencapsulated food ingredients. , 2020, , 53-82.		5
40	Nanocurcumin: A Promising Candidate for Therapeutic Applications. Frontiers in Pharmacology, 2020, 11, 487.	1.6	213
41	Optimizing the Size of Drug-Loaded Nanoparticles Using Design of Experiments. , 2021, , 330-356.		0
42	Synthesis of nano-fibers containing nano-curcumin in zein corn protein and its physicochemical and biological characteristics. Scientific Reports, 2021, 11, 1902.	1.6	45
43	Advantages of introducing an effective crystalline inhibitor in curcumin amorphous solid dispersions formulated by Eudragit E100. Journal of Pharmacy and Pharmacology, 2021, 73, 185-192.	1.2	4
44	Inorganic Nanocarriers for Encapsulation of Natural Antimicrobial Compounds for Potential Food Packaging Application: A Comparative Study. Nanomaterials, 2021, 11, 379.	1.9	14
45	Potential Role of Curcumin and Its Nanoformulations to Treat Various Types of Cancers. Biomolecules, 2021, 11, 392.	1.8	100
46	Enhancing the stability of synthesized curcumin by spray-drying microencapsulation with soy lecithin and gum Arabic. Brazilian Journal of Chemical Engineering, 2021, 38, 563-572.	0.7	7
47	Polymeric Lipid Hybrid Nanoparticles as a Delivery System Enhance the Antitumor Effect of Emodin in Vitro and in Vivo. Journal of Pharmaceutical Sciences, 2021, 110, 2986-2996.	1.6	11
48	The autophagic inhibition oral squamous cell carcinoma cancer growth of 16-hydroxy-cleroda-3,14-dine-15,16-olide. Oncotarget, 2017, 8, 78379-78396.	0.8	19
49	Nanophytotherapeutics for Cancer. Advances in Medical Technologies and Clinical Practice Book Series, 2022, , 114-159.	0.3	0
50	Nanophytomedicine: An Effective Way for Improving Drug Delivery and Bioavailability of Herbal Medicines. , 2020, , 55-70.		2
51	Optimizing the Size of Drug-Loaded Nanoparticles Using Design of Experiments. Advances in Chemical and Materials Engineering Book Series, 2020, , 131-157.	0.2	0
52	Design of Nanostructured Lipid Carriers and Hybrid Lipid Nanoparticles. RSC Nanoscience and Nanotechnology, 2022, , 381-416.	0.2	1
53	Production, Characterization, Delivery, and Cholesterol-Lowering Mechanism of Phytosterols: A Review. Journal of Agricultural and Food Chemistry, 2022, 70, 2483-2494.	2.4	50
54	Hybrid nanostructures: Versatile systems for biomedical applications. Coordination Chemistry Reviews, 2022, 460, 214482.	9.5	25

#	Article	IF	CITATIONS
55	Interaction behavior of curcumin encapsulated onto functionalized SBA-15 as an efficient carrier and release in drug delivery. Journal of Molecular Structure, 2022, 1260, 132879.	1.8	59
56	Surface modified porous silicon with chitosan coating as pH-responsive controlled delivery system for lutein. Food and Function, 2022, , .	2.1	2
57	Water Dynamics in Competitive Solvation Assisted Loading of Colloidal Curcumin Nanoparticles onto Mesoporous Silica Nanostructures. Particle and Particle Systems Characterization, 0, , 2200062.	1.2	1
58	Eco-Friendly Silica Microcapsules with Improved Fragrance Retention. Applied Sciences (Switzerland), 2022, 12, 6759.	1.3	7
59	Bifunctional core-shell structure NaA zeolite@mesoporous-silica/curcumin nanocomplexes for removing heavy metals and reduction of Cadmium-induced damage. Microporous and Mesoporous Materials, 2022, 345, 112262.	2.2	1
60	Dacarbazine-encapsulated solid lipid nanoparticles for skin cancer: physical characterization, stability, in-vivo activity, histopathology, and immunohistochemistry. Frontiers in Oncology, 0, 13, .	1.3	1
62	Curcumin-Loaded Nanoparticles in Neurodegenerative Diseases. , 2023, , 353-375.		0

CITATION REPORT