Partially oxidized atomic cobalt layers for carbon dioxid

Nature 529, 68-71 DOI: 10.1038/nature16455

Citation Report

#	Article	IF	CITATIONS
7	Synthesis Strategies about 2D Materials. , 0, , .		11
8	General Selfâ€Template Synthesis of Transitionâ€Metal Oxide and Chalcogenide Mesoporous Nanotubes with Enhanced Electrochemical Performances. Angewandte Chemie, 2016, 128, 9201-9205.	1.6	28
9	Molybdenum–Bismuth Bimetallic Chalcogenide Nanosheets for Highly Efficient Electrocatalytic Reduction of Carbon Dioxide to Methanol. Angewandte Chemie - International Edition, 2016, 55, 6771-6775.	7.2	225
10	General Selfâ€Template Synthesis of Transitionâ€Metal Oxide and Chalcogenide Mesoporous Nanotubes with Enhanced Electrochemical Performances. Angewandte Chemie - International Edition, 2016, 55, 9055-9059.	7.2	154
11	Highly Selective and Stable Reduction of CO ₂ to CO by a Graphitic Carbon Nitride/Carbon Nanotube Composite Electrocatalyst. Chemistry - A European Journal, 2016, 22, 11991-11996.	1.7	132
12	Pt ₃ Co Octapods as Superior Catalysts of CO ₂ Hydrogenation. Angewandte Chemie - International Edition, 2016, 55, 9548-9552.	7.2	162
13	Rechargeable Roomâ€Temperature Na–CO ₂ Batteries. Angewandte Chemie, 2016, 128, 6592-6596.	1.6	43
14	Molybdenum–Bismuth Bimetallic Chalcogenide Nanosheets for Highly Efficient Electrocatalytic Reduction of Carbon Dioxide to Methanol. Angewandte Chemie, 2016, 128, 6883-6887.	1.6	55
15	A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nature Communications, 2016, 7, 13869.	5.8	505
16	Two-dimensional ZnO ultrathin nanosheets decorated with Au nanoparticles for effective photocatalysis. Journal of Applied Physics, 2016, 120, .	1.1	23
17	Functional Nanostructuring for Efficient Energy Conversion and Storage. Advanced Energy Materials, 2016, 6, 1600461.	10.2	15
18	Selective reduction of carbon dioxide to carbon monoxide over Au/CeO2 catalyst and identification of reaction intermediate. Chinese Journal of Catalysis, 2016, 37, 2053-2058.	6.9	17
19	Dual-valence nickel nanosheets covered with thin carbon as bifunctional electrocatalysts for full water splitting. Journal of Materials Chemistry A, 2016, 4, 7297-7304.	5.2	73
20	Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications. Chemical Society Reviews, 2016, 45, 3145-3187.	18.7	341
21	Unconventional structural and morphological transitions of nanosheets, nanoflakes and nanorods of AuNP@MnO ₂ . Journal of Materials Chemistry A, 2016, 4, 6447-6455.	5.2	39
22	Electrochemical etching of α-cobalt hydroxide for improvement of oxygen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 9578-9584.	5.2	125
23	Electro- and Photoreduction of Carbon Dioxide: The Twain Shall Meet at Copper Oxide/Copper Interfaces. ACS Energy Letters, 2016, 1, 332-338.	8.8	79
24	A Place in the Sun for Artificial Photosynthesis?. ACS Energy Letters, 2016, 1, 121-135.	8.8	163

#	Article	IF	CITATIONS
25	Catalysis performance comparison for electrochemical reduction of CO2 on Pd–Cu/graphene catalyst. RSC Advances, 2016, 6, 38380-38387.	1.7	32
26	Rational design of graphitic carbon based nanostructures for advanced electrocatalysis. Journal of Materials Chemistry A, 2016, 4, 8497-8511.	5.2	73
27	Controllable synthesis of ultrathin gold nanomembranes. RSC Advances, 2016, 6, 45031-45035.	1.7	2
28	Opportunities and challenges in the electrocatalysis of CO2 and CO reduction using bifunctional surfaces: A theoretical and experimental study of Au–Cd alloys. Journal of Catalysis, 2016, 343, 215-231.	3.1	115
29	In situ decomposition of metal-organic frameworks into ultrathin nanosheets for the oxygen evolution reaction. Nano Research, 2016, 9, 1856-1865.	5.8	78
30	Synthesis of chemicals using CO2 as a building block under mild conditions. Current Opinion in Green and Sustainable Chemistry, 2016, 1, 13-17.	3.2	8
31	Surface engineering on a nanocatalyst: basic zinc salt nanoclusters improve catalytic performances of Ru nanoparticles. Journal of Materials Chemistry A, 2016, 4, 17694-17703.	5.2	16
32	Nitrogen-doping induced oxygen divacancies in freestanding molybdenum trioxide single-layers boosting electrocatalytic hydrogen evolution. Nano Energy, 2016, 30, 810-817.	8.2	62
33	An integrated device to convert carbon dioxide to energy. Applied Energy, 2016, 183, 1346-1350.	5.1	19
34	Electrochemical Partial Reforming of Ethanol into Ethyl Acetate Using Ultrathin Co ₃ O ₄ Nanosheets as a Highly Selective Anode Catalyst. ACS Central Science, 2016, 2, 538-544.	5.3	120
35	Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature, 2016, 537, 382-386.	13.7	1,429
36	Rational Design of Bi Nanoparticles for Efficient Electrochemical CO ₂ Reduction: The Elucidation of Size and Surface Condition Effects. ACS Catalysis, 2016, 6, 6255-6264.	5.5	212
37	Metal–Organic Framework for Emulsifying Carbon Dioxide and Water. Angewandte Chemie, 2016, 128, 11544-11548.	1.6	8
38	Metal–Organic Framework for Emulsifying Carbon Dioxide and Water. Angewandte Chemie - International Edition, 2016, 55, 11372-11376.	7.2	36
39	Syngas production from CO2 reforming with methane over core-shell Ni@SiO2 catalysts. Journal of CO2 Utilization, 2016, 16, 318-327.	3.3	75
40	Finding the Way to Solar Fuels with Dye-Sensitized Photoelectrosynthesis Cells. Journal of the American Chemical Society, 2016, 138, 13085-13102.	6.6	317
41	Oxidation of Cobalt by Oxygen Bombardment at Room Temperature. Journal of Physical Chemistry C, 2016, 120, 22421-22425.	1.5	14
42	Ultrathin TiO2 flakes optimizing solar light driven CO2 reduction. Nano Energy, 2016, 26, 692-698.	8.2	107

#	Article	IF	CITATIONS
43	2D Metals by Repeated Size Reduction. Advanced Materials, 2016, 28, 8170-8176.	11.1	68
44	Ultrathin-nanosheet-assembled Bi2MoO6 mesoporous hollow framework for realizing optimized sunlight-driven photocatalytic water oxidation. RSC Advances, 2016, 6, 102155-102158.	1.7	10
45	Efficient bioelectrocatalytic CO2 reduction on gas-diffusion-type biocathode with tungsten-containing formate dehydrogenase. Electrochemistry Communications, 2016, 73, 85-88.	2.3	54
46	Performance Limits of Photoelectrochemical CO ₂ Reduction Based on Known Electrocatalysts and the Case for Two-Electron Reduction Products. Chemistry of Materials, 2016, 28, 8844-8850.	3.2	30
47	Recent Advancements, Fundamental Challenges, and Opportunities in Catalytic Methanation of CO ₂ . Energy & Fuels, 2016, 30, 8815-8831.	2.5	315
48	Free-standing iridium and rhodium-based hierarchically-coiled ultrathin nanosheets for highly selective reduction of nitrobenzene to azoxybenzene under ambient conditions. Nanoscale, 2016, 8, 15744-15752.	2.8	40
49	Recent Advances in Soft Materials to Build and Functionalize Hard Structures for Electrochemical Energy Storage and In situ Electrochemical Molecular Biosensing. Advanced Functional Materials, 2016, 26, 8824-8853.	7.8	12
50	Submonolayered Ru Deposited on Ultrathin Pd Nanosheets used for Enhanced Catalytic Applications. Advanced Materials, 2016, 28, 10282-10286.	11.1	148
51	Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction. Nature Communications, 2016, 7, 12697.	5.8	522
52	Pt ₃ Co Octapods as Superior Catalysts of CO ₂ Hydrogenation. Angewandte Chemie, 2016, 128, 9700-9704.	1.6	20
53	Rechargeable Roomâ€Temperature Na–CO ₂ Batteries. Angewandte Chemie - International Edition, 2016, 55, 6482-6486.	7.2	202
54	Electrochemical CO ₂ Reduction to Hydrocarbons on a Heterogeneous Molecular Cu Catalyst in Aqueous Solution. Journal of the American Chemical Society, 2016, 138, 8076-8079.	6.6	450
55	Nanostructured nonprecious metal catalysts for electrochemical reduction of carbon dioxide. Nano Today, 2016, 11, 373-391.	6.2	200
56	Magnetic Co@g-C ₃ N ₄ Core–Shells on rGO Sheets for Momentum Transfer with Catalytic Activity toward Continuous-Flow Hydrogen Generation. Langmuir, 2016, 32, 6272-6281.	1.6	67
57	Rational design of cobalt–chromium layered double hydroxide as a highly efficient electrocatalyst for water oxidation. Journal of Materials Chemistry A, 2016, 4, 11292-11298.	5.2	191
58	Catalytic conversion of CO2 to value added fuels: Current status, challenges, and future directions. Chinese Journal of Catalysis, 2016, 37, 999-1015.	6.9	105
59	Hybrid atomic layers based electrocatalyst converts waste CO2 into liquid fuel. Science China Materials, 2016, 59, 1-3.	3.5	17
60	Free-standing palladium-nickel alloy wavy nanosheets. Nano Research, 2016, 9, 2244-2250.	5.8	45

#	Article	IF	CITATIONS
61	The surface sulfur doping induced enhanced performance of cobalt catalysts in oxygen evolution reactions. Chemical Communications, 2016, 52, 9450-9453.	2.2	47
62	Integration of Quantum Confinement and Alloy Effect to Modulate Electronic Properties of RhW Nanocrystals for Improved Catalytic Performance toward CO ₂ Hydrogenation. Nano Letters, 2017, 17, 788-793.	4.5	91
63	Copper nanoparticle interspersed MoS ₂ nanoflowers with enhanced efficiency for CO ₂ electrochemical reduction to fuel. Dalton Transactions, 2017, 46, 10569-10577.	1.6	81
64	Enhanced effect of plasma on catalytic reduction of CO 2 to CO with hydrogen over Au/CeO 2 at low temperature. Journal of Energy Chemistry, 2017, 26, 488-493.	7.1	33
65	Electrocatalytic CO ₂ Reduction to Formate at Low Overpotentials on Electrodeposited Pd Films: Stabilized Performance by Suppression of CO Formation. ChemSusChem, 2017, 10, 1509-1516.	3.6	42
66	Heterophase-structured nanocrystals as superior supports for Ru-based catalysts in selective hydrogenation of benzene. Scientific Reports, 2017, 7, 39847.	1.6	14
67	Highâ€Throughput Synthesis of Mixedâ€Metal Electrocatalysts for CO ₂ Reduction. Angewandte Chemie - International Edition, 2017, 56, 6068-6072.	7.2	131
68	Quasi–solid state rechargeable Na-CO ₂ batteries with reduced graphene oxide Na anodes. Science Advances, 2017, 3, e1602396.	4.7	193
69	Self‣upported 3D PdCu Alloy Nanosheets as a Bifunctional Catalyst for Electrochemical Reforming of Ethanol. Small, 2017, 13, 1602970.	5.2	168
70	Ag–Sn Bimetallic Catalyst with a Core–Shell Structure for CO ₂ Reduction. Journal of the American Chemical Society, 2017, 139, 1885-1893.	6.6	455
71	Sub-1.1 nm ultrathin porous CoP nanosheets with dominant reactive {200} facets: a high mass activity and efficient electrocatalyst for the hydrogen evolution reaction. Chemical Science, 2017, 8, 2769-2775.	3.7	243
72	Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction. Nature Communications, 2017, 8, 14503.	5.8	365
73	Sn nanoparticles on gas diffusion electrodes: Synthesis, characterization and use for continuous CO 2 electroreduction to formate. Journal of CO2 Utilization, 2017, 18, 222-228.	3.3	152
74	Highly Efficient and Exceptionally Durable CO ₂ Photoreduction to Methanol over Freestanding Defective Single-Unit-Cell Bismuth Vanadate Layers. Journal of the American Chemical Society, 2017, 139, 3438-3445.	6.6	508
75	Efficient photocatalytic CO 2 reduction in all-inorganic aqueous environment: Cooperation between reaction medium and Cd(II) modified colloidal ZnS. Nano Energy, 2017, 34, 524-532.	8.2	74
76	A review of high temperature co-electrolysis of H ₂ O and CO ₂ to produce sustainable fuels using solid oxide electrolysis cells (SOECs): advanced materials and technology. Chemical Society Reviews, 2017, 46, 1427-1463.	18.7	515
77	Nanostructured Materials for Heterogeneous Electrocatalytic CO ₂ Reduction and their Related Reaction Mechanisms. Angewandte Chemie - International Edition, 2017, 56, 11326-11353.	7.2	811
78	Nanostrukturierte Materialien für die elektrokatalytische CO ₂ â€Reduktion und ihre Reaktionsmechanismen. Angewandte Chemie, 2017, 129, 11482-11511.	1.6	102

#	Article	IF	CITATIONS
79	Highâ€Throughput Synthesis of Mixedâ€Metal Electrocatalysts for CO ₂ Reduction. Angewandte Chemie, 2017, 129, 6164-6168.	1.6	28
80	Synthesizing new types of ultrathin 2D metal oxide nanosheets via half-successive ion layer adsorption and reaction. 2D Materials, 2017, 4, 025031.	2.0	18
81	Electrochemical Reduction of CO ₂ with an Oxideâ€Derived Lead Nanoâ€Coralline Electrode in Dimcarb. ChemElectroChem, 2017, 4, 1402-1410.	1.7	22
82	Wafer-scale synthesis of ultrathin CoO nanosheets with enhanced electrochemical catalytic properties. Journal of Materials Chemistry A, 2017, 5, 9060-9066.	5.2	31
83	Fe ₃ O ₄ /FeNi Embedded Nanostructure and Its Kinetic Law for Selective Catalytic Reduction of <i>p</i> -Nitrophenyl Compounds. Inorganic Chemistry, 2017, 56, 5152-5157.	1.9	24
84	Core–Shell NiFe-LDH@NiFe-B _i Nanoarray: In Situ Electrochemical Surface Derivation Preparation toward Efficient Water Oxidation Electrocatalysis in near-Neutral Media. ACS Applied Materials & Interfaces, 2017, 9, 19502-19506.	4.0	48
85	Efficient Electrocatalytic Reduction of CO ₂ by Nitrogenâ€Doped Nanoporous Carbon/Carbon Nanotube Membranes: A Step Towards the Electrochemical CO ₂ Refinery. Angewandte Chemie - International Edition, 2017, 56, 7847-7852.	7.2	252
86	Highly active catalyst derived from a 3D foam of Fe(PO ₃) ₂ /Ni ₂ P for extremely efficient water oxidation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5607-5611.	3.3	302
87	Defect Chemistry of Nonpreciousâ€Metal Electrocatalysts for Oxygen Reactions. Advanced Materials, 2017, 29, 1606459.	11.1	1,260
88	A breakthrough in electrocatalysis of CO2 conversion. National Science Review, 2017, 4, 155-156.	4.6	8
89	Progress in inorganic cathode catalysts for electrochemical conversion of carbon dioxide into formate or formic acid. Journal of Applied Electrochemistry, 2017, 47, 661-678.	1.5	75
90	A nitrogen-doped nano carbon dodecahedron with Co@Co ₃ O ₄ implants as a bi-functional electrocatalyst for efficient overall water splitting. Journal of Materials Chemistry A, 2017, 5, 9533-9536.	5.2	87
91	Highly efficient and durable water oxidation in a near-neutral carbonate electrolyte electrocatalyzed by a core–shell structured NiO@Ni–Ci nanosheet array. Sustainable Energy and Fuels, 2017, 1, 1287-1291.	2.5	27
92	Cu metal embedded in oxidized matrix catalyst to promote CO ₂ activation and CO dimerization for electrochemical reduction of CO ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6685-6688.	3.3	322
93	Thermodynamic study of hydrocarbon synthesis from carbon dioxide and hydrogen. , 2017, 7, 942-957.		29
94	Unique copper and reduced graphene oxide nanocomposite toward the efficient electrochemical reduction of carbon dioxide. Scientific Reports, 2017, 7, 3184.	1.6	64
95	Reaction Mechanisms of the Electrochemical Conversion of Carbon Dioxide to Formic Acid on Tin Oxide Electrodes. ChemElectroChem, 2017, 4, 2130-2136.	1.7	76
96	High-activity Cu nanowires electrocatalysts for CO 2 reduction. Journal of CO2 Utilization, 2017, 20, 27-33.	3.3	46

#	Article	IF	CITATIONS
97	Defect-Mediated Electron–Hole Separation in One-Unit-Cell ZnIn ₂ S ₄ Layers for Boosted Solar-Driven CO ₂ Reduction. Journal of the American Chemical Society, 2017, 139, 7586-7594.	6.6	764
98	Topotactic reduction of layered double hydroxides for atomically thick two-dimensional non-noble-metal alloy. Nano Research, 2017, 10, 2988-2997.	5.8	38
99	lonic Exchange of Metal–Organic Frameworks to Access Single Nickel Sites for Efficient Electroreduction of CO ₂ . Journal of the American Chemical Society, 2017, 139, 8078-8081.	6.6	1,115
100	Co-based nanowire films as complementary hydrogen- and oxygen-evolving electrocatalysts in neutral electrolyte. Catalysis Science and Technology, 2017, 7, 2689-2694.	2.1	39
101	Efficient Electrocatalytic Reduction of CO ₂ by Nitrogenâ€Doped Nanoporous Carbon/Carbon Nanotube Membranes: A Step Towards the Electrochemical CO ₂ Refinery. Angewandte Chemie, 2017, 129, 7955-7960.	1.6	78
102	Li Electrochemical Tuning of Metal Oxide for Highly Selective CO ₂ Reduction. ACS Nano, 2017, 11, 6451-6458.	7.3	123
103	Direct Detection of Electron Transfer Reactions Underpinning the Tin-Catalyzed Electrochemical Reduction of CO ₂ using Fourier-Transformed ac Voltammetry. ACS Catalysis, 2017, 7, 4846-4853.	5.5	60
104	Bi ₂ O ₂ CO ₃ Nanosheets as Electrocatalysts for Selective Reduction of CO ₂ to Formate at Low Overpotential. ACS Omega, 2017, 2, 2561-2567.	1.6	58
105	Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nature Chemistry, 2017, 9, 1019-1024.	6.6	757
106	Efficiently photoelectrocatalyze CO 2 to methanol using Ru(II)-pyridyl complex covalently bonded on TiO 2 nanotube arrays. Applied Catalysis B: Environmental, 2017, 210, 368-378.	10.8	27
107	Highly selective hydrogenation of CO 2 into formic acid on a nano-Ni catalyst at ambient temperature: Process, mechanisms and catalyst stability. Journal of CO2 Utilization, 2017, 19, 157-164.	3.3	36
108	Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles. Nano Research, 2017, 10, 2181-2191.	5.8	208
109	A Sodiumâ€Ionâ€Conducting Direct Formate Fuel Cell: Generating Electricity and Producing Base. Angewandte Chemie, 2017, 129, 5828-5831.	1.6	28
110	A Sodiumâ€Ionâ€Conducting Direct Formate Fuel Cell: Generating Electricity and Producing Base. Angewandte Chemie - International Edition, 2017, 56, 5734-5737.	7.2	77
111	Co-Co3O4@carbon core–shells derived from metalâ^'organic framework nanocrystals as efficient hydrogen evolution catalysts. Nano Research, 2017, 10, 3035-3048.	5.8	106
112	Facet effect of Pd cocatalyst on photocatalytic CO 2 reduction over g-C 3 N 4. Journal of Catalysis, 2017, 349, 208-217.	3.1	332
113	In situ Sn-doped WO3 films with enhanced photoelectrochemical performance for reducing CO2 into formic acid. Journal of Solid State Electrochemistry, 2017, 21, 2231-2240.	1.2	35
114	A general approach to synthesise ultrathin NiM (M = Fe, Co, Mn) hydroxide nanosheets as high-performance low-cost electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2017, 5, 7769-7775.	5.2	94

#	Article	IF	CITATIONS
115	Two-dimensional nanosheets for electrocatalysis in energy generation and conversion. Journal of Materials Chemistry A, 2017, 5, 7257-7284.	5.2	220
116	Bridged-multi-octahedral cobalt oxide nanocrystals with a Co-terminated surface as an oxygen evolution and reduction electrocatalyst. Journal of Materials Chemistry A, 2017, 5, 7416-7422.	5.2	23
117	Co-vacancy-rich Co1–x S nanosheets anchored on rGO for high-efficiency oxygen evolution. Nano Research, 2017, 10, 1819-1831.	5.8	78
118	Oxygen defective metal oxides for energy conversion and storage. Nano Today, 2017, 13, 23-39.	6.2	266
119	Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews, 2017, 117, 6225-6331.	23.0	3,940
120	Heterogeneous synergistic catalysis by Ru-RuO x nanoparticles for Se–Se bond activation. Nano Research, 2017, 10, 922-932.	5.8	18
121	Characterization of Ca-promoted Co/AC catalyst for CO 2 -CH 4 reforming to syngas production. Journal of CO2 Utilization, 2017, 18, 326-334.	3.3	33
122	Elemental two-dimensional nanosheets beyond graphene. Chemical Society Reviews, 2017, 46, 2127-2157.	18.7	285
123	Visible-light-driven catalytic activity enhancement of Pd in AuPd nanoparticles for hydrogen evolution from formic acid at room temperature. Applied Catalysis B: Environmental, 2017, 204, 497-504.	10.8	63
124	Hierarchical Mesoporous SnO ₂ Nanosheets on Carbon Cloth: A Robust and Flexible Electrocatalyst for CO ₂ Reduction with High Efficiency and Selectivity. Angewandte Chemie, 2017, 129, 520-524.	1.6	136
125	Hierarchical Mesoporous SnO ₂ Nanosheets on Carbon Cloth: A Robust and Flexible Electrocatalyst for CO ₂ Reduction with High Efficiency and Selectivity. Angewandte Chemie - International Edition, 2017, 56, 505-509.	7.2	526
126	Nanostructured 2D Materials: Prospective Catalysts for Electrochemical CO ₂ Reduction. Small Methods, 2017, 1, 1600006.	4.6	112
127	Rapid Synthesis of Sub-5 nm Sized Cubic Boron Nitride Nanocrystals with High-Piezoelectric Behavior via Electrochemical Shock. Nano Letters, 2017, 17, 355-361.	4.5	16
128	Formation of graphene-like 2D spinel MnCo2O4 and its lithium storage properties. Journal of Alloys and Compounds, 2017, 695, 2937-2944.	2.8	26
129	Nanostructured heterogeneous catalysts for electrochemical reduction of CO2. Current Opinion in Green and Sustainable Chemistry, 2017, 3, 39-44.	3.2	51
130	Engineering on the edge of Pd nanosheet cocatalysts for enhanced photocatalytic reduction of CO ₂ to fuels. Journal of Materials Chemistry A, 2017, 5, 2619-2628.	5.2	68
131	Electrochemical promotion of catalysis over Pd nanoparticles for CO ₂ reduction. Chemical Science, 2017, 8, 2569-2573.	3.7	72
132	Single Crystalline Ultrathin Nickel–Cobalt Alloy Nanosheets Array for Direct Hydrazine Fuel Cells. Advanced Science, 2017, 4, 1600179.	5.6	104

#	Article	IF	CITATIONS
133	Morphologyâ€Ðirected Selective Production of Ethylene or Ethane from CO ₂ on a Cu Mesopore Electrode. Angewandte Chemie, 2017, 129, 814-818.	1.6	57
134	Morphologyâ€Directed Selective Production of Ethylene or Ethane from CO ₂ on a Cu Mesopore Electrode. Angewandte Chemie - International Edition, 2017, 56, 796-800.	7.2	268
135	A Dinuclear Cobalt Cryptate as a Homogeneous Photocatalyst for Highly Selective and Efficient Visibleâ€Light Driven CO ₂ Reduction to CO in CH ₃ CN/H ₂ O Solution. Angewandte Chemie - International Edition, 2017, 56, 738-743.	7.2	261
136	A Dinuclear Cobalt Cryptate as a Homogeneous Photocatalyst for Highly Selective and Efficient Visibleâ€Light Driven CO ₂ Reduction to CO in CH ₃ CN/H ₂ O Solution. Angewandte Chemie, 2017, 129, 756-761.	1.6	69
137	Liquid Hydrocarbon Production from CO ₂ : Recent Development in Metalâ€Based Electrocatalysis. ChemSusChem, 2017, 10, 4342-4358.	3.6	54
138	Nanostructured Nickel Cobaltite Antispinel as Bifunctional Electrocatalyst for Overall Water Splitting. Journal of Physical Chemistry C, 2017, 121, 25888-25897.	1.5	39
139	Hierarchical Cu@CoFe layered double hydroxide core-shell nanoarchitectures as bifunctional electrocatalysts for efficient overall water splitting. Nano Energy, 2017, 41, 327-336.	8.2	252
140	Advances in efficient electrocatalysts based on layered double hydroxides and their derivatives. Journal of Energy Chemistry, 2017, 26, 1094-1106.	7.1	93
141	Unlocking the Electrocatalytic Activity of Antimony for CO ₂ Reduction by Twoâ€Dimensional Engineering of the Bulk Material. Angewandte Chemie - International Edition, 2017, 56, 14718-14722.	7.2	164
142	Two-dimensional ultrathin arrays of CoP: Electronic modulation toward high performance overall water splitting. Nano Energy, 2017, 41, 583-590.	8.2	207
143	Heterogeneous electrochemical CO ₂ reduction using nonmetallic carbon-based catalysts: current status and future challenges. Nanotechnology, 2017, 28, 472001.	1.3	87
144	Unlocking the Electrocatalytic Activity of Antimony for CO ₂ Reduction by Twoâ€Dimensional Engineering of the Bulk Material. Angewandte Chemie, 2017, 129, 14910-14914.	1.6	58
145	An amorphous Co-carbonate-hydroxide nanowire array for efficient and durable oxygen evolution reaction in carbonate electrolytes. Nanoscale, 2017, 9, 16612-16615.	2.8	173
146	Selective electrochemical CO ₂ reduction over highly porous gold films. Journal of Materials Chemistry A, 2017, 5, 21955-21964.	5.2	69
147	Cobalt Spinel Nanocubes on N-Doped Graphene: A Synergistic Hybrid Electrocatalyst for the Highly Selective Reduction of Carbon Dioxide to Formic Acid. ACS Catalysis, 2017, 7, 7695-7703.	5.5	73
148	Mixed-Metal–Organic Framework Self-Template Synthesis of Porous Hybrid Oxyphosphides for Efficient Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 38621-38628.	4.0	40
149	The flaky Cd film on Cu plate substrate: An active and efficient electrode for electrochemical reduction of CO 2 to formate. Journal of CO2 Utilization, 2017, 22, 191-196.	3.3	57
150	Sulfur-Modulated Tin Sites Enable Highly Selective Electrochemical Reduction of CO2 to Formate. Joule, 2017, 1, 794-805.	11.7	390

#	Article	IF	CITATIONS
151	Atomically thin non-layered nanomaterials for energy storage and conversion. Chemical Society Reviews, 2017, 46, 7338-7373.	18.7	162
152	Fundamentals and Challenges of Electrochemical CO2 Reduction Using Two-Dimensional Materials. CheM, 2017, 3, 560-587.	5.8	815
153	Transition-Metal Single Atoms in a Graphene Shell as Active Centers for Highly Efficient Artificial Photosynthesis. CheM, 2017, 3, 950-960.	5.8	326
154	Unraveling the Mechanism for the Sharpâ€īp Enhanced Electrocatalytic Carbon Dioxide Reduction: The Kinetics Decide. Angewandte Chemie - International Edition, 2017, 56, 15617-15621.	7.2	76
155	Direct Observation on Reaction Intermediates and the Role of Bicarbonate Anions in CO ₂ Electrochemical Reduction Reaction on Cu Surfaces. Journal of the American Chemical Society, 2017, 139, 15664-15667.	6.6	468
156	Two dimensional oxygen-vacancy-rich Co ₃ O ₄ nanosheets with excellent supercapacitor performances. Chemical Communications, 2017, 53, 12410-12413.	2.2	185
157	Unraveling the Mechanism for the Sharpâ€īp Enhanced Electrocatalytic Carbon Dioxide Reduction: The Kinetics Decide. Angewandte Chemie, 2017, 129, 15823-15827.	1.6	8
158	–CH ₃ Mediated Pathway for the Electroreduction of CO ₂ to Ethane and Ethanol on Thick Oxide-Derived Copper Catalysts at Low Overpotentials. ACS Energy Letters, 2017, 2, 2103-2109.	8.8	117
159	Composition-tunable synthesis of "clean―syngas via a one-step synthesis of metal-free pyridinic-N-enriched self-supported CNTs: the synergy of electrocatalyst pyrolysis temperature and potential. Green Chemistry, 2017, 19, 4284-4288.	4.6	53
160	Biofunctionalized conductive polymers enable efficient CO ₂ electroreduction. Science Advances, 2017, 3, e1700686.	4.7	89
161	Photogenerated Carriers Boost Water Splitting Activity over Transition-Metal/Semiconducting Metal Oxide Bifunctional Electrocatalysts. ACS Catalysis, 2017, 7, 6464-6470.	5.5	62
162	Selective Etching of Nitrogenâ€Doped Carbon by Steam for Enhanced Electrochemical CO ₂ Reduction. Advanced Energy Materials, 2017, 7, 1701456.	10.2	203
163	Energy related CO2 conversion and utilization: Advanced materials/nanomaterials, reaction mechanisms and technologies. Nano Energy, 2017, 40, 512-539.	8.2	221
164	Controlling cation segregation in perovskite-based electrodes for high electro-catalytic activity and durability. Chemical Society Reviews, 2017, 46, 6345-6378.	18.7	246
165	Copper nanoparticle ensembles for selective electroreduction of CO ₂ to C ₂ â€ ^e C ₃ products. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10560-10565.	3.3	479
166	Superaerophobic Ultrathin Ni–Mo Alloy Nanosheet Array from In Situ Topotactic Reduction for Hydrogen Evolution Reaction. Small, 2017, 13, 1701648.	5.2	190
167	Computational Discovery of Nickel-Based Catalysts for CO ₂ Reduction to Formic Acid. Journal of Physical Chemistry C, 2017, 121, 20865-20870.	1.5	39
168	A novel fuel electrode enabling direct CO ₂ electrolysis with excellent and stable cell performance. Journal of Materials Chemistry A, 2017, 5, 20833-20842.	5.2	128

#	Article	IF	CITATIONS
169	CO ₂ Reduction: From the Electrochemical to Photochemical Approach. Advanced Science, 2017, 4, 1700194.	5.6	651
170	Tuning of CO ₂ Reduction Selectivity on Metal Electrocatalysts. Small, 2017, 13, 1701809.	5.2	182
171	Silver Nanoparticles with Surface-Bonded Oxygen for Highly Selective CO ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2017, 5, 8529-8534.	3.2	58
172	Selective Electrochemical Reduction of Carbon Dioxide to Ethanol on a Boron―and Nitrogenâ€Coâ€doped Nanodiamond. Angewandte Chemie, 2017, 129, 15813-15817.	1.6	196
173	Selective Electrochemical Reduction of Carbon Dioxide to Ethanol on a Boron―and Nitrogenâ€Coâ€doped Nanodiamond. Angewandte Chemie - International Edition, 2017, 56, 15607-15611.	7.2	226
174	Robust Catalysis on 2D Materials Encapsulating Metals: Concept, Application, and Perspective. Advanced Materials, 2017, 29, 1606967.	11.1	334
175	Progress in catalyst exploration for heterogeneous CO ₂ reduction and utilization: a critical review. Journal of Materials Chemistry A, 2017, 5, 21625-21649.	5.2	305
176	Synthesis of 2-D nanostructured BiVO4:Ag hybrid as an efficient electrode material for supercapacitors. Ceramics International, 2017, 43, 16217-16224.	2.3	39
177	Ultrastable atomic copper nanosheets for selective electrochemical reduction of carbon dioxide. Science Advances, 2017, 3, e1701069.	4.7	211
178	Construction of hierarchically porous graphitized carbon-supported NiFe layered double hydroxides with a core–shell structure as an enhanced electrocatalyst for the oxygen evolution reaction. Nanoscale, 2017, 9, 11596-11604.	2.8	95
179	Synthesis of Co3O4/Ta2O5 heterostructure hollow nanospheres for enhanced room temperature ethanol gas sensor. Journal of Alloys and Compounds, 2017, 727, 436-443.	2.8	21
180	Exclusive Formation of Formic Acid from CO ₂ Electroreduction by a Tunable Pdâ€Sn Alloy. Angewandte Chemie, 2017, 129, 12387-12391.	1.6	92
181	Exclusive Formation of Formic Acid from CO ₂ Electroreduction by a Tunable Pdâ€Sn Alloy. Angewandte Chemie - International Edition, 2017, 56, 12219-12223.	7.2	264
182	Prominent Electron Penetration through Ultrathin Graphene Layer from FeNi Alloy for Efficient Reduction of CO ₂ to CO. ChemSusChem, 2017, 10, 3044-3048.	3.6	21
183	One-step synthesis of magnetically recyclable Co@BN core–shell nanocatalysts for catalytic reduction of nitroarenes. RSC Advances, 2017, 7, 35451-35459.	1.7	29
184	Electrochemical reduction of carbon dioxide at nanostructured SnO2/carbon aerogels: The effect of tin oxide content on the catalytic activity and formate selectivity. Applied Catalysis A: General, 2017, 545, 159-166.	2.2	49
185	Cobalt-based nanosheet arrays as efficient electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2017, 5, 17640-17646.	5.2	40
186	La ₂ O ₃ â€Modified LaTiO ₂ N Photocatalyst with Spatially Separated Active Sites Achieving Enhanced CO ₂ Reduction. Advanced Functional Materials, 2017, 27, 1702447.	7.8	87

#	ARTICLE Building Blocks for High Performance in Electrocatalytic CO ₂ Reduction: Materials,	IF	CITATIONS
187	Optimization Strategies, and Device Engineering. Journal of Physical Chemistry Letters, 2017, 8, 3933-3944.	2.1	147
188	Ultrathin Ni-Al layered double hydroxide nanosheets with enhanced supercapacitor performance. Ceramics International, 2017, 43, 14395-14400.	2.3	52
189	Coupled Metal/Oxide Catalysts with Tunable Product Selectivity for Electrocatalytic CO ₂ Reduction. ACS Applied Materials & Interfaces, 2017, 9, 28519-28526.	4.0	83
190	Simultaneous CO2 capture and amino acid production using bipolar membrane electrodialysis (BMED). Journal of Membrane Science, 2017, 542, 264-271.	4.1	30
191	Development of Two-Dimensional Polycrystalline C03O4 Hierarchical Structures and Pt1/2D-Co3O4 Single-atom Catalysts. Microscopy and Microanalysis, 2017, 23, 1868-1869.	0.2	1
192	Selfâ€Cleaning Catalyst Electrodes for Stabilized CO ₂ Reduction to Hydrocarbons. Angewandte Chemie, 2017, 129, 13315-13319.	1.6	38
193	Facet Engineered Interface Design of Plasmonic Metal and Cocatalyst on BiOCl Nanoplates for Enhanced Visible Photocatalytic Oxygen Evolution. Small, 2017, 13, 1701607.	5.2	47
194	Selfâ€Cleaning Catalyst Electrodes for Stabilized CO ₂ Reduction to Hydrocarbons. Angewandte Chemie - International Edition, 2017, 56, 13135-13139.	7.2	126
195	Brass and Bronze as Effective CO ₂ Reduction Electrocatalysts. Angewandte Chemie, 2017, 129, 16806-16809.	1.6	15
196	Brass and Bronze as Effective CO ₂ Reduction Electrocatalysts. Angewandte Chemie - International Edition, 2017, 56, 16579-16582.	7.2	43
197	Partially Oxidized SnS ₂ Atomic Layers Achieving Efficient Visible-Light-Driven CO ₂ Reduction. Journal of the American Chemical Society, 2017, 139, 18044-18051.	6.6	368
198	Carbon cloth supported cobalt phosphide as multifunctional catalysts for efficient overall water splitting and zinc–air batteries. Nanoscale, 2017, 9, 18977-18982.	2.8	92
199	Promotion of iridium complex catalysts for HCOOH dehydrogenation by trace oxygen. Kinetics and Catalysis, 2017, 58, 499-505.	0.3	8
200	Heterojunctionâ€Assisted Co ₃ S ₄ @Co ₃ O ₄ Core–Shell Octahedrons for Supercapacitors and Both Oxygen and Carbon Dioxide Reduction Reactions. Small, 2017, 13, 1701724.	5.2	90
201	Electrocatalytic reduction of CO ₂ to CO with 100% faradaic efficiency by using pyrolyzed zeolitic imidazolate frameworks supported on carbon nanotube networks. Journal of Materials Chemistry A, 2017, 5, 24867-24873.	5.2	78
202	Metal–Organic Framework-Stabilized CO ₂ /Water Interfacial Route for Photocatalytic CO ₂ Conversion. ACS Applied Materials & Interfaces, 2017, 9, 41594-41598.	4.0	39
203	Practices for the collection and reporting of electrocatalytic performance and mechanistic information for the CO ₂ reduction reaction. Catalysis Science and Technology, 2017, 7, 5820-5832.	2.1	29
204	Hierarchical Ni/NiTiO ₃ derived from NiTi LDHs: a bifunctional electrocatalyst for overall water splitting. Journal of Materials Chemistry A, 2017, 5, 24767-24774.	5.2	44

#	Article	IF	CITATIONS
205	Electrochemical and FTIR spectroscopic study of CO 2 reduction at a nanostructured Cu/reduced graphene oxide thin film. Electrochemistry Communications, 2017, 82, 16-20.	2.3	31
206	Titania-Modified Silver Electrocatalyst for Selective CO ₂ Reduction to CH ₃ OH and CH ₄ from DFT Study. Journal of Physical Chemistry C, 2017, 121, 16275-16282.	1.5	47
207	Twoâ€Dimensional Nonâ€Layered Materials: Synthesis, Properties and Applications. Advanced Functional Materials, 2017, 27, 1603254.	7.8	161
208	MOF-derived bi-metal embedded N-doped carbon polyhedral nanocages with enhanced lithium storage. Journal of Materials Chemistry A, 2017, 5, 266-274.	5.2	341
209	Electrodeposition of nano-sized bismuth on copper foil as electrocatalyst for reduction of CO2 to formate. Applied Surface Science, 2017, 393, 191-196.	3.1	109
210	Towards a better Sn: Efficient electrocatalytic reduction of CO 2 to formate by Sn/SnS 2 derived from SnS 2 nanosheets. Nano Energy, 2017, 31, 270-277.	8.2	261
211	Biomimetic photoelectrocatalytic conversion of greenhouse gas carbon dioxide: Two-electron reduction for efficient formate production. Applied Catalysis B: Environmental, 2017, 201, 70-76.	10.8	52
212	Colloidal nanocrystals for electrochemical reduction reactions. Journal of Colloid and Interface Science, 2017, 485, 308-327.	5.0	17
213	Cu-CDots nanocorals as electrocatalyst for highly efficient CO ₂ reduction to formate. Nanoscale, 2017, 9, 298-304.	2.8	49
214	Breaking Compromises in CO2ÂReduction. Joule, 2017, 1, 643-645.	11.7	14
215	Ag Displacement on Cu Foam with Additives for Electrochemical Reduction of Carbon Dioxide to Carbon Monoxide. Bulletin of the Korean Chemical Society, 2017, 38, 1085-1090.	1.0	6
216	Cobalt-Doped Carbon Gels as Electro-Catalysts for the Reduction of CO2 to Hydrocarbons. Catalysts, 2017, 7, 25.	1.6	26
217	Electrocarboxylation of Dichlorobenzenes on a Silver Electrode in DMF. Catalysts, 2017, 7, 274.	1.6	14
218	Recent Advances in Transition-Metal-Mediated Electrocatalytic CO2 Reduction: From Homogeneous to Heterogeneous Systems. Catalysts, 2017, 7, 373.	1.6	48
219	Efficient Reduction of CO2 to Formate Using in Situ Prepared Nano-Sized Bi Electrocatalyst. International Journal of Electrochemical Science, 2017, 12, 2365-2375.	0.5	20
220	Recent advances in the nanoengineering of electrocatalysts for CO ₂ reduction. Nanoscale, 2018, 10, 6235-6260.	2.8	139
221	Tungstate catalysis: pressure-switched 2- and 6-electron reductive functionalization of CO ₂ with amines and phenylsilane. Green Chemistry, 2018, 20, 1564-1570.	4.6	75
222	Design of Electrocatalysts and Electrochemical Cells for Carbon Dioxide Reduction Reactions. Advanced Materials Technologies, 2018, 3, 1700377.	3.0	53

#	Article	IF	CITATIONS
223	Highly Active, Durable Ultrathin MoTe ₂ Layers for the Electroreduction of CO ₂ to CH ₄ . Small, 2018, 14, e1704049.	5.2	99
224	Design of Single-Atom Co–N ₅ Catalytic Site: A Robust Electrocatalyst for CO ₂ Reduction with Nearly 100% CO Selectivity and Remarkable Stability. Journal of the American Chemical Society, 2018, 140, 4218-4221.	6.6	945
225	Amorphizing of Cu Nanoparticles toward Highly Efficient and Robust Electrocatalyst for CO ₂ Reduction to Liquid Fuels with High Faradaic Efficiencies. Advanced Materials, 2018, 30, e1706194.	11,1	242
226	Cathodic Corrosion at the Bismuth–Ionic Liquid Electrolyte Interface under Conditions for CO ₂ Reduction. Chemistry of Materials, 2018, 30, 2362-2373.	3.2	38
227	Reduced graphene oxide supported gold nanoparticles for electrocatalytic reduction of carbon dioxide. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	26
228	Rethinking Co(CO ₃) _{0.5} (OH)·0.11H ₂ O: a new property for highly selective electrochemical reduction of carbon dioxide to methanol in aqueous solution. Green Chemistry, 2018, 20, 2967-2972.	4.6	55
229	Synthesis of ultrathin Ni nanosheets for semihydrogenation of phenylacetylene to styrene under mild conditions. Nanoscale, 2018, 10, 6936-6944.	2.8	26
230	Visible light responsive CdS sensitized TiO2 nanorod array films for efficient photocatalytic reduction of gas phase CO2. Molecular Catalysis, 2018, 448, 185-194.	1.0	42
231	Uniform Ordered Two-Dimensional Mesoporous TiO ₂ Nanosheets from Hydrothermal-Induced Solvent-Confined Monomicelle Assembly. Journal of the American Chemical Society, 2018, 140, 4135-4143.	6.6	242
232	Ultraâ€Stable and Highâ€Cobaltâ€Loaded Cobalt@Ordered Mesoporous Carbon Catalysts: Allâ€inâ€One Deoxygenation of Ketone into Alkylbenzene. ChemCatChem, 2018, 10, 3299-3304.	1.8	17
233	Nitrogen-rich graphitic carbon stabilized cobalt nanoparticles as an effective heterogeneous catalyst for hydrogenation of CO2 to formate. Journal of CO2 Utilization, 2018, 25, 310-314.	3.3	20
234	Ultrathin Ag Nanowires Electrode for Electrochemical Syngas Production from Carbon Dioxide. ACS Sustainable Chemistry and Engineering, 2018, 6, 7687-7694.	3.2	44
235	Thin-walled hollow Au–Cu nanostructures with high efficiency in electrochemical reduction of CO ₂ to CO. Inorganic Chemistry Frontiers, 2018, 5, 1524-1532.	3.0	27
236	Understanding the structural, electrical, and optical properties of monolayer h-phase RuO2 nanosheets: a combined experimental and computational study. NPG Asia Materials, 2018, 10, 266-276.	3.8	34
237	Identifying Active Sites of Nitrogenâ€Doped Carbon Materials for the CO ₂ Reduction Reaction. Advanced Functional Materials, 2018, 28, 1800499.	7.8	244
238	Catholyteâ€Free Electrocatalytic CO ₂ Reduction to Formate. Angewandte Chemie - International Edition, 2018, 57, 6883-6887.	7.2	143
239	Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chemical Reviews, 2018, 118, 4981-5079.	23.0	3,103
240	Atomic origins of high electrochemical CO ₂ reduction efficiency on nanoporous gold. Nanoscale, 2018, 10, 8372-8376.	2.8	46

#	Article	IF	CITATIONS
241	Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate. Nature Communications, 2018, 9, 1320.	5.8	658
242	Stabilization of CO ₂ â€inâ€water emulsions with high internal phase volume using PVAcâ€ <i>b</i> â€PVP and PVPâ€ <i>b</i> â€PVAcâ€ <i>b</i> â€PVP as emulsifying agents. Journal of Applied Poly Science, 2018, 135, 46351.	m a r3	6
243	Defect-rich (Co–CoS ₂) _x @Co ₉ S ₈ nanosheets derived from monomolecular precursor pyrolysis with excellent catalytic activity for hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 7977-7987.	5.2	46
244	A reassembled nanoporous gold leaf electrocatalyst for efficient CO ₂ reduction towards CO. Inorganic Chemistry Frontiers, 2018, 5, 1207-1212.	3.0	9
245	Synthesis of ultrathin wrinkle-free PdCu alloy nanosheets for modulating d-band electrons for efficient methanol oxidation. Journal of Materials Chemistry A, 2018, 6, 8531-8536.	5.2	70
246	Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels. Science China Materials, 2018, 61, 771-805.	3.5	172
247	Robust cobalt oxide catalysts for controllable hydrogenation of carboxylic acids to alcohols. Chinese Journal of Catalysis, 2018, 39, 250-257.	6.9	30
248	Atomically Thin Two-Dimensional Solids: An Emerging Platform for CO ₂ Electroreduction. ACS Energy Letters, 2018, 3, 624-633.	8.8	68
249	Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction. Nature Energy, 2018, 3, 140-147.	19.8	1,594
250	The synthesis and synergistic catalysis of iron phthalocyanine and its graphene-based axial complex for enhanced oxygen reduction. Nano Energy, 2018, 46, 347-355.	8.2	136
251	A wafer-scale 1 nm Ni(OH) ₂ nanosheet with superior electrocatalytic activity for the oxygen evolution reaction. Nanoscale, 2018, 10, 5054-5059.	2.8	31
252	Morphology-controlled Au nanostructures for efficient and selective electrochemical CO ₂ reduction. Journal of Materials Chemistry A, 2018, 6, 5119-5128.	5.2	59
253	Hierarchical TiO ₂ nanowire/microflower photoanode modified with Au nanoparticles for efficient photoelectrochemical water splitting. Catalysis Science and Technology, 2018, 8, 1395-1403.	2.1	32
254	Tuning the Adsorption Energy of Methanol Molecules Along Niâ€Nâ€Doped Carbon Phase Boundaries by the Mott–Schottky Effect for Gasâ€Phase Methanol Dehydrogenation. Angewandte Chemie, 2018, 130, 2727-2731.	1.6	19
255	Exploring Two-Dimensional Materials toward the Next-Generation Circuits: From Monomer Design to Assembly Control. Chemical Reviews, 2018, 118, 6236-6296.	23.0	410
256	Isolated Ni single atoms in graphene nanosheets for high-performance CO ₂ reduction. Energy and Environmental Science, 2018, 11, 893-903.	15.6	811
257	Supported Porous Nanomaterials as Efficient Heterogeneous Catalysts for CO ₂ Fixation Reactions. Chemistry - A European Journal, 2018, 24, 7278-7297.	1.7	107
258	Growth of highly mesoporous CuCo2O4@C core-shell arrays as advanced electrodes for high-performance supercapacitors. Applied Surface Science, 2018, 439, 883-890.	3.1	41

#	Article	IF	CITATIONS
259	Tuning the Adsorption Energy of Methanol Molecules Along Niâ€Nâ€Doped Carbon Phase Boundaries by the Mott–Schottky Effect for Gasâ€Phase Methanol Dehydrogenation. Angewandte Chemie - International Edition, 2018, 57, 2697-2701.	7.2	91
260	MoP Nanoparticles Supported on Indiumâ€Doped Porous Carbon: Outstanding Catalysts for Highly Efficient CO ₂ Electroreduction. Angewandte Chemie, 2018, 130, 2451-2455.	1.6	42
261	MoP Nanoparticles Supported on Indiumâ€Doped Porous Carbon: Outstanding Catalysts for Highly Efficient CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2018, 57, 2427-2431.	7.2	199
262	Boosting Formate Production in Electrocatalytic CO ₂ Reduction over Wide Potential Window on Pd Surfaces. Journal of the American Chemical Society, 2018, 140, 2880-2889.	6.6	310
263	Robust and selective electrochemical reduction of CO ₂ : the case of integrated 3D TiO ₂ @MoS ₂ architectures and Ti–S bonding effects. Journal of Materials Chemistry A, 2018, 6, 4706-4713.	5.2	56
264	Heterogeneous Singleâ€Atom Catalyst for Visibleâ€Lightâ€Driven Highâ€Turnover CO ₂ Reduction: The Role of Electron Transfer. Advanced Materials, 2018, 30, e1704624.	11.1	383
265	Highly Efficient Photocatalytic System Constructed from CoP/Carbon Nanotubes or Graphene for Visibleâ€Lightâ€Driven CO ₂ Reduction. Chemistry - A European Journal, 2018, 24, 4273-4278.	1.7	47
266	Nanofibrous cobalt oxide for electrocatalysis of CO2 reduction to carbon monoxide and formate in an acetonitrile-water electrolyte solution. Applied Catalysis B: Environmental, 2018, 229, 163-170.	10.8	63
267	General Techno-Economic Analysis of CO ₂ Electrolysis Systems. Industrial & Engineering Chemistry Research, 2018, 57, 2165-2177.	1.8	928
268	Facile synthesis of ultrathin two-dimensional nanosheets-constructed MCo ₂ O ₄ (M = Ni, Cu, Zn) nanotubes for efficient photocatalytic oxygen evolution. Nanoscale, 2018, 10, 3871-3876.	2.8	28
268 269	MCo ₂ O ₄ (M = Ni, Cu, Zn) nanotubes for efficient photocatalytic oxygen	2.8 5.2	28 84
	MCo ₂ O ₄ (M = Ni, Cu, Zn) nanotubes for efficient photocatalytic oxygen evolution. Nanoscale, 2018, 10, 3871-3876. Morphological and Compositional Design of Pd–Cu Bimetallic Nanocatalysts with Controllable		
269	 MCo₂O₄ (M = Ni, Cu, Zn) nanotubes for efficient photocatalytic oxygen evolution. Nanoscale, 2018, 10, 3871-3876. Morphological and Compositional Design of Pd–Cu Bimetallic Nanocatalysts with Controllable Product Selectivity toward CO₂ Electroreduction. Small, 2018, 14, 1703314. IrO x /CN x NTs as electrocatalysts for oxygen evolution reaction in a HCO3 â²/CO2 system at neutral 	5.2	84
269 270	 MCo₂O₄ (M = Ni, Cu, Zn) nanotubes for efficient photocatalytic oxygen evolution. Nanoscale, 2018, 10, 3871-3876. Morphological and Compositional Design of Pd–Cu Bimetallic Nanocatalysts with Controllable Product Selectivity toward CO₂ Electroreduction. Small, 2018, 14, 1703314. IrO x /CN x NTs as electrocatalysts for oxygen evolution reaction in a HCO3 â⁻²/CO2 system at neutral pH. Journal of Materials Science, 2018, 53, 4939-4948. Ni-doped ZnCo2O4 atomic layers to boost the selectivity in solar-driven reduction of CO2. Nano 	5.2	84 9
269 270 271	 MCo₂O₄ (M = Ni, Cu, Zn) nanotubes for efficient photocatalytic oxygen evolution. Nanoscale, 2018, 10, 3871-3876. Morphological and Compositional Design of Pd–Cu Bimetallic Nanocatalysts with Controllable Product Selectivity toward CO₂ Electroreduction. Small, 2018, 14, 1703314. IrO x /CN x NTs as electrocatalysts for oxygen evolution reaction in a HCO3 â^{-/}/CO2 system at neutral pH. Journal of Materials Science, 2018, 53, 4939-4948. Ni-doped ZnCo2O4 atomic layers to boost the selectivity in solar-driven reduction of CO2. Nano Research, 2018, 11, 2897-2908. Selective Electrochemical Production of Formate from Carbon Dioxide with Bismuth-Based Catalysts 	5.2 1.7 5.8	84 9 55
269 270 271 272	 MCo₂O₄ (M = Ni, Cu, Zn) nanotubes for efficient photocatalytic oxygen evolution. Nanoscale, 2018, 10, 3871-3876. Morphological and Compositional Design of Pd–Cu Bimetallic Nanocatalysts with Controllable Product Selectivity toward CO₂ Electroreduction. Small, 2018, 14, 1703314. IrO x /CN x NTs as electrocatalysts for oxygen evolution reaction in a HCO3 â⁻²/CO2 system at neutral pH. Journal of Materials Science, 2018, 53, 4939-4948. Ni-doped ZnCo2O4 atomic layers to boost the selectivity in solar-driven reduction of CO2. Nano Research, 2018, 11, 2897-2908. Selective Electrochemical Production of Formate from Carbon Dioxide with Bismuth-Based Catalysts in an Aqueous Electrolyte. ACS Catalysis, 2018, 8, 931-937. Regulation of Coordination Number over Single Co Sites: Triggering the Efficient Electroreduction of 	 5.2 1.7 5.8 5.5 	84 9 55 190
269 270 271 272 273	 MCo₂O₄ (M = Ni, Cu, Zn) nanotubes for efficient photocatalytic oxygen evolution. Nanoscale, 2018, 10, 3871-3876. Morphological and Compositional Design of Pd–Cu Bimetallic Nanocatalysts with Controllable Product Selectivity toward CO₂ Electroreduction. Small, 2018, 14, 1703314. IrO x /CN x NTs as electrocatalysts for oxygen evolution reaction in a HCO3 â°/CO2 system at neutral pH. Journal of Materials Science, 2018, 53, 4939-4948. Ni-doped ZnCo2O4 atomic layers to boost the selectivity in solar-driven reduction of CO2. Nano Research, 2018, 11, 2897-2908. Selective Electrochemical Production of Formate from Carbon Dioxide with Bismuth-Based Catalysts in an Aqueous Electrolyte. ACS Catalysis, 2018, 8, 931-937. Regulation of Coordination Number over Single Co Sites: Triggering the Efficient Electroreduction of CO₂. Angewandte Chemie - International Edition, 2018, 57, 1944-1948. The synergistic catalysis effect within a dinuclear nickel complex for efficient and selective 	 5.2 1.7 5.8 5.5 7.2 	 84 9 55 190 888

		CITATION REPORT		
#	Article		IF	CITATIONS
277	Ultrathin two-dimensional metallic nanomaterials. Materials Chemistry Frontiers, 2018	, 2, 456-467.	3.2	73
278	Technical photosynthesis involving CO2 electrolysis and fermentation. Nature Catalysi	s, 2018, 1, 32-39.	16.1	452
279	Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nature Reviews 2018, 2, .	Chemistry,	13.8	631
280	Ultrathin Bismuth Nanosheets as a Highly Efficient CO ₂ Reduction Electro ChemSusChem, 2018, 11, 848-853.	ocatalyst.	3.6	116
281	Unlocking the potential of graphene for water oxidation using an orbital hybridization Energy and Environmental Science, 2018, 11, 407-416.	strategy.	15.6	52
282	Pd-Containing Nanostructures for Electrochemical CO ₂ Reduction Reactic Catalysis, 2018, 8, 1510-1519.	on. ACS	5.5	261
283	A highly efficient flower-like cobalt catalyst for electroreduction of carbon dioxide. Chi of Catalysis, 2018, 39, 914-919.	nese Journal	6.9	19
284	Computational studies of electrochemical CO 2 reduction on chalcogen doped Cu 4 cl International Journal of Hydrogen Energy, 2018, 43, 9935-9942.	uster.	3.8	23
285	Catalytic reduction of low-concentration CO2 with water by Pt/Co@NC. Journal of Matand Technology, 2018, 34, 2337-2341.	terials Science	5.6	6
286	Enhancing CO2 electrolysis performance with vanadium-doped perovskite cathode in s electrolysis cell. Nano Energy, 2018, 50, 43-51.	solid oxide	8.2	158
287	Catholyteâ€Free Electrocatalytic CO ₂ Reduction to Formate. Angewandt 6999-7003.	e Chemie, 2018, 130,	1.6	26
289	What Should We Make with CO2 and How Can We Make It?. Joule, 2018, 2, 825-832.		11.7	975
290	A catalyst based on copper-cadmium bimetal for electrochemical reduction of CO2 to faradaic efficiency. Electrochimica Acta, 2018, 271, 544-550.	CO with high	2.6	49
291	A Simple Framework for Quantifying Electrochemical CO2 Fixation. Joule, 2018, 2, 594	-606.	11.7	70
292	Stannate derived bimetallic nanoparticles for electrocatalytic CO ₂ reduct Materials Chemistry A, 2018, 6, 7851-7858.	ion. Journal of	5.2	61
293	CO2 Activation on Cobalt Surface in the Presence of H2O: An Ambient-Pressure X-ray I Spectroscopy Study. Catalysis Letters, 2018, 148, 1686-1691.	Photoelectron	1.4	21
294	Computational Screening of Near-Surface Alloys for CO ₂ Electroreduction Catalysis, 2018, 8, 3885-3894.	n. ACS	5.5	79
295	Simple Cadmium Sulfide Compound with Stable 95 % Selectivity for Carbon Dioxi in Aqueous Medium. ChemSusChem, 2018, 11, 1421-1425.	de Electroreduction	3.6	30

#	Article	IF	CITATIONS
296	Unconventional morphologies of CoO nanocrystals <i>via</i> controlled oxidation of cobalt oleate precursors. Chemical Communications, 2018, 54, 3867-3870.	2.2	6
297	Ligament size-dependent electrocatalytic activity of nanoporous Ag network for CO ₂ reduction. Faraday Discussions, 2018, 210, 289-299.	1.6	26
298	Surface Immobilization of Transition Metal Ions on Nitrogenâ€Doped Graphene Realizing Highâ€Efficient and Selective CO ₂ Reduction. Advanced Materials, 2018, 30, e1706617.	11.1	276
299	Emerging Two-Dimensional Nanomaterials for Electrocatalysis. Chemical Reviews, 2018, 118, 6337-6408.	23.0	1,552
300	Roles of nitrogen species on nitrogen-doped CNTs supported Cu-ZrO2 system for carbon dioxide hydrogenation to methanol. Catalysis Today, 2018, 307, 212-223.	2.2	55
301	Molybdenum Ditelluride Rendered into an Efficient and Stable Electrocatalyst for the Hydrogen Evolution Reaction by Polymorphic Control. Energy Technology, 2018, 6, 345-350.	1.8	45
302	Recent Applications of 2D Inorganic Nanosheets for Emerging Energy Storage System. Chemistry - A European Journal, 2018, 24, 4757-4773.	1.7	52
303	Many ways towards â€~solar fuel': quantitative analysis of the most promising strategies and the main challenges during scale-up. Energy and Environmental Science, 2018, 11, 10-22.	15.6	46
304	Advanced catalysts for sustainable hydrogen generation and storage via hydrogen evolution and carbon dioxide/nitrogen reduction reactions. Progress in Materials Science, 2018, 92, 64-111.	16.0	195
305	Polarized few-layer g-C3N4 as metal-free electrocatalyst for highly efficient reduction of CO2. Nano Research, 2018, 11, 2450-2459.	5.8	65
306	Progress and Perspective of Electrocatalytic CO ₂ Reduction for Renewable Carbonaceous Fuels and Chemicals. Advanced Science, 2018, 5, 1700275.	5.6	638
307	Rational Design of Sulfurâ€Doped Copper Catalysts for the Selective Electroreduction of Carbon Dioxide to Formate. ChemSusChem, 2018, 11, 320-326.	3.6	102
308	Multilayered Zn nanosheets as an electrocatalyst for efficient electrochemical reduction of CO2. Journal of Catalysis, 2018, 357, 154-162.	3.1	96
309	Generalized Synthesis of Ultrathin Cobaltâ€Based Nanosheets from Metallophthalocyanineâ€Modulated Selfâ€Assemblies for Complementary Water Electrolysis. Small, 2018, 14, 1702896.	5.2	34
310	Sulfur-Modified Copper Catalysts for the Electrochemical Reduction of Carbon Dioxide to Formate. ACS Catalysis, 2018, 8, 837-844.	5.5	209
311	An efficient multidoped Cu0.39Zn0.14Co2.47O4-ZnO electrode attached on reduced graphene oxide and copper foam as superior lithium-ion battery anodes. Chemical Engineering Journal, 2018, 336, 510-517.	6.6	36
312	2D Dualâ€Metal Zeoliticâ€Imidazolateâ€Frameworkâ€(ZIF)â€Derived Bifunctional Air Electrodes with Ultrahigh Electrochemical Properties for Rechargeable Zinc–Air Batteries. Advanced Functional Materials, 2018, 28, 1705048.	7.8	361
313	Aluminaâ€Supported CoFe Alloy Catalysts Derived from Layeredâ€Doubleâ€Hydroxide Nanosheets for Efficient Photothermal CO ₂ Hydrogenation to Hydrocarbons. Advanced Materials, 2018, 30, 1704663.	11.1	309

	CITATION	Report	
#	ARTICLE	IF	CITATIONS
314	Electrocatalytic Alloys for CO ₂ Reduction. ChemSusChem, 2018, 11, 48-57.	3.6	249
315	Selective electroreduction of carbon dioxide to formic acid on electrodeposited SnO2@N-doped porous carbon catalysts. Science China Chemistry, 2018, 61, 228-235.	4.2	33
316	Doping palladium with tellurium for the highly selective electrocatalytic reduction of aqueous CO ₂ to CO. Chemical Science, 2018, 9, 483-487.	3.7	93
317	Highly Selective Electrochemical Conversion of CO ₂ to HCOOH on Dendritic Indium Foams. ChemElectroChem, 2018, 5, 253-259.	1.7	83
318	Perovskite Hydroxide CoSn(OH) ₆ Nanocubes for Efficient Photoreduction of CO ₂ to CO. ACS Sustainable Chemistry and Engineering, 2018, 6, 781-786.	3.2	29
319	Cation deficiency design: A simple and efficient strategy for promoting oxygen evolution reaction activity of perovskite electrocatalyst. Electrochimica Acta, 2018, 259, 1004-1010.	2.6	44
320	Rapidly catalysis of oxygen evolution through sequential engineering of vertically layered FeNi structure. Nano Energy, 2018, 43, 359-367.	8.2	49
321	Atomic Vacancies Control of Pdâ€Based Catalysts for Enhanced Electrochemical Performance. Advanced Materials, 2018, 30, 1704171.	11.1	102
322	Verifying the Rechargeability of Liâ€CO ₂ Batteries on Working Cathodes of Ni Nanoparticles Highly Dispersed on Nâ€Doped Graphene. Advanced Science, 2018, 5, 1700567.	5.6	159
323	One-pot construction of 1D/2D Zn1-Cd S/D-ZnS(en)0.5 composites with perfect heterojunctions and their superior visible-light-driven photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2018, 220, 324-336.	10.8	64
324	<i>In situ</i> synthesis of Cu ₂ O–CuO–C supported on copper foam as a superior binder-free anode for long-cycle lithium-ion batteries. Materials Chemistry Frontiers, 2018, 2, 2254-2262.	3.2	33
325	CO ₂ electrolysis in seawater: calcification effect and a hybrid self-powered concept. Journal of Materials Chemistry A, 2018, 6, 23301-23307.	5.2	15
326	Efficient electrocatalytic reduction of CO2 to CO on an electrodeposited Zn porous network. Electrochemistry Communications, 2018, 97, 87-90.	2.3	44
327	Facile Preparation of Amorphous Fe–Co–Ni Hydroxide Arrays: A Highly Efficient Integrated Electrode for Water Oxidation. Inorganic Chemistry, 2018, 57, 15610-15617.	1.9	21
328	Electrochemical Reduction of CO ₂ over Heterogeneous Catalysts in Aqueous Solution: Recent Progress and Perspectives. Small Methods, 2019, 3, 1800369.	4.6	168
329	A Specifically Exposed Cobalt Oxide/Carbon Nitride 2D Heterostructure for Carbon Dioxide Photoreduction. Industrial & Engineering Chemistry Research, 2018, 57, 17394-17400.	1.8	76
330	Boosting CH ₃ OH Production in Electrocatalytic CO ₂ Reduction over Partially Oxidized 5 nm Cobalt Nanoparticles Dispersed on Single-Layer Nitrogen-Doped Graphene. ACS Applied Materials & Interfaces, 2018, 10, 44403-44414.	4.0	56
331	Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nature Catalysis, 2018, 1, 922-934.	16.1	515

#	Article	IF	CITATIONS
332	Carbon-supported Ni nanoparticles for efficient CO ₂ electroreduction. Chemical Science, 2018, 9, 8775-8780.	3.7	179
333	Composition Tailoring via N and S Coâ€doping and Structure Tuning by Constructing Hierarchical Pores: Metalâ€Free Catalysts for Highâ€Performance Electrochemical Reduction of CO ₂ . Angewandte Chemie, 2018, 130, 15702-15706.	1.6	63
334	Orbital Interactions in Bi‣n Bimetallic Electrocatalysts for Highly Selective Electrochemical CO ₂ Reduction toward Formate Production. Advanced Energy Materials, 2018, 8, 1802427.	10.2	259
335	Liquid-phase exfoliated ultrathin Bi nanosheets: Uncovering the origins of enhanced electrocatalytic CO2 reduction on two-dimensional metal nanostructure. Nano Energy, 2018, 53, 808-816.	8.2	247
336	Functional Conjugated Polymers for CO ₂ Reduction Using Visible Light. Chemistry - A European Journal, 2018, 24, 17454-17458.	1.7	112
337	Hierarchically Ordered Nanochannel Array Membrane Reactor with Three-Dimensional Electrocatalytic Interfaces for Electrohydrogenation of CO ₂ to Alcohol. ACS Energy Letters, 2018, 3, 2649-2655.	8.8	11
338	Tuning Structural and Compositional Effects in Pd–Au Nanowires for Highly Selective and Active CO ₂ Electrochemical Reduction Reaction. Advanced Energy Materials, 2018, 8, 1802238.	10.2	132
339	Composition Tailoring via N and S Coâ€doping and Structure Tuning by Constructing Hierarchical Pores: Metalâ€Free Catalysts for Highâ€Performance Electrochemical Reduction of CO ₂ . Angewandte Chemie - International Edition, 2018, 57, 15476-15480.	7.2	162
340	Ligand-free gold nanoparticles supported on mesoporous carbon as electrocatalysts for CO2 reduction. Journal of CO2 Utilization, 2018, 28, 50-58.	3.3	16
341	Sharp Cu@Sn nanocones on Cu foam for highly selective and efficient electrochemical reduction of CO ₂ to formate. Journal of Materials Chemistry A, 2018, 6, 19621-19630.	5.2	72
342	Copper and Copperâ€Based Bimetallic Catalysts for Carbon Dioxide Electroreduction. Advanced Materials Interfaces, 2018, 5, 1800919.	1.9	72
343	Oriented electron transmission in polyoxometalate-metalloporphyrin organic framework for highly selective electroreduction of CO2. Nature Communications, 2018, 9, 4466.	5.8	342
344	Defect and Interface Engineering for Aqueous Electrocatalytic CO2 Reduction. Joule, 2018, 2, 2551-2582.	11.7	459
345	Enhancement of Catalytic Properties by Adjusting Molecular Diffusion in Nanoporous Catalysts. Advances in Catalysis, 2018, , 1-47.	0.1	3
346	Gas Phase Electrolysis of Carbon Dioxide to Carbon Monoxide Using Nickel Nitride as the Carbon Enrichment Catalyst. ACS Applied Materials & Interfaces, 2018, 10, 38024-38031.	4.0	54
347	Electroreduction of Carbon Dioxide to Formate by Homogeneous Ir Catalysts in Water. ACS Catalysis, 2018, 8, 11296-11301.	5.5	37
348	Architecture of Biomimetic Water Oxidation Catalyst with Mn ₄ CaO ₅ Clusterlike Structure Unit. ACS Applied Materials & Interfaces, 2018, 10, 37948-37954.	4.0	14
349	Highly Efficient Electroreduction of CO ₂ to Methanol on Palladium–Copper Bimetallic Aerogels. Angewandte Chemie, 2018, 130, 14345-14349.	1.6	56

#	Article	IF	CITATIONS
350	Molecularly Defined Interface Created by Porous Polymeric Networks on Gold Surface for Concerted and Selective CO ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2018, 6, 17277-17283.	3.2	26
351	Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. Nature Catalysis, 2018, 1, 946-951.	16.1	354
352	Laser-Prepared CuZn Alloy Catalyst for Selective Electrochemical Reduction of CO ₂ to Ethylene. Langmuir, 2018, 34, 13544-13549.	1.6	114
353	Unlocking Bifunctional Electrocatalytic Activity for CO ₂ Reduction Reaction by Win-Win Metal–Oxide Cooperation. ACS Energy Letters, 2018, 3, 2816-2822.	8.8	76
354	Fixation of CO ₂ along with bromopyridines on a silver electrode. Royal Society Open Science, 2018, 5, 180897.	1.1	10
355	Surfaceâ€Confined Fabrication of Ultrathin Nickel Cobaltâ€Layered Double Hydroxide Nanosheets for Highâ€Performance Supercapacitors. Advanced Functional Materials, 2018, 28, 1803272.	7.8	215
356	Subâ€1.5 nm Ultrathin CoP Nanosheet Aerogel: Efficient Electrocatalyst for Hydrogen Evolution Reaction at All pH Values. Small, 2018, 14, e1802824.	5.2	99
357	Efficient electrochemical transformation of CO ₂ to C ₂ /C ₃ chemicals on benzimidazole-functionalized copper surfaces. Chemical Communications, 2018, 54, 11324-11327.	2.2	39
358	Ni nanoparticle-decorated-MnO ₂ nanodendrites as highly selective and efficient catalysts for CO ₂ electroreduction. Journal of Materials Chemistry A, 2018, 6, 19438-19444.	5.2	27
359	Progress toward Commercial Application of Electrochemical Carbon Dioxide Reduction. CheM, 2018, 4, 2571-2586.	5.8	445
360	Morphologyâ€Controlled Bi ₂ O ₃ Nanoparticles as Catalysts for Selective Electrochemical Reduction of CO ₂ to Formate. ChemElectroChem, 2018, 5, 3741-3747.	1.7	31
361	Defectâ€Rich Bi ₁₂ O ₁₇ Cl ₂ Nanotubes Selfâ€Accelerating Charge Separation for Boosting Photocatalytic CO ₂ Reduction. Angewandte Chemie, 2018, 130, 15063-15067.	1.6	38
362	Electroreduction of carbon dioxide to formate over a thin-layered tin diselenide electrode. Catalysis Science and Technology, 2018, 8, 5428-5433.	2.1	21
363	Electrochemically <i>in situ</i> controllable assembly of hierarchically-ordered and integrated inorganic–carbon hybrids for efficient hydrogen evolution. Materials Horizons, 2018, 5, 1194-1203.	6.4	31
364	Efficient electroreduction of CO ₂ to C2 products over B-doped oxide-derived copper. Green Chemistry, 2018, 20, 4579-4583.	4.6	68
365	Preparation of Co–N carbon nanosheet oxygen electrode catalyst by controlled crystallization of cobalt salt precursors for all-solid-state Al–air battery. RSC Advances, 2018, 8, 22193-22198.	1.7	11
366	Inâ€Situ Thermal Atomization To Convert Supported Nickel Nanoparticles into Surfaceâ€Bound Nickel Singleâ€Atom Catalysts. Angewandte Chemie - International Edition, 2018, 57, 14095-14100.	7.2	310
367	Inâ€Situ Thermal Atomization To Convert Supported Nickel Nanoparticles into Surfaceâ€Bound Nickel Singleâ€Atom Catalysts. Angewandte Chemie, 2018, 130, 14291-14296.	1.6	41

#	Article	IF	CITATIONS
368	Defectâ€Rich Bi ₁₂ O ₁₇ Cl ₂ Nanotubes Selfâ€Accelerating Charge Separation for Boosting Photocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2018, 57, 14847-14851.	7.2	329
369	Role of Organic Components in Electrocatalysis for Renewable Energy Storage. Chemistry - A European Journal, 2018, 24, 18271-18292.	1.7	10
370	Selective Reduction–Oxidation Strategy to the Conductivity-Enhancing Ag-Decorated Co-Based 2D Hydroxides as Efficient Electrocatalyst in Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 13420-13426.	3.2	27
371	Electrochemical Reduction of Carbon Dioxide to Methanol on Hierarchical Pd/SnO ₂ Nanosheets with Abundant Pd–O–Sn Interfaces. Angewandte Chemie, 2018, 130, 9619-9623.	1.6	24
372	Highly selective electrochemical reduction of CO ₂ to formate on metal-free nitrogen-doped PC61BM. Journal of Materials Chemistry A, 2018, 6, 11236-11243.	5.2	62
373	CO ₂ electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science, 2018, 360, 783-787.	6.0	1,638
374	Electrochemical Reduction of Carbon Dioxide to Methanol on Hierarchical Pd/SnO ₂ Nanosheets with Abundant Pd–O–Sn Interfaces. Angewandte Chemie - International Edition, 2018, 57, 9475-9479.	7.2	218
375	Cu-based nanocatalysts for electrochemical reduction of CO2. Nano Today, 2018, 21, 41-54.	6.2	374
376	Dimension-matched plasmonic Au/TiO ₂ /BiVO ₄ nanocomposites as efficient wide-visible-light photocatalysts to convert CO ₂ and mechanistic insights. Journal of Materials Chemistry A, 2018, 6, 11838-11845.	5.2	72
377	Nano-designed semiconductors for electro- and photoelectro-catalytic conversion of carbon dioxide. Chemical Society Reviews, 2018, 47, 5423-5443.	18.7	181
378	Enhanced catalytic activity of nanoporous Au for the efficient electrochemical reduction of carbon dioxide. Applied Catalysis B: Environmental, 2018, 236, 483-489.	10.8	57
379	Efficient Photosynthesis of Organics from Aqueous Bicarbonate Ions by Quantum Dots Using Visible Light. ACS Energy Letters, 2018, 3, 1508-1514.	8.8	26
380	Highly selective electrocatalytic reduction of CO2 to formate over Tin(IV) sulfide monolayers. Journal of Catalysis, 2018, 364, 125-130.	3.1	56
381	Bifunctional Nitrogen and Cobalt Codoped Hollow Carbon for Electrochemical Syngas Production. Advanced Science, 2018, 5, 1800177.	5.6	96
382	Evolution behaviors of nitrogen functionalities during fast CO2-rich pyrolysis of coal. Fuel, 2018, 229, 135-143.	3.4	21
383	2D Assembly of Confined Space toward Enhanced CO ₂ Electroreduction. Advanced Energy Materials, 2018, 8, 1801230.	10.2	49
384	Polyethylene glycol induced reconstructing Bi nanoparticle size for stabilized CO2 electroreduction to formate. Journal of Catalysis, 2018, 365, 63-70.	3.1	50
385	In-situ grown nanocrystal TiO2 on 2D Ti3C2 nanosheets for artificial photosynthesis of chemical fuels. Nano Energy, 2018, 51, 442-450.	8.2	127

#	Article	IF	CITATIONS
386	Low oordinated Edge Sites on Ultrathin Palladium Nanosheets Boost Carbon Dioxide Electroreduction Performance. Angewandte Chemie - International Edition, 2018, 57, 11544-11548.	7.2	127
387	Zincâ€Coordinated Nitrogenâ€Codoped Graphene as an Efficient Catalyst for Selective Electrochemical Reduction of CO ₂ to CO. ChemSusChem, 2018, 11, 2944-2952.	3.6	107
388	Hollow Rh nanoparticles with nanoporous shell as efficient electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 2018, 282, 853-859.	2.6	35
389	Metal Surface and Interface Energy Electrocatalysis: Fundamentals, Performance Engineering, and Opportunities. CheM, 2018, 4, 2054-2083.	5.8	225
390	Crown ether induced assembly to Î ³ -Al2O3 nanosheets with rich pentacoordinate Al3+ sites and high ethanol dehydration activity. Applied Surface Science, 2018, 457, 626-632.	3.1	22
391	Lowâ€Coordinated Edge Sites on Ultrathin Palladium Nanosheets Boost Carbon Dioxide Electroreduction Performance. Angewandte Chemie, 2018, 130, 11718-11722.	1.6	39
392	Tuning the Pd-catalyzed electroreduction of CO ₂ to CO with reduced overpotential. Catalysis Science and Technology, 2018, 8, 3894-3900.	2.1	24
393	Syntheses and Properties of Metal Nanomaterials with Novel Crystal Phases. Advanced Materials, 2018, 30, e1707189.	11.1	148
394	Ambient Electrosynthesis of Ammonia: Electrode Porosity and Composition Engineering. Angewandte Chemie, 2018, 130, 12540-12544.	1.6	14
395	Two-Dimensional Metal Nanomaterials: Synthesis, Properties, and Applications. Chemical Reviews, 2018, 118, 6409-6455.	23.0	711
396	Selective CO ₂ reduction to C ₃ and C ₄ oxyhydrocarbons on nickel phosphides at overpotentials as low as 10 mV. Energy and Environmental Science, 2018, 11, 2550-2559.	15.6	165
397	Efficient CO2 electroreduction over pyridinic-N active sites highly exposed on wrinkled porous carbon nanosheets. Chemical Engineering Journal, 2018, 351, 613-621.	6.6	99
398	Role of zirconium in direct CO2 hydrogenation to lower olefins on oxide/zeolite bifunctional catalysts. Journal of Catalysis, 2018, 364, 382-393.	3.1	174
399	Neighboring Pt Atom Sites in an Ultrathin FePt Nanosheet for the Efficient and Highly CO-Tolerant Oxygen Reduction Reaction. Nano Letters, 2018, 18, 5905-5912.	4.5	84
400	Recent Advances in Growth of Novel 2D Materials: Beyond Graphene and Transition Metal Dichalcogenides. Advanced Materials, 2018, 30, e1800865.	11.1	203
401	The photoelectrocatalytic CO2 reduction on TiO2@ZnO heterojunction by tuning the conduction band potential. Electrochimica Acta, 2018, 285, 23-29.	2.6	38
402	Partially reduced Sn/SnO2 porous hollow fiber: A highly selective, efficient and robust electrocatalyst towards carbon dioxide reduction. Electrochimica Acta, 2018, 285, 70-77.	2.6	51
403	Ultrathin PtPdâ€Based Nanorings with Abundant Step Atoms Enhance Oxygen Catalysis. Advanced Materials, 2018, 30, e1802136.	11.1	107

#	Article	IF	CITATIONS
404	Highly Efficient CO ₂ Electroreduction on ZnN ₄ â€based Singleâ€Atom Catalyst. Angewandte Chemie, 2018, 130, 12483-12487.	1.6	83
405	CO ₂ Electroreduction in Ionic Liquids: A Review. Chinese Journal of Chemistry, 2018, 36, 961-970.	2.6	77
406	Gâ€quadruplex Nanowires To Direct the Efficiency and Selectivity of Electrocatalytic CO ₂ Reduction. Angewandte Chemie, 2018, 130, 12633-12637.	1.6	3
407	Partially Oxidized Palladium Nanodots for Enhanced Electrocatalytic Carbon Dioxide Reduction. Chemistry - an Asian Journal, 2018, 13, 2800-2804.	1.7	8
408	Interfacial Chemistry of Low-Dimensional Systems for Applications in Nanocatalysis. European Journal of Inorganic Chemistry, 2018, 2018, 4311-4321.	1.0	6
409	Progress and Future Perspectives on Li(Na)–CO ₂ Batteries. Advanced Sustainable Systems, 2018, 2, 1800060.	2.7	54
410	CuO Nanoparticles Supported on TiO2 with High Efficiency for CO2 Electrochemical Reduction to Ethanol. Catalysts, 2018, 8, 171.	1.6	101
411	Sea coral-like NiCo ₂ O ₄ @(Ni, Co)OOH heterojunctions for enhancing overall water-splitting. Catalysis Science and Technology, 2018, 8, 4151-4158.	2.1	16
412	A Br ^{â^'} anion adsorbed porous Ag nanowire film: <i>in situ</i> electrochemical preparation and application toward efficient CO ₂ electroreduction to CO with high selectivity. Inorganic Chemistry Frontiers, 2018, 5, 2238-2241.	3.0	30
413	A Porphyrin/Graphene Framework: A Highly Efficient and Robust Electrocatalyst for Carbon Dioxide Reduction. Advanced Energy Materials, 2018, 8, 1801280.	10.2	88
414	Highly efficient photoelectrocatalytic reduction of CO ₂ on the Ti ₃ C ₂ /g-C ₃ N ₄ heterojunction with rich Ti ³⁺ and pyri-N species. Journal of Materials Chemistry A, 2018, 6, 15213-15220.	5.2	85
415	New challenges of electrokinetic studies in investigating the reaction mechanism of electrochemical CO ₂ reduction. Journal of Materials Chemistry A, 2018, 6, 14043-14057.	5.2	118
416	Metal-based heterogeneous electrocatalysts for reduction of carbon dioxide and nitrogen: mechanisms, recent advances and perspective. Reaction Chemistry and Engineering, 2018, 3, 591-625.	1.9	49
417	Single-Atom Catalysts: Synthetic Strategies and Electrochemical Applications. Joule, 2018, 2, 1242-1264.	11.7	1,618
418	One-step construction of porous Ni/Co metal/oxide nanocubes for highly efficient oxygen evolution. Electrochemistry Communications, 2018, 93, 191-196.	2.3	8
419	Highly Efficient CO ₂ Electroreduction on ZnN ₄ â€based Singleâ€Atom Catalyst. Angewandte Chemie - International Edition, 2018, 57, 12303-12307.	7.2	356
420	Gâ€quadruplex Nanowires To Direct the Efficiency and Selectivity of Electrocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2018, 57, 12453-12457.	7.2	25
421	Inverse MR and Dual-AMR Phenomena in Co/CoO/Ag/Co Sandwiches. Journal of the Korean Physical Society, 2018, 72, 786-794.	0.3	1

#	Article	IF	CITATIONS
422	Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion. Chemical Society Reviews, 2018, 47, 4981-5037.	18.7	344
423	Atomically Thin 2D Multinary Nanosheets for Energyâ€Related Photo, Electrocatalysis. Advanced Science, 2018, 5, 1800244.	5.6	54
424	Formation of Enriched Vacancies for Enhanced CO ₂ Electrocatalytic Reduction over AuCu Alloys. ACS Energy Letters, 2018, 3, 2144-2149.	8.8	88
425	A Core–Shell‧tructured Silver Nanowire/Nitrogenâ€Doped Carbon Catalyst for Enhanced and Multifunctional Electrofixation of CO ₂ . ChemSusChem, 2018, 11, 3905-3910.	3.6	32
426	Tuning Gold Nanoparticles with Chelating Ligands for Highly Efficient Electrocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2018, 57, 12675-12679.	7.2	108
427	Sharpâ€Tipped Zinc Nanowires as an Efficient Electrocatalyst for Carbon Dioxide Reduction. Chemistry - A European Journal, 2018, 24, 15486-15490.	1.7	16
428	Novel Cobalt Germanium Hydroxide for Electrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2018, 10, 30357-30366.	4.0	22
429	Highly Efficient Electroreduction of CO ₂ to Methanol on Palladium–Copper Bimetallic Aerogels. Angewandte Chemie - International Edition, 2018, 57, 14149-14153.	7.2	222
430	Tuning Gold Nanoparticles with Chelating Ligands for Highly Efficient Electrocatalytic CO ₂ Reduction. Angewandte Chemie, 2018, 130, 12857-12861.	1.6	34
431	Atomic Scale Materials for Emerging Robust Catalysis. Small Methods, 2018, 2, 1800181.	4.6	10
432	2D Metal Oxyhalideâ€Derived Catalysts for Efficient CO ₂ Electroreduction. Advanced Materials, 2018, 30, e1802858.	11.1	200
433	Copper-modulated bismuth nanocrystals alter the formate formation pathway to achieve highly selective CO ₂ electroreduction. Journal of Materials Chemistry A, 2018, 6, 16804-16809.	5.2	74
434	On the Role of Sulfur for the Selective Electrochemical Reduction of CO ₂ to Formate on CuS _{<i>x</i>} Catalysts. ACS Applied Materials & Interfaces, 2018, 10, 28572-28581.	4.0	157
435	Synthesis of Porous Polymeric Catalysts for the Conversion of Carbon Dioxide. ACS Catalysis, 2018, 8, 9079-9102.	5.5	196
436	Controllable Synthesis of Few‣ayer Bismuth Subcarbonate by Electrochemical Exfoliation for Enhanced CO ₂ Reduction Performance. Angewandte Chemie - International Edition, 2018, 57, 13283-13287.	7.2	141
437	Controllable Synthesis of Few‣ayer Bismuth Subcarbonate by Electrochemical Exfoliation for Enhanced CO ₂ Reduction Performance. Angewandte Chemie, 2018, 130, 13467-13471.	1.6	42
438	<i>In situ</i> construction of hierarchical Co/MnO@graphite carbon composites for highly supercapacitive and OER electrocatalytic performances. Nanoscale, 2018, 10, 13702-13712.	2.8	45
439	Transition metal (Mo, Fe, Co, and Ni)-based catalysts for electrochemical CO2 reduction. Chinese Journal of Catalysis, 2018, 39, 1157-1166.	6.9	48

#	Article	IF	CITATIONS
440	Preparation of 2D material dispersions and their applications. Chemical Society Reviews, 2018, 47, 6224-6266.	18.7	459
441	Synthesis of heterometallic metal–organic frameworks and their performance as electrocatalyst for CO ₂ reduction. RSC Advances, 2018, 8, 21092-21099.	1.7	108
442	Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nature Catalysis, 2018, 1, 421-428.	16.1	537
443	Tailoring the Edge Sites of 2D Pd Nanostructures with Different Fractal Dimensions for Enhanced Electrocatalytic Performance. Advanced Science, 2018, 5, 1800430.	5.6	33
444	Anion Engineering on 3D Ni ₃ S ₂ Nanosheets Array toward Water Splitting. ACS Applied Energy Materials, 2018, 1, 3488-3496.	2.5	25
445	Layered double hydroxide-based core-shell nanoarrays for efficient electrochemical water splitting. Frontiers of Chemical Science and Engineering, 2018, 12, 537-554.	2.3	33
446	Electrochemical Conversion of CO 2 to Value-Added Products. , 2018, , 29-59.		17
447	Surface electric field driven directional charge separation on Ta3N5 cuboids enhancing photocatalytic solar energy conversion. Applied Catalysis B: Environmental, 2018, 237, 742-752.	10.8	43
448	Ambient Electrosynthesis of Ammonia: Electrode Porosity and Composition Engineering. Angewandte Chemie - International Edition, 2018, 57, 12360-12364.	7.2	160
449	Ultrathin two-dimensional metallic nanocrystals for renewable energy electrocatalysis. Materials Today, 2019, 23, 45-56.	8.3	64
450	Porous Organic Polymers for CO ₂ Storage and Conversion Reactions. ChemCatChem, 2019, 11, 244-257.	1.8	153
451	Cloride-derived copper electrode for efficient electrochemical reduction of CO2 to ethylene. Chinese Chemical Letters, 2019, 30, 314-318.	4.8	39
452	Boosting Electrochemical Reduction of CO 2 at a Low Overpotential by Amorphous Agâ€Biâ€Sâ€O Decorated Bi O Nanocrystals. Angewandte Chemie, 2019, 131, 14335-14339.	1.6	25
453	All-water-based solution processed Ag nanofilms for highly efficient electrocatalytic reduction of CO2 to CO. Applied Catalysis B: Environmental, 2019, 259, 118045.	10.8	28
454	2D Crystal–Based Fibers: Status and Challenges. Small, 2019, 15, e1902691.	5.2	35
455	Metal–Organic-Frameworks-Derived Cu/Cu ₂ O Catalyst with Ultrahigh Current Density for Continuous-Flow CO ₂ Electroreduction. ACS Sustainable Chemistry and Engineering, 2019, 7, 15739-15746.	3.2	39
456	Band alignment in Zn2SnO4/SnO2 heterostructure enabling efficient CO2 electrochemical reduction. Nano Energy, 2019, 64, 103954.	8.2	68
457	Synergetic lithium storage of bimetallic sulfide Co8FeS8/N-C dodecahedral nanocages with enhanced lithium-ion battery performance. Chemical Engineering Science, 2019, 208, 115142.	1.9	27

#	Article	IF	CITATIONS
458	Singleâ€Molecule Measurement of Adsorption Free Energy at the Solid–Liquid Interface. Angewandte Chemie - International Edition, 2019, 58, 14534-14538.	7.2	27
459	Singleâ€Molecule Measurement of Adsorption Free Energy at the Solid–Liquid Interface. Angewandte Chemie, 2019, 131, 14676-14680.	1.6	7
460	Boosting Electrochemical Reduction of CO ₂ at a Low Overpotential by Amorphous Agâ€Biâ€Sâ€O Decorated Bi ⁰ Nanocrystals. Angewandte Chemie - International Edition, 2019, 58, 14197-14201.	7.2	78
461	Enhancing Electroreduction of CO ₂ to Formate of Pd Catalysts Loaded on TiO ₂ Nanotubes Arrays by N, B‣upport Modification. ChemistrySelect, 2019, 4, 8626-8633.	0.7	6
462	Efficient electrocatalytic reduction of CO2 on CuxO decorated graphene oxides: an insight into the role of multivalent Cu in selectivity and durability. Applied Catalysis B: Environmental, 2019, 259, 118044.	10.8	37
463	Facile Exfoliation of 3D Pillared Metal–Organic Frameworks (MOFs) to Produce MOF Nanosheets with Functionalized Surfaces. Inorganic Chemistry, 2019, 58, 11020-11027.	1.9	51
464	Synthesis of aniline copolymer and as an active catalyst layer for electrochemical reduction of carbon dioxide in water free of supporting electrolytes. Synthetic Metals, 2019, 255, 116109.	2.1	1
465	CO ₂ fixation and transformation on a thiolate-bridged dicobalt scaffold under oxidising conditions. Inorganic Chemistry Frontiers, 2019, 6, 2185-2193.	3.0	8
466	Rational design of carbon-based metal-free catalysts for electrochemical carbon dioxide reduction: A review. Journal of Energy Chemistry, 2019, 36, 95-105.	7.1	91
467	Bifunctional wood for electrocatalytic CO2 reduction to formate and electroanalytical detection of myricetin and cadmium (II). Electrochimica Acta, 2019, 319, 569-576.	2.6	10
468	Formation of two-dimensional transition metal oxide nanosheets with nanoparticles as intermediates. Nature Materials, 2019, 18, 970-976.	13.3	169
469	A universal synthesis strategy to make metal nitride electrocatalysts for hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 19728-19732.	5.2	114
470	Photoelectrocatalytic CO2 reduction based on metalloporphyrin-modified TiO2 photocathode. Chinese Journal of Catalysis, 2019, 40, 1222-1230.	6.9	32
471	Efficient and selective electrochemical reduction of CO2 to formate on 3D porous structured multi-walled carbon nanotubes supported Pb nanoparticles. Materials Chemistry and Physics, 2019, 237, 121826.	2.0	17
472	Current progress of metallic and carbon-based nanostructure catalysts towards the electrochemical reduction of CO ₂ . Inorganic Chemistry Frontiers, 2019, 6, 3363-3380.	3.0	29
473	Efficient and Selective CO2 Reduction Integrated with Organic Synthesis by Solar Energy. CheM, 2019, 5, 2605-2616.	5.8	179
474	Boron Phosphide Nanoparticles: A Nonmetal Catalyst for High‣electivity Electrochemical Reduction of CO ₂ to CH ₃ OH. Advanced Materials, 2019, 31, e1903499.	11.1	169
475	A GaN:Sn nanoarchitecture integrated on a silicon platform for converting CO ₂ to HCOOH by photoelectrocatalysis. Energy and Environmental Science, 2019, 12, 2842-2848.	15.6	75

ARTICLE IF CITATIONS Efficient electrochemical reduction of CO2 to ethanol on Cu nanoparticles decorated on N-doped 3.3 66 476 graphene oxide catalysts. Journal of CO2 Utilization, 2019, 33, 452-460. Quantum-Dot-Derived Catalysts for CO2 Reduction Reaction. Joule, 2019, 3, 1703-1718. 11.7 106 Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction. 478 5.8 235 Nature Communications, 2019, 10, 2980. PdAg bimetallic electrocatalyst for highly selective reduction of CO2 with low COOH* formation 479 5.8 energy and facile CO desorption. Nano Research, 2019, 12, 2866-2871. 3D Hierarchical ZnIn₂S₄ Nanosheets with Rich Zn Vacancies Boosting 480 7.8 308 Photocatalytic CO₂ Reduction. Advanced Functional Materials, 2019, 29, 1905153. Electrode Materials Engineering in Electrocatalytic CO₂ Reduction: Energy Input and Conversion Efficiency. Advanced Materials, 2020, 32, e1903796. 11.1 87 Catalytic Mechanisms and Design Principles for Singleâ€Atom Catalysts in Highly Efficient 482 10.2 167 CO₂ Conversion. Advanced Energy Materials, 2019, 9, 1902625. In Situ Transmission Electron Microscopy Study of Nanocrystal Formation for Electrocatalysis. 483 1.5 14 ChemNanoMat, 2019, 5, 1439-1455. Resolving conflict objectives between environment impact and energy efficiency – An optimization 484 3.4 4 modeling on multiple-energy deployment. Computers and Industrial Engineering, 2019, 138, 106111. Dual quantum dots decorated TiO2 nanorod arrays for efficient CO2 reduction. Journal of Catalysis, 3.1 2019, 378, 192-200. Copper oxide derived nanostructured self-supporting Cu electrodes for electrochemical reduction 486 2.6 26 of carbon dioxide. Electrochimica Acta, 2019, 328, 135083. Heptanuclear brucite disk with cyanide bridges in a cocrystal and tracking its pyrolysis to an efficient 4.3 oxygen evolution electrode. Science Bulletin, 2019, 64, 1667-1674. Zn nanosheets coated with a ZnS subnanometer layer for effective and durable 488 5.2 63 CO₂reduction. Journal of Materials Chemistry A, 2019, 7, 1418-1423. Efficient Electrosynthesis of Syngas with Tunable CO/H₂Ratios over Zn_{<i>x</i>}Cd_{1â[^]<i>x</i>}Sâ€Amine Inorganicâ€^eOrganic Hybrids. Angewandte Chemie - International Edition, 2019, 58, 18908-18912. 489 7.2 94 Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. 490 5.8 742 Nature Communications, 2019, 10, 5106. Efficient Electrosynthesis of Syngas with Tunable CO/H 2 Ratios over Zn x Cd 1â' x Sâ€Amine Inorganic–Organic Hybrids. Angewandte Chemie, 2019, 131, 19084-19088. Superficial Hydroxyl and Amino Groups Synergistically Active Polymeric Carbon Nitride for 492 5.5105 CO₂ Électroreduction. ACS Catalysis, 2019, 9, 10983-10989. TEM Sample Preparation of Patterned Quantum Dots. Microscopy and Microanalysis, 2019, 25, 790-791.

#	Article	IF	CITATIONS
494	Carbon-Supported Oxygen Vacancy-Rich Co ₃ O ₄ for Robust Photocatalytic H ₂ O ₂ Production via Coupled Water Oxidation and Oxygen Reduction Reaction. ACS Applied Energy Materials, 2019, 2, 8737-8746.	2.5	66
495	A Novel Synthesis of triangular Pt Nanosheets on Pd surface with a Strong Electrocatalytic Activity for Oxidation of Methanol. International Journal of Electrochemical Science, 2019, , 6986-6998.	0.5	1
496	Self-recuperative high temperature co-electrolysis-based methanol production with vortex search-based exergy efficiency enhancement. Journal of Cleaner Production, 2019, 239, 118029.	4.6	17
497	Recent progress in two-dimensional nanomaterials: Synthesis, engineering, and applications. FlatChem, 2019, 18, 100133.	2.8	52
498	In‣itu Infrared Spectroscopy Applied to the Study of the Electrocatalytic Reduction of CO ₂ : Theory, Practice and Challenges. ChemPhysChem, 2019, 20, 2904-2925.	1.0	66
499	Carbon dioxide electroreduction to C2 products over copper-cuprous oxide derived from electrosynthesized copper complex. Nature Communications, 2019, 10, 3851.	5.8	288
500	An MOF-derived copper@nitrogen-doped carbon composite: the synergistic effects of N-types and copper on selective CO ₂ electroreduction. Catalysis Science and Technology, 2019, 9, 5668-5675.	2.1	57
501	Selective electrochemical reduction of CO ₂ to CO on CuO/In ₂ O ₃ nanocomposites: role of oxygen vacancies. Catalysis Science and Technology, 2019, 9, 5339-5349.	2.1	25
502	Cyclic two-step electrolysis for stable electrochemical conversion of carbon dioxide to formate. Nature Communications, 2019, 10, 3919.	5.8	76
503	Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nature Energy, 2019, 4, 776-785.	19.8	458
503 504	Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using	19.8 2.2	458 65
	Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nature Energy, 2019, 4, 776-785. Single Sb sites for efficient electrochemical CO ₂ reduction. Chemical Communications,		
504	Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nature Energy, 2019, 4, 776-785. Single Sb sites for efficient electrochemical CO ₂ reduction. Chemical Communications, 2019, 55, 12024-12027. Mass production of superhydrophilic sponges for efficient and stable solar-driven highly corrosive	2.2	65
504 505	Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nature Energy, 2019, 4, 776-785. Single Sb sites for efficient electrochemical CO ₂ reduction. Chemical Communications, 2019, 55, 12024-12027. Mass production of superhydrophilic sponges for efficient and stable solar-driven highly corrosive water evaporation. Environmental Science: Water Research and Technology, 2019, 5, 2041-2047. Intentional construction of high-performance SnO ₂ catalysts with a 3D porous	2.2	65 5
504 505 506	Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nature Energy, 2019, 4, 776-785. Single Sb sites for efficient electrochemical CO ₂ reduction. Chemical Communications, 2019, 55, 12024-12027. Mass production of superhydrophilic sponges for efficient and stable solar-driven highly corrosive water evaporation. Environmental Science: Water Research and Technology, 2019, 5, 2041-2047. Intentional construction of high-performance SnO ₂ catalysts with a 3D porous structure for electrochemical reduction of CO ₂ . Nanoscale, 2019, 11, 18715-18722. Steering hydrogen evolution in CO2 electroreduction through tailoring various co-catalysts.	2.2 1.2 2.8	65 5 22
504 505 506 507	Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nature Energy, 2019, 4, 776-785. Single Sb sites for efficient electrochemical CO ₂ reduction. Chemical Communications, 2019, 55, 12024-12027. Mass production of superhydrophilic sponges for efficient and stable solar-driven highly corrosive water evaporation. Environmental Science: Water Research and Technology, 2019, 5, 2041-2047. Intentional construction of high-performance SnO ₂ catalysts with a 3D porous structure for electrochemical reduction of CO ₂ . Nanoscale, 2019, 11, 18715-18722. Steering hydrogen evolution in CO2 electroreduction through tailoring various co-catalysts. Electrochemistry Communications, 2019, 107, 106531. Metal (Sn, Bi, Pb, Cd) in-situ anchored on mesoporous hollow kapok-tubes for outstanding	 2.2 1.2 2.8 2.3 	65 5 22 8
 504 505 506 507 508 	Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nature Energy, 2019, 4, 776-785. Single Sb sites for efficient electrochemical CO ₂ reduction. Chemical Communications, 2019, 55, 12024-12027. Mass production of superhydrophilic sponges for efficient and stable solar-driven highly corrosive water evaporation. Environmental Science: Water Research and Technology, 2019, 5, 2041-2047. Intentional construction of high-performance SnO ₂ catalysts with a 3D porous structure for electrochemical reduction of CO ₂ . Nanoscale, 2019, 11, 18715-18722. Steering hydrogen evolution in CO2 electroreduction through tailoring various co-catalysts. Electrochemistry Communications, 2019, 107, 106531. Metal (Sn, Bi, Pb, Cd) in-situ anchored on mesoporous hollow kapok-tubes for outstanding electrocatalytic CO2 reduction to formate. Electrochimica Acta, 2019, 325, 134923. Revealing structural evolution of PbS nanocrystal catalysts in electrochemical CO ₂ reduction. Journal of Materials	 2.2 1.2 2.8 2.3 2.6 	 65 5 22 8 39

#	Article	IF	CITATIONS
512	Electrocatalytic CO ₂ Reduction to Alcohols with High Selectivity over a Two-Dimensional Fe ₂ P ₂ S ₆ Nanosheet. ACS Catalysis, 2019, 9, 9721-9725.	5.5	82
513	Simple Preparation of Hierarchically Porous Ce/TiO ₂ /Graphitic Carbon Microspheres for the Reduction of CO ₂ with H ₂ O under Simulated Solar Irradiation. ACS Omega, 2019, 4, 16833-16839.	1.6	6
514	Valence Engineering <i>via</i> Dual-Cation and Boron Doping in Pyrite Selenide for Highly Efficient Oxygen Evolution. ACS Nano, 2019, 13, 11469-11476.	7.3	68
515	SnSe ₂ Nanorods on Carbon Cloth as a Highly Selective, Active, and Flexible Electrocatalyst for Electrochemical Reduction of CO ₂ into Formate. ACS Applied Energy Materials, 2019, 2, 7655-7662.	2.5	39
516	Atomic Ni Anchored Covalent Triazine Framework as High Efficient Electrocatalyst for Carbon Dioxide Conversion. Advanced Functional Materials, 2019, 29, 1806884.	7.8	210
517	Electrochemical Carbon Dioxide Splitting. ChemElectroChem, 2019, 6, 1587-1604.	1.7	22
518	Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nature Chemistry, 2019, 11, 222-228.	6.6	571
519	From CO ₂ methanation to ambitious long-chain hydrocarbons: alternative fuels paving the path to sustainability. Chemical Society Reviews, 2019, 48, 205-259.	18.7	205
520	Metal–organic framework-derived indium–copper bimetallic oxide catalysts for selective aqueous electroreduction of CO ₂ . Green Chemistry, 2019, 21, 503-508.	4.6	66
521	Constructing surface synergistic effect in Cu-Cu2O hybrids and monolayer H1.4Ti1.65O4·H2O nanosheets for selective cinnamyl alcohol oxidation to cinnamaldehyde. Journal of Catalysis, 2019, 370, 461-469.	3.1	17
522	Perspective on construction of heterojunction photocatalysts and the complete utilization of photogenerated charge carriers. Applied Surface Science, 2019, 476, 982-992.	3.1	101
523	Crucial Role of Surface Hydroxyls on the Activity and Stability in Electrochemical CO ₂ Reduction. Journal of the American Chemical Society, 2019, 141, 2911-2915.	6.6	217
524	Enhanced CO ₂ electroreduction <i>via</i> interaction of dangling S bonds and Co sites in cobalt phthalocyanine/ZnIn ₂ S ₄ hybrids. Chemical Science, 2019, 10, 1659-1663.	3.7	45
525	An alkaline polymer electrolyte CO ₂ electrolyzer operated with pure water. Energy and Environmental Science, 2019, 12, 2455-2462.	15.6	231
526	A renewable, flexible and robust single layer nitrogen-doped graphene coating Sn foil for boosting formate production from electrocatalytic CO2 reduction. Journal of CO2 Utilization, 2019, 33, 166-170.	3.3	27
527	Carbon dioxide photo/electroreduction with cobalt. Journal of Materials Chemistry A, 2019, 7, 16622-16642.	5.2	59
528	Dimensionâ€Matched Zinc Phthalocyanine/BiVO ₄ Ultrathin Nanocomposites for CO ₂ Reduction as Efficient Wideâ€Visibleâ€Lightâ€Driven Photocatalysts via a Cascade Charge Transfer. Angewandte Chemie, 2019, 131, 10989-10994.	1.6	44
529	Rational design of positive-hexagon-shaped two-dimensional ZIF-derived materials as improved bifunctional oxygen electrocatalysts for use as long-lasting rechargeable Zn–Air batteries. Applied Catalysis B: Environmental, 2019, 256, 117871	10.8	70

#	Article	IF	CITATIONS
530	Cu-Doped Sr ₂ Fe _{1.5} Mo _{0.5} O _{6â^´î´} as a highly active cathode for solid oxide electrolytic cells. Chemical Communications, 2019, 55, 8009-8012.	2.2	42
531	Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nature Communications, 2019, 10, 2807.	5.8	456
532	Surface activation of cobalt oxide nanoparticles for photocatalytic carbon dioxide reduction to methane. Journal of Materials Chemistry A, 2019, 7, 15068-15072.	5.2	33
533	Synthesis and Processing of Emerging Two-Dimensional Nanomaterials. , 2019, , 1-25.		18
534	Nanostructured amalgams with tuneable silver–mercury bonding sites for selective electroreduction of carbon dioxide into formate and carbon monoxide. Journal of Materials Chemistry A, 2019, 7, 15907-15912.	5.2	37
535	Selective Electroreduction of Carbon Dioxide to Formic Acid on Cobaltâ€Decorated Copper Thin Films. Small Methods, 2019, 3, 1900362.	4.6	19
536	Role of Sulfur Vacancies and Undercoordinated Mo Regions in MoS ₂ Nanosheets toward the Evolution of Hydrogen. ACS Nano, 2019, 13, 6824-6834.	7.3	402
537	Selective electrolysis of CO2 to CO on ultrathin In2Se3 nanosheets. Electrochemistry Communications, 2019, 103, 127-132.	2.3	25
538	CO2 electroreduction to formate: Continuous single-pass operation in a filter-press reactor at high current densities using Bi gas diffusion electrodes. Journal of CO2 Utilization, 2019, 34, 12-19.	3.3	68
539	Dimensionâ€Matched Zinc Phthalocyanine/BiVO ₄ Ultrathin Nanocomposites for CO ₂ Reduction as Efficient Wideâ€Visibleâ€Lightâ€Driven Photocatalysts via a Cascade Charge Transfer. Angewandte Chemie - International Edition, 2019, 58, 10873-10878.	7.2	168
540	Two-dimensional bimetallic phosphide ultrathin nanosheets as non-noble electrocatalysts for a highly efficient oxygen evolution reaction. Nanoscale, 2019, 11, 9654-9660.	2.8	53
541	Compositionally Screened Eutectic Catalytic Coatings on Halide Perovskite Photocathodes for Photoassisted Selective CO ₂ Reduction. ACS Energy Letters, 2019, 4, 1279-1286.	8.8	56
542	Recent Trends, Benchmarking, and Challenges of Electrochemical Reduction of CO ₂ by Molecular Catalysts. Advanced Energy Materials, 2019, 9, 1900090.	10.2	144
543	Highly efficient electrochemical conversion of CO ₂ and NaCl to CO and NaClO. Green Chemistry, 2019, 21, 3256-3262.	4.6	52
544	Nitrogen-doped porous carbon from coal for high efficiency CO2 electrocatalytic reduction. Carbon, 2019, 151, 46-52.	5.4	87
545	Electrochemical CO ₂ Reduction into Chemical Feedstocks: From Mechanistic Electrocatalysis Models to System Design. Advanced Materials, 2019, 31, e1807166.	11.1	769
546	Hierarchical and ultrathin copper nanosheets synthesized via galvanic replacement for selective electrocatalytic carbon dioxide conversion to carbon monoxide. Applied Catalysis B: Environmental, 2019, 255, 117736.	10.8	56
547	Review of twoâ€dimensional materials for electrochemical CO ₂ reduction from a theoretical perspective. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2019, 9, e1416.	6.2	59

#	Article	IF	CITATIONS
548	CO ₂ Activation on Ni(111) and Ni(100) Surfaces in the Presence of H ₂ O: An Ambient-Pressure X-ray Photoelectron Spectroscopy Study. Journal of Physical Chemistry C, 2019, 123, 12176-12182.	1.5	36
549	Coupled Palladium–Tungsten Bimetallic Nanosheets/TiO ₂ Hybrids with Enhanced Catalytic Activity and Stability for the Oxidative Removal of Benzene. Environmental Science & Technology, 2019, 53, 5926-5935.	4.6	59
550	Single Mo atom realized enhanced CO2 electro-reduction into formate on N-doped graphene. Nano Energy, 2019, 61, 428-434.	8.2	106
551	Rapid and Scalable Synthesis of Cuprous Halide-Derived Copper Nano-Architectures for Selective Electrochemical Reduction of Carbon Dioxide. Nano Letters, 2019, 19, 3925-3932.	4.5	78
552	Material design at nano and atomic scale for electrocatalytic CO2 reduction. Nano Materials Science, 2019, 1, 60-69.	3.9	52
553	Dramatic differences in carbon dioxide adsorption and initial steps of reduction between silver and copper. Nature Communications, 2019, 10, 1875.	5.8	63
554	Recent advances in different-dimension electrocatalysts for carbon dioxide reduction. Journal of Colloid and Interface Science, 2019, 550, 17-47.	5.0	26
555	CoxNi1â^'x nanoalloys on N-doped carbon nanofibers: Electronic regulation toward efficient electrochemical CO2 reduction. Journal of Catalysis, 2019, 372, 277-286.	3.1	21
556	Carbon nanotubes with rich pyridinic nitrogen for gas phase CO2 electroreduction. Applied Catalysis B: Environmental, 2019, 250, 347-354.	10.8	87
557	Direct Conversion of Methanol to Ethanol on the Metal arbon Interface. ChemCatChem, 2019, 11, 2277-2282.	1.8	5
558	Recent advances in electrochemical reduction of CO2. Current Opinion in Green and Sustainable Chemistry, 2019, 16, 77-84.	3.2	17
559	Catalysts in electro-, photo- and photoelectrocatalytic CO2 reduction reactions. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 40, 117-149.	5.6	101
560	Single-Atom Catalysts for Photocatalytic Reactions. ACS Sustainable Chemistry and Engineering, 2019, 7, 6430-6443.	3.2	121
561	Cobalt oxide-based nanoarchitectures for electrochemical energy applications. Progress in Materials Science, 2019, 103, 596-677.	16.0	166
562	Acidic Electrochemical Reduction of CO ₂ Using Nickel Nitride on Multiwalled Carbon Nanotube as Selective Catalyst. ACS Sustainable Chemistry and Engineering, 2019, 7, 6106-6112.	3.2	49
563	Von Sonnenlicht zu Brennstoffen: aktuelle Fortschritte der C ₁ â€Solarchemie. Angewandte Chemie, 2019, 131, 17690-17715.	1.6	31
564	From Solar Energy to Fuels: Recent Advances in Lightâ€Đriven C ₁ Chemistry. Angewandte Chemie - International Edition, 2019, 58, 17528-17551.	7.2	285
565	Electrochemical CO2 reduction on copper nanoparticles-dispersed carbon aerogels. Journal of Colloid and Interface Science, 2019, 545, 1-7.	5.0	48

#	Article	IF	CITATIONS
566	Nitrogen-carbon layer coated nickel nanoparticles for efficient electrocatalytic reduction of carbon dioxide. Nano Research, 2019, 12, 1167-1172.	5.8	41
567	Two-dimensional amorphous CoO photocatalyst for efficient overall water splitting with high stability. Journal of Catalysis, 2019, 372, 299-310.	3.1	66
568	Artificial Thylakoid for the Coordinated Photoenzymatic Reduction of Carbon Dioxide. ACS Catalysis, 2019, 9, 3913-3925.	5.5	89
569	Isolated Diatomic Niâ€Fe Metal–Nitrogen Sites for Synergistic Electroreduction of CO ₂ . Angewandte Chemie - International Edition, 2019, 58, 6972-6976.	7.2	707
570	Aqueous CO ₂ Reduction with High Efficiency Using α o(OH) ₂ â€&upported Atomic Ir Electrocatalysts. Angewandte Chemie, 2019, 131, 4717-4721.	1.6	20
571	Edgeâ€Exposed Molybdenum Disulfide with Nâ€Đoped Carbon Hybridization: A Hierarchical Hollow Electrocatalyst for Carbon Dioxide Reduction. Advanced Energy Materials, 2019, 9, 1900072.	10.2	62
572	Nanoelectrocatalysts for Carbon Dioxide Reduction. , 2019, , 243-272.		1
573	Lean methane oxidation over Co3O4/Ce0.75Zr0.25 catalysts at low-temperature: Synergetic effect of catalysis and electric field. Chemical Engineering Journal, 2019, 369, 660-671.	6.6	42
574	Development of self-supported 3D microporous solder alloy electrodes for scalable CO ₂ electroreduction to formate. New Journal of Chemistry, 2019, 43, 6587-6596.	1.4	7
575	A simple strategy for engineering heterostructures of Au nanoparticle-loaded metal–organic framework nanosheets to achieve plasmon-enhanced photocatalytic CO ₂ conversion under visible light. Journal of Materials Chemistry A, 2019, 7, 11355-11361.	5.2	79
576	Characterization Techniques of Two-Dimensional Nanomaterials. , 2019, , 27-41.		2
577	Exceptional Activity over the Submonolayer MoO3 Motif on TiO2 for Nitrogen Oxide Emission Abatement. Environmental Science & amp; Technology, 2019, 53, 5309-5318.	4.6	20
578	Promoting electrocatalytic CO2 reduction on nitrogen-doped carbon with sulfur addition. Applied Catalysis B: Environmental, 2019, 252, 240-249.	10.8	139
579	"Hot edges―in an inverse opal structure enable efficient CO ₂ electrochemical reduction and sensitive <i>in situ</i> Raman characterization. Journal of Materials Chemistry A, 2019, 7, 11836-11846.	5.2	41
580	Reactive Oxygen Species (ROS)-Based Nanomedicine. Chemical Reviews, 2019, 119, 4881-4985.	23.0	1,519
581	Isolated Diatomic Niâ€Fe Metal–Nitrogen Sites for Synergistic Electroreduction of CO ₂ . Angewandte Chemie, 2019, 131, 7046-7050.	1.6	65
582	Abundant Ce ³⁺ lons in Au eO <i>_x</i> Nanosheets to Enhance CO ₂ Electroreduction Performance. Small, 2019, 15, e1900289.	5.2	46
583	Interfacing Formate Dehydrogenase with Metal Oxides for the Reversible Electrocatalysis and Solarâ€Driven Reduction of Carbon Dioxide. Angewandte Chemie - International Edition, 2019, 58, 4601-4605.	7.2	115

	Сітатіо	CITATION REPORT	
# 584	ARTICLE Aqueous CO ₂ Reduction with High Efficiency Using αâ€Co(OH) ₂ â€6upported Atomic Ir Electrocatalysts. Angewandte Chemie - International Edition, 2019, 58, 4669-4673.	IF 7.2	Citations 90
585	Interfacing Formate Dehydrogenase with Metal Oxides for the Reversible Electrocatalysis and Solarâ€Driven Reduction of Carbon Dioxide. Angewandte Chemie, 2019, 131, 4649-4653.	1.6	34
586	Nanomaterials With Different Dimensions for Electrocatalysis. , 2019, , 435-464.		10
587	Room temperature CO2 reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces. Nature Communications, 2019, 10, 865.	5.8	179
588	Fabrication of Superior Singleâ€Atom Catalysts toward Diverse Electrochemical Reactions. Small Methods, 2019, 3, 1800497.	4.6	99
589	A Lowâ€Cost and Facile Method for the Preparation of Feâ€N/Câ€Based Hybrids with Superior Catalytic Performance toward Oxygen Reduction Reaction. Advanced Materials Interfaces, 2019, 6, 1900273.	1.9	25
590	Supported Single Atoms as New Class of Catalysts for Electrochemical Reduction of Carbon Dioxide. Small Methods, 2019, 3, 1800440.	4.6	155
591	Restructuring of Cu ₂ O to Cu ₂ O@Cu-Metal–Organic Frameworks for Selective Electrochemical Reduction of CO ₂ . ACS Applied Materials & Interfaces, 2019, 11, 9904-9910.	4.0	174
592	Two-Dimensional Materials on the Rocks: Positive and Negative Role of Dopants and Impurities in Electrochemistry. ACS Nano, 2019, 13, 2681-2728.	7.3	62
593	Design of doped cesium lead halide perovskite as a photo-catalytic CO ₂ reduction catalyst. Journal of Materials Chemistry A, 2019, 7, 6911-6919.	5.2	68
594	Transient, <i>in situ</i> synthesis of ultrafine ruthenium nanoparticles for a high-rate Li–CO ₂ battery. Energy and Environmental Science, 2019, 12, 1100-1107.	15.6	129
595	Efficient and Robust Carbon Dioxide Electroreduction Enabled by Atomically Dispersed Sn <i>^{l´}</i> ⁺ Sites. Advanced Materials, 2019, 31, e1808135.	11.1	321
596	Promoting electrocatalytic CO2 reduction to formate via sulfur-boosting water activation on indium surfaces. Nature Communications, 2019, 10, 892.	5.8	446
597	Cocatalysts for Selective Photoreduction of CO ₂ into Solar Fuels. Chemical Reviews, 2019, 119, 3962-4179.	23.0	1,591
598	Direct and Oriented Conversion of CO ₂ into Valueâ€Added Aromatics. Chemistry - A European Journal, 2019, 25, 5149-5153.	1.7	89
599	Non-fossil CO2 recycling—The technical potential for the present and future utilization for fuels in Germany. Journal of CO2 Utilization, 2019, 30, 130-141.	3.3	52
600	Oxygen vacancy associated single-electron transfer for photofixation of CO2 to long-chain chemicals. Nature Communications, 2019, 10, 788.	5.8	222
601	22. Electrochemical conversion of CO2 into formate or formic acid. , 2019, , 435-456.		0

#	Article	IF	CITATIONS
602	Shape Stability of Metallic Nanoplates: A Molecular Dynamics Study. Nanoscale Research Letters, 2019, 14, 357.	3.1	3
603	Frustrated Lewis pairs photocatalyst for visible light-driven reduction of CO to multi-carbon chemicals. Nanoscale, 2019, 11, 20777-20784.	2.8	38
604	Plasma-activated CoO _x nanoclusters supported on graphite intercalation compounds for improved CO ₂ electroreduction to formate. Journal of Materials Chemistry A, 2019, 7, 24337-24346.	5.2	22
605	Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen. Nature Communications, 2019, 10, 5814.	5.8	201
606	Bismuth oxyiodide microflower-derived catalysts for efficient CO ₂ electroreduction in a wide negative potential region. Chemical Communications, 2019, 55, 12392-12395.	2.2	25
607	Synergistic catalysis of CuO/In ₂ O ₃ composites for highly selective electrochemical CO ₂ reduction to CO. Chemical Communications, 2019, 55, 12380-12383.	2.2	32
608	Recent advances in two-dimensional materials and their nanocomposites in sustainable energy conversion applications. Nanoscale, 2019, 11, 21622-21678.	2.8	201
609	Colloidal nanoparticle inks for printing functional devices: emerging trends and future prospects. Journal of Materials Chemistry A, 2019, 7, 23301-23336.	5.2	94
610	Electrochemical reduction of N ₂ to ammonia on Co single atom embedded N-doped porous carbon under ambient conditions. Journal of Materials Chemistry A, 2019, 7, 26358-26363.	5.2	51
611	Efficient upgrading of CO to C3 fuel using asymmetric C-C coupling active sites. Nature Communications, 2019, 10, 5186.	5.8	127
612	Nature of Oxygen-Containing Groups on Carbon for High-Efficiency Electrocatalytic CO ₂ Reduction Reaction. Journal of the American Chemical Society, 2019, 141, 20451-20459.	6.6	143
613	2D Atomically Thin Electrocatalysts: From Graphene to Metallene. Matter, 2019, 1, 1454-1455.	5.0	17
614	Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol. Nature Energy, 2019, 4, 957-968.	19.8	349
615	Steering CO ₂ electroreduction toward ethanol production by a surface-bound Ru polypyridyl carbene catalyst on N-doped porous carbon. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26353-26358.	3.3	55
616	The rapid electrochemical activation of MoTe2 for the hydrogen evolution reaction. Nature Communications, 2019, 10, 4916.	5.8	90
617	Surface strategies for catalytic CO ₂ reduction: from two-dimensional materials to nanoclusters to single atoms. Chemical Society Reviews, 2019, 48, 5310-5349.	18.7	607
618	Cobalt sulfides/carbon nanohybrids: a novel biocatalyst for nonenzymatic glucose biofuel cells and biosensors. RSC Advances, 2019, 9, 32898-32905.	1.7	5
619	Facile synthesis of single-nickel-atomic dispersed N-doped carbon framework for efficient electrochemical CO2 reduction. Applied Catalysis B: Environmental, 2019, 241, 113-119.	10.8	227

#	Article	IF	CITATIONS
620	Defective graphene for electrocatalytic CO2 reduction. Journal of Colloid and Interface Science, 2019, 534, 332-337.	5.0	66
621	Exploiting Synergistic Effect by Integrating Ruthenium–Copper Nanoparticles Highly Coâ€Dispersed on Graphene as Efficient Air Cathodes for Li–CO ₂ Batteries. Advanced Energy Materials, 2019, 9, 1802805.	10.2	100
622	Threeâ€inâ€One Oxygen Vacancies: Whole Visibleâ€Spectrum Absorption, Efficient Charge Separation, and Surface Site Activation for Robust CO ₂ Photoreduction. Angewandte Chemie - International Edition, 2019, 58, 3880-3884.	7.2	483
623	Cooperative Catalysis of Nickel and Nickel Oxide for Efficient Reduction of CO ₂ to CH ₄ . ChemCatChem, 2019, 11, 1295-1302.	1.8	25
624	Rationally Designing Bifunctional Catalysts as an Efficient Strategy To Boost CO ₂ Hydrogenation Producing Value-Added Aromatics. ACS Catalysis, 2019, 9, 895-901.	5.5	236
625	Uniform NiFe phosphide nanosheets arrays on carbon cloth as high-performance oxygen evolution catalysts. Materials Today Energy, 2019, 11, 192-198.	2.5	18
626	Synergetic promotional effect of oxygen vacancy-rich ultrathin TiO2 and photochemical induced highly dispersed Pt for photoreduction of CO2 with H2O. Applied Catalysis B: Environmental, 2019, 244, 919-930.	10.8	123
627	Photocatalyst design based on two-dimensional materials. Materials Today Chemistry, 2019, 11, 197-216.	1.7	103
629	Edge-State-Enhanced CO ₂ Electroreduction on Topological Nodal-Line Semimetal Cu ₂ Si Nanoribbons. Journal of Physical Chemistry C, 2019, 123, 2837-2842.	1.5	26
630	Catalysis with Two-Dimensional Materials Confining Single Atoms: Concept, Design, and Applications. Chemical Reviews, 2019, 119, 1806-1854.	23.0	745
631	The carbon footprint of Power-to-Synthetic Natural Gas by Photovoltaic solar powered Electrochemical Reduction of CO <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" overflow="scroll" id="d1e1488" altimg="si14.gif"><mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub></mml:math> . Sustainable Production	5.7	23
632	and Consumption, 2019, 17, 229-240. Optimizing hydrogen evolution activity of nanoporous electrodes by dual-step surface engineering. Applied Catalysis B: Environmental, 2019, 244, 87-95.	10.8	22
633	Recent advances in transition metal–based catalysts with heterointerfaces for energy conversion and storage. Materials Today Chemistry, 2019, 11, 16-28.	1.7	72
634	Carbonâ€Based Metalâ€Free Catalysts for Key Reactions Involved in Energy Conversion and Storage. Advanced Materials, 2019, 31, e1801526.	11.1	273
635	Indirect CO ₂ Methanation: Hydrogenolysis of Cyclic Carbonates Catalyzed by Ruâ€Modified Zeolite Produces Methane and Diols. Angewandte Chemie, 2019, 131, 567-570.	1.6	8
636	Nanostructured Ag/In/Cu foam catalyst for electrochemical reduction of CO2 to CO. Electrochimica Acta, 2019, 323, 133102.	2.6	15
637	Indirect CO ₂ Methanation: Hydrogenolysis of Cyclic Carbonates Catalyzed by Ruâ€Modified Zeolite Produces Methane and Diols. Angewandte Chemie - International Edition, 2019, 58, 557-560.	7.2	28
638	Threeâ€inâ€One Oxygen Vacancies: Whole Visibleâ€Spectrum Absorption, Efficient Charge Separation, and Surface Site Activation for Robust CO ₂ Photoreduction. Angewandte Chemie, 2019, 131, 3920-3924.	1.6	45

#	Article	IF	CITATIONS
639	Selective and Low Overpotential Electrochemical CO2 Reduction to Formate on CuS Decorated CuO Heterostructure. Catalysis Letters, 2019, 149, 860-869.	1.4	36
640	Charge Transfer Reactions in CO 2 Electroreduction on Manganese Doped Ceria. ChemElectroChem, 2019, 6, 1668-1672.	1.7	7
641	Electrochemical CO Reduction: A Property of the Electrochemical Interface. Journal of the American Chemical Society, 2019, 141, 1506-1514.	6.6	121
642	Nickel phosphide based hydrogen producing catalyst with low overpotential and stability at high current density. Electrochimica Acta, 2019, 299, 756-761.	2.6	36
643	In Situ Analysis of Surface Catalytic Reactions Using Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy. Analytical Chemistry, 2019, 91, 1675-1685.	3.2	64
644	Phosphomolybdic Acidâ€Assisted Growth of Ultrathin Bismuth Nanosheets for Enhanced Electrocatalytic Reduction of CO ₂ to Formate. ChemSusChem, 2019, 12, 1091-1100.	3.6	38
645	Organic functionalization of metal catalysts: Enhanced activity towards electroreduction of carbon dioxide. Current Opinion in Electrochemistry, 2019, 13, 40-46.	2.5	26
646	Understanding the synergetic interaction within α-MoC/β-Mo2C heterostructured electrocatalyst. Journal of Energy Chemistry, 2019, 35, 66-70.	7.1	30
647	Simultaneous Electrosynthesis of Syngas and an Aldehyde from CO ₂ and an Alcohol by Molecular Electrocatalysis. ACS Applied Energy Materials, 2019, 2, 97-101.	2.5	41
648	Gas-Diffusion Electrodes for Carbon Dioxide Reduction: A New Paradigm. ACS Energy Letters, 2019, 4, 317-324.	8.8	416
649	Oxygen Electrocatalysis at Mn ^{III} –O <i>_x</i> –C Hybrid Heterojunction: An Electronic Synergy or Cooperative Catalysis?. ACS Applied Materials & Interfaces, 2019, 11, 706-713.	4.0	7
650	Probing the role of nickel dopant in aqueous colloidal ZnS nanocrystals for efficient solar-driven CO2 reduction. Applied Catalysis B: Environmental, 2019, 244, 1013-1020.	10.8	50
651	Design of plasmonic CuCo bimetal as a nonsemiconductor photocatalyst for synchronized hydrogen evolution and storage. Applied Catalysis B: Environmental, 2019, 242, 389-396.	10.8	56
652	Size Controllable Metal Nanoparticles Anchored on Nitrogen Doped Carbon for Electrocatalytic Energy Conversion. ChemElectroChem, 2019, 6, 1508-1513.	1.7	4
653	Selective hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran over Co3O4 catalyst by controlled reduction. Journal of Energy Chemistry, 2019, 30, 34-41.	7.1	70
654	Facet design promotes electroreduction of carbon dioxide to carbon monoxide on palladium nanocrystals. Chemical Engineering Science, 2019, 194, 29-35.	1.9	34
655	Catalyst coated membrane electrodes for the gas phase CO2 electroreduction to formate. Catalysis Today, 2020, 346, 58-64.	2.2	35
656	In situ formed Raney-Ni/Fe3O4 catalyzed reduction of NaHCO3 into acetate with Fe as reductant in water. Catalysis Today, 2020, 350, 136-141.	2.2	4

#	Article	IF	CITATIONS
657	Black reduced porous SnO2 nanosheets for CO2 electroreduction with high formate selectivity and low overpotential. Applied Catalysis B: Environmental, 2020, 260, 118134.	10.8	107
658	In-situ oxidation fabrication of 0D/2D SnO2/SnS2 novel Step-scheme heterojunctions with enhanced photoelectrochemical activity for water splitting. Applied Surface Science, 2020, 501, 143974.	3.1	96
659	Surface and Interface Control in Nanoparticle Catalysis. Chemical Reviews, 2020, 120, 1184-1249.	23.0	492
660	Reaction mechanisms for reduction of CO2 to CO on monolayer MoS2. Applied Surface Science, 2020, 499, 143964.	3.1	35
661	Wavy SnO2 catalyzed simultaneous reinforcement of carbon dioxide adsorption and activation towards electrochemical conversion of CO2 to HCOOH. Applied Catalysis B: Environmental, 2020, 261, 118243.	10.8	97
662	Electrolytic cell design for electrochemical CO2 reduction. Journal of CO2 Utilization, 2020, 35, 90-105.	3.3	184
663	2D Electrocatalysts for Converting Earthâ€Abundant Simple Molecules into Valueâ€Added Commodity Chemicals: Recent Progress and Perspectives. Advanced Materials, 2020, 32, e1904870.	11.1	76
664	Morphology Modulationâ€Engineered Flowerlike In ₂ S ₃ via Ionothermal Method for Efficient CO ₂ Electroreduction. ChemCatChem, 2020, 12, 926-931.	1.8	37
665	Twoâ€Dimensional Electrocatalysts for Efficient Reduction of Carbon Dioxide. ChemSusChem, 2020, 13, 59-77.	3.6	31
666	Controlled Synthesis of a Vacancyâ€Defect Singleâ€Atom Catalyst for Boosting CO ₂ Electroreduction. Angewandte Chemie, 2020, 132, 1977-1981.	1.6	66
667	Controlled Synthesis of a Vacancyâ€Defect Singleâ€Atom Catalyst for Boosting CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2020, 59, 1961-1965.	7.2	255
668	Enhancing CO2 catalytic activation and direct electroreduction on in-situ exsolved Fe/MnOx nanoparticles from (Pr,Ba)2Mn2-yFeyO5+Ĩ´layered perovskites for SOEC cathodes. Applied Catalysis B: Environmental, 2020, 268, 118389.	10.8	58
669	Vacancy in Ultrathin 2D Nanomaterials toward Sustainable Energy Application. Advanced Energy Materials, 2020, 10, 1902107.	10.2	76
670	Elucidating the Electrocatalytic CO ₂ Reduction Reaction over a Model Singleâ€Atom Nickel Catalyst. Angewandte Chemie - International Edition, 2020, 59, 798-803.	7.2	315
671	Ionâ€Enhanced Conversion of CO ₂ into Formate on Porous Dendritic Bismuth Electrodes with High Efficiency and Durability. ChemSusChem, 2020, 13, 698-706.	3.6	42
672	Looking Back and Looking Ahead in Electrochemical Reduction of CO ₂ . Chemical Record, 2020, 20, 89-101.	2.9	9
673	Elucidating the Electrocatalytic CO ₂ Reduction Reaction over a Model Singleâ€Atom Nickel Catalyst. Angewandte Chemie, 2020, 132, 808-813.	1.6	33
674	Metallocene implanted metalloporphyrin organic framework for highly selective CO2 electroreduction. Nano Energy, 2020, 67, 104233.	8.2	93

#	Article	IF	CITATIONS
675	Selective electrochemical CO ₂ conversion to multicarbon alcohols on highly efficient N-doped porous carbon-supported Cu catalysts. Green Chemistry, 2020, 22, 71-84.	4.6	66
676	Toward a quantitative theoretical method for infrared and Raman spectroscopic studies on single-crystal electrode/liquid interfaces. Chemical Science, 2020, 11, 1425-1430.	3.7	9
677	CO ₂ Reduction: From Homogeneous to Heterogeneous Electrocatalysis. Accounts of Chemical Research, 2020, 53, 255-264.	7.6	391
678	Thermochemical and electrochemical aspects of carbon dioxide methanation: A sustainable approach to generate fuel via waste to energy theme. Science of the Total Environment, 2020, 712, 136482.	3.9	40
679	CO ₂ Reduction on Copper's Twin Boundary. ACS Catalysis, 2020, 10, 2026-2032.	5.5	60
681	Electrocatalytic reduction of carbon dioxide: opportunities with heterogeneous molecular catalysts. Energy and Environmental Science, 2020, 13, 374-403.	15.6	303
682	Surface reconstruction of AgPd nanoalloy particles during the electrocatalytic formate oxidation reaction. Nanoscale, 2020, 12, 3469-3481.	2.8	44
683	Electrochemical CO ₂ reduction: from nanoclusters to single atom catalysts. Sustainable Energy and Fuels, 2020, 4, 1012-1028.	2.5	69
684	Partial sulfuration-induced defect and interface tailoring on bismuth oxide for promoting electrocatalytic CO ₂ reduction. Journal of Materials Chemistry A, 2020, 8, 2472-2480.	5.2	82
685	Promoting the electroreduction of CO ₂ with oxygen vacancies on a plasma-activated SnO _x /carbon foam monolithic electrode. Journal of Materials Chemistry A, 2020, 8, 1779-1786.	5.2	56
686	Optimizing Electron Densities of Niâ€N Complexes by Hybrid Coordination for Efficient Electrocatalytic CO ₂ Reduction. ChemSusChem, 2020, 13, 929-937.	3.6	76
687	Grain refinement of self-supported copper electrode by multiple-redox treatment for enhanced carbon dioxide electroreduction towards carbon monoxide generation. Journal of Catalysis, 2020, 381, 608-614.	3.1	11
688	Efficient infrared light induced CO2 reduction with nearly 100% CO selectivity enabled by metallic CoN porous atomic layers. Nano Energy, 2020, 69, 104421.	8.2	88
689	High urvature Transitionâ€Metal Chalcogenide Nanostructures with a Pronounced Proximity Effect Enable Fast and Selective CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2020, 59, 8706-8712.	7.2	145
690	Enhanced Ethanol Production from CO ₂ Electroreduction at Micropores in Nitrogenâ€Đoped Mesoporous Carbon. ChemSusChem, 2020, 13, 293-297.	3.6	44
691	Twoâ€Dimensional Metal–Organic Framework Nanosheets with Cobaltâ€Porphyrins for Highâ€Performance CO ₂ Electroreduction. Chemistry - A European Journal, 2020, 26, 1604-1611.	1.7	57
692	Electrochemical reduction of carbon dioxide on precise number of Fe atoms anchored graphdiyne. Journal of CO2 Utilization, 2020, 37, 272-277.	3.3	76
693	Synergistic enhancement of electrocatalytic CO2 reduction to C2 oxygenates at nitrogen-doped nanodiamonds/Cu interface. Nature Nanotechnology, 2020, 15, 131-137.	15.6	169

#	Article	IF	CITATIONS
694	Electrocatalyst of two-dimensional CoP nanosheets embedded by carbon nanoparticles for hydrogen generation and urea oxidation in alkaline solution. Applied Surface Science, 2020, 506, 144977.	3.1	48
695	Electrochemical Conversion of CO 2 to Syngas with Controllable CO/H 2 Ratios over Co and Ni Singleâ€Atom Catalysts. Angewandte Chemie, 2020, 132, 3057-3061.	1.6	22
696	Ag@Au Core‧hell Nanowires for Nearly 100 % CO ₂ â€ŧo O Electroreduction. Chemistry - a Asian Journal, 2020, 15, 425-431.	ⁿ 1.7	16
697	Nitrogen-Stabilized Low-Valent Ni Motifs for Efficient CO ₂ Electrocatalysis. ACS Catalysis, 2020, 10, 1086-1093.	5.5	101
698	Highly Efficient Porous Carbon Electrocatalyst with Controllable Nâ€5pecies Content for Selective CO ₂ Reduction. Angewandte Chemie - International Edition, 2020, 59, 3244-3251.	7.2	167
699	Synthesis and Properties of Stable Sub-2-nm-Thick Aluminum Nanosheets: Oxygen Passivation and Two-Photon Luminescence. CheM, 2020, 6, 448-459.	5.8	15
700	Highly Efficient Porous Carbon Electrocatalyst with Controllable Nâ€Species Content for Selective CO 2 Reduction. Angewandte Chemie, 2020, 132, 3270-3277.	1.6	20
701	Electrochemical Conversion of CO ₂ to Syngas with Controllable CO/H ₂ Ratios over Co and Ni Singleâ€Atom Catalysts. Angewandte Chemie - International Edition, 2020, 59, 3033-3037.	7.2	203
702	Self-growing Cu/Sn bimetallic electrocatalysts on nitrogen-doped porous carbon cloth with 3D-hierarchical honeycomb structure for highly active carbon dioxide reduction. Applied Catalysis B: Environmental, 2020, 264, 118447.	10.8	88
703	Integrating photocatalytic reduction of CO2 with selective oxidation of tetrahydroisoquinoline over InP–In2O3 Z-scheme p-n junction. Science China Chemistry, 2020, 63, 28-34.	4.2	43
704	Electrochemical Reduction of CO ₂ to CO by N,S Dualâ€Đoped Carbon Nanoweb Catalysts. ChemSusChem, 2020, 13, 539-547.	3.6	41
705	3D Porous Pyramid Heterostructure Array Realizing Efficient Photoâ€Electrochemical Performance. Advanced Energy Materials, 2020, 10, 1902935.	10.2	41
706	Controlling Speciation during CO ₂ Reduction on Cu-Alloy Electrodes. ACS Catalysis, 2020, 10, 672-682.	5.5	107
707	Coordinate activation in heterogeneous carbon dioxide reduction on Co-based molecular catalysts. Applied Catalysis B: Environmental, 2020, 268, 118452.	10.8	35
708	Microbial electrochemical platform for the production of renewable fuels and chemicals. Biosensors and Bioelectronics, 2020, 150, 111922.	5.3	52
709	The capacitive performances of carbon obtained from the electrolysis of CO2 in molten carbonates: Effects of electrolysis voltage and temperature. Journal of Energy Chemistry, 2020, 51, 418-424.	7.1	14
710	Highâ€Curvature Transitionâ€Metal Chalcogenide Nanostructures with a Pronounced Proximity Effect Enable Fast and Selective CO ₂ Electroreduction. Angewandte Chemie, 2020, 132, 8784-8790.	1.6	37
711	Sn/SnOx electrode catalyst with mesoporous structure for efficient electroreduction of CO2 to formate. Applied Surface Science, 2020, 508, 145221.	3.1	26

#	Article	IF	CITATIONS
712	Continuous Electrochemical Reduction of CO2 to Formate: Comparative Study of the Influence of the Electrode Configuration with Sn and Bi-Based Electrocatalysts. Molecules, 2020, 25, 4457.	1.7	18
713	Composite NiCoO ₂ /NiCo ₂ O ₄ inverse opals for the oxygen evolution reaction in an alkaline electrolyte. Catalysis Science and Technology, 2020, 10, 7566-7580.	2.1	6
714	Tuning Sn3O4 for CO2 reduction to formate with ultra-high current density. Nano Energy, 2020, 77, 105296.	8.2	65
715	Three-Dimensional Cathodes for Electrochemical Reduction of CO2: From Macro- to Nano-Engineering. Nanomaterials, 2020, 10, 1884.	1.9	23
716	Realizing Few‣ayer Iodinene for Highâ€Rate Sodiumâ€Ion Batteries. Advanced Materials, 2020, 32, e2004835.	11.1	41
717	Quantitative Electro-Reduction of CO ₂ to Liquid Fuel over Electro-Synthesized Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 17384-17392.	6.6	73
718	Highly Selective CO ₂ Electroreduction to CH ₄ by Inâ€Situ Generated Cu ₂ O Singleâ€Type Sites on a Conductive MOF: Stabilizing Key Intermediates with Hydrogen Bonding. Angewandte Chemie, 2020, 132, 23849-23856.	1.6	70
719	Computational Identification of a New Adsorption Site of CO ₂ on the Ag (211) Surface. ChemistrySelect, 2020, 5, 11503-11509.	0.7	4
720	Metal-based nanomaterials for efficient CO2 electroreduction: Recent advances in mechanism, material design and selectivity. Nano Energy, 2020, 78, 105311.	8.2	42
721	Revealing the structure–activity relationship of two Cu-porphyrin-based metal–organic frameworks for the electrochemical CO ₂ -to-HCOOH transformation. Dalton Transactions, 2020, 49, 14995-15001.	1.6	28
722	Regulating the coordination structure of metal single atoms for efficient electrocatalytic CO ₂ reduction. Energy and Environmental Science, 2020, 13, 4609-4624.	15.6	188
723	Molten Salt Treated Cu Foam Catalyst for Selective Electrochemical CO 2 Reduction Reaction. ChemistrySelect, 2020, 5, 11927-11933.	0.7	6
724	Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor. Nature Communications, 2020, 11, 3633.	5.8	294
725	Probing CO ₂ Reduction Pathways for Copper Catalysis Using an Ionic Liquid as a Chemical Trapping Agent. Angewandte Chemie - International Edition, 2020, 59, 18095-18102.	7.2	56
726	Activating Copper for Electrocatalytic CO ₂ Reduction to Formate via Molecular Interactions. ACS Catalysis, 2020, 10, 9271-9275.	5.5	75
727	Theoretical insights into the factors affecting the electrochemical reduction of CO ₂ . Sustainable Energy and Fuels, 2020, 4, 4352-4369.	2.5	14
729	Importance of Au nanostructures in CO2 electrochemical reduction reaction. Science Bulletin, 2020, 65, 796-802.	4.3	44
730	In/In2O3â^' heterostructure: in situ reconstructed active species of In2O3 for CO2 electroreduction. Science Bulletin, 2020, 65, 1514-1515.	4.3	1

ARTICLE IF CITATIONS # Structureâ€"Activity Relationship of the Polymerized Cobalt Phthalocyanines for Electrocatalytic 731 1.5 16 Carbon Dioxide Reduction. Journal of Physical Chemistry C, 2020, 124, 16501-16507. A composite heterogeneous catalyst C-Py-Sn-Zn for selective electrochemical reduction of CO2 to 2.3 methanol. Electrochemistry Communications, 2020, 118, 106789. Crosslinked Resinâ€Supported Bifunctional Organocatalyst for Conversion of CO₂ into 733 3.6 29 Cyclic Carbonates. ChemSusChem, 2020, 13, 4121-4127. Electrocatalytic properties of two-dimensional transition metal dichalcogenides and their 734 hetrostructures in energy applications., 2020, , 215-241. Advances in Clean Fuel Ethanol Production from Electro-, Photo- and Photoelectro-Catalytic CO2 735 1.6 25 Reduction. Catalysts, 2020, 10, 1287. <i>In situ</i> transformation of bismuth metalâ€"organic frameworks for efficient selective electroreduction of CO₂ to formate. Journal of Materials Chemistry A, 2020, 8, 5.2 24486-24492. Opportunity of Atomically Thin Two-Dimensional Catalysts for Promoting CO₂ 737 7.6 72 Electroreduction. Accounts of Chemical Research, 2020, 53, 2964-2974. Plasmonic CuCo/Carbon Dots: An Unconventional Photocatalyst Used for Photocatalytic Overall 3.2 Water Splitting. ACS Sustainable Chemistry and Engineering, 2020, 8, 17979-17987. Recent Advances in Electrode Materials for Electrochemical CO2Reduction. ACS Symposium Series, 739 0.5 1 2020, , 49-91. Nanostructured Cobaltâ€Based Electrocatalysts for CO₂Reduction: Recent Progress, 740 5.2 Challenges, and Perspectives. Small, 2020, 16, e2004158. The Effect of the Coordination Environment of Atomically Dispersed Fe and N Coâ€doped Carbon 741 17 1.7 Nanosheets on CO 2 Electroreduction. ChemElectroChem, 2020, 7, 4767-4772. Promoting CO2 methanation via ligand-stabilized metal oxide clusters as hydrogen-donating motifs. 742 5.8 Nature Communications, 2020, 11, 6190. Selective electrocatalytic reduction of carbon dioxide to formate by a trimetallic Sn-Co/Cu foam 743 1.9 7 electrode. Journal of Électroanalytical Chemistry, 2020, 877, 114623. Recent Advances in the Catalyst Design and Mass Transport Control for the Electrochemical 744 1.6 29 Reduction of Carbon Dioxide to Formate. Catalysts, 2020, 10, 859. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 745 19.8 365 reduction. Nature Energy, 2020, 5, 684-692. Catalyst–electrolyte interface chemistry for electrochemical CO₂ reduction. Chemical 746 234 Society Reviews, 2020, 49, 6632-6665. Design strategies and mechanism studies of CO2 electroreduction catalysts based on coordination 747 9.5 49 chemistry. Coordination Chemistry Reviews, 2020, 422, 213436. Highly Selective Electrocatalytic Reduction of CO₂ into Methane on Cu–Bi Nanoalloys. 748 2.1 Journal of Physical Chemistry Letters, 2020, 11, 7261-7266.

~	_	
CITAT	DEDO	DT
CHAL	NLPU	IX I

#	Article	IF	CITATIONS
749	A combined diffuse reflectance infrared Fourier transform spectroscopy–mass spectroscopy–gas chromatography for the <i>operando</i> study of the heterogeneously catalyzed CO2 hydrogenation over transition metal-based catalysts. Review of Scientific Instruments, 2020, 91, 074102.	0.6	0
750	Probing CO 2 Reduction Pathways for Copper Catalysis Using an Ionic Liquid as a Chemical Trapping Agent. Angewandte Chemie, 2020, 132, 18251-18258.	1.6	6
751	Metallenes: Recent Advances and Opportunities in Energy Storage and Conversion Applications. , 2020, 2, 1148-1172.		64
752	TpyCo ²⁺ â€Based Coordination Polymers by Waterâ€Induced Gelling Trigged Efficient Oxygen Evolution Reaction. Advanced Functional Materials, 2020, 30, 2000593.	7.8	31
753	Pr and Mo Coâ€Doped SrFeO _{3–<i>δ</i>} as an Efficient Cathode for Pure CO ₂ Reduction Reaction in a Solid Oxide Electrolysis Cell. Energy Technology, 2020, 8, 2000539.	1.8	7
754	SnO ₂ -Modified Two-Dimensional CuO for Enhanced Electrochemical Reduction of CO ₂ to C ₂ H ₄ . ACS Applied Materials & amp; Interfaces, 2020, 12, 36128-36136.	4.0	50
755	Highly Selective CO ₂ Electroreduction to CO on Cu–Co Bimetallic Catalysts. ACS Sustainable Chemistry and Engineering, 2020, 8, 12561-12567.	3.2	33
756	Biâ€Based Metalâ€Organic Framework Derived Leafy Bismuth Nanosheets for Carbon Dioxide Electroreduction. Advanced Energy Materials, 2020, 10, 2001709.	10.2	210
757	Interfacial engineering of bismuth with reduced graphene oxide hybrid for improving CO2 electroreduction performance. Electrochimica Acta, 2020, 357, 136840.	2.6	17
758	Fundamentals and challenges of ultrathin 2D photocatalysts in boosting CO ₂ photoreduction. Chemical Society Reviews, 2020, 49, 6592-6604.	18.7	220
759	Spherical Mesoporous SBAâ€15â€Supported CoP Nanoparticles as Robust Selective CO 2 Reduction and H 2 â€Generating Catalyst under Visible Light. ChemCatChem, 2020, 12, 5504-5510.	1.8	6
760	Molecularly Engineered Strong Metal Oxide–Support Interaction Enables Highly Efficient and Stable CO ₂ Electroreduction. ACS Catalysis, 2020, 10, 13227-13235.	5.5	94
761	Semiconductor nanocrystals for small molecule activation <i>via</i> artificial photosynthesis. Chemical Society Reviews, 2020, 49, 9028-9056.	18.7	127
762	Adsorption and self-assembly of porphyrins on ultrathin CoO films on Ir(100). Beilstein Journal of Nanotechnology, 2020, 11, 1516-1524.	1.5	6
763	Electro-reduction of carbon dioxide at low over-potential at a metal–organic framework decorated cathode. Nature Communications, 2020, 11, 5464.	5.8	62
764	Design of CulnS2 hollow nanostructures toward CO2 electroreduction. Science China Chemistry, 2020, 63, 1721-1726.	4.2	21
765	Formateâ€Selective CO ₂ Electrochemical Reduction with a Hydrogenâ€Reductionâ€Suppressing Bronze Alloy Hollowâ€Fiber Electrode. ChemSusChem, 2020, 13, 6594-6601.	3.6	18
766	Recent progress on nanostructured bimetallic electrocatalysts for water splitting and electroreduction of carbon dioxide. Journal of Semiconductors, 2020, 41, 091705.	2.0	13

#	Article	IF	CITATIONS
767	Recent Advances in Supported Metal Catalysts and Oxide Catalysts for the Reverse Water-Gas Shift Reaction. Frontiers in Chemistry, 2020, 8, 709.	1.8	71
768	Conversion of CO ₂ to chemical feedstocks over bismuth nanosheets <i>in situ</i> grown on nitrogen-doped carbon. Journal of Materials Chemistry A, 2020, 8, 19938-19945.	5.2	18
769	Iridium Single Atoms Coupling with Oxygen Vacancies Boosts Oxygen Evolution Reaction in Acid Media. Journal of the American Chemical Society, 2020, 142, 18378-18386.	6.6	334
770	Single Copper Atoms Supported on ZnS as an Efficient Catalyst for Electrochemical Reduction of CO to CH ₃ OH. ChemNanoMat, 2020, 6, 1806-1811.	1.5	9
771	Two-dimensional nonlayered materials for electrocatalysis. Energy and Environmental Science, 2020, 13, 3993-4016.	15.6	76
772	Synthesis of Sn ₄ P ₃ /reduced graphene oxide nanocomposites as highly efficient electrocatalysts for CO ₂ reduction. Green Chemistry, 2020, 22, 6804-6808.	4.6	14
773	Electrochemical conversion of CO2 to syngas with a wide range of CO/H2 ratio over Ni/Fe binary single-atom catalysts. Nano Research, 2020, 13, 3206-3211.	5.8	45
774	A Mn-N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction. Nature Communications, 2020, 11, 4341.	5.8	257
775	Computational Design of Copper doped Indium for electrocatalytic Reduction of CO ₂ to Formic Acid. ChemCatChem, 2020, 12, 5632-5636.	1.8	13
776	Highly Selective CO ₂ Electroreduction to CH ₄ by Inâ€Situ Generated Cu ₂ O Singleâ€Type Sites on a Conductive MOF: Stabilizing Key Intermediates with Hydrogen Bonding. Angewandte Chemie - International Edition, 2020, 59, 23641-23648.	7.2	335
777	Synthesis of Twoâ€dimensional Metallic Nanosheets: From Elemental Metals to Chemically Complex Alloys. ChemNanoMat, 2020, 6, 1683-1711.	1.5	18
778	Effect of the coordination environment of Cu in Cu ₂ O on the electroreduction of CO ₂ to ethylene. Green Chemistry, 2020, 22, 6340-6344.	4.6	28
779	Electrocatalytic CO ₂ Reduction by Self-Assembled Monolayers of Metal Porphyrins. Journal of Physical Chemistry C, 2020, 124, 19716-19724.	1.5	13
780	Research Progress in Conversion of CO2 to Valuable Fuels. Molecules, 2020, 25, 3653.	1.7	64
781	Defective Indium/Indium Oxide Heterostructures for Highly Selective Carbon Dioxide Electrocatalysis. Inorganic Chemistry, 2020, 59, 12437-12444.	1.9	40
782	Single Ni atoms with higher positive charges induced by hydroxyls for electrocatalytic CO ₂ reduction. Nanoscale, 2020, 12, 18437-18445.	2.8	32
783	The Applications of 2D Nanomaterials in Energy-Related Process. ACS Symposium Series, 2020, , 219-251.	0.5	1
784	<i>Operando</i> evidence of Cu ⁺ stabilization <i>via</i> a single-atom modifier for CO ₂ electroreduction. Journal of Materials Chemistry A, 2020, 8, 25970-25977.	5.2	26

#	Article	IF	CITATIONS
785	Pb3(CO3)2(OH)2 Is an Active Phase in Electrocatalytic CO2 Reduction to Formate. Chemical Research in Chinese Universities, 2020, 36, 1145-1146.	1.3	4
786	Ionic Liquids-Promoted Electrocatalytic Reduction of Carbon Dioxide. Industrial & Engineering Chemistry Research, 2020, 59, 20235-20252.	1.8	30
787	Construction of Dualâ€Mesoporous Carbon Fibers Via Coassembly for Supercapacitors. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000365.	0.8	2
788	A Kinetic View on Proximity-Dependent Selectivity of Carbon Dioxide Reduction on Bifunctional Catalysts. ACS Catalysis, 2020, 10, 13518-13523.	5.5	14
789	Recent Progress of Carbon-Supported Single-Atom Catalysts for Energy Conversion and Storage. Matter, 2020, 3, 1442-1476.	5.0	196
790	A Principle for Highly Active Metal Oxide Catalysts via NaCl-Based Solid Solution. CheM, 2020, 6, 1723-1741.	5.8	30
791	Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nature Catalysis, 2020, 3, 478-487.	16.1	788
792	Oxidized indium with transformable dimensions for CO ₂ electroreduction toward formate aided by oxygen vacancies. Sustainable Energy and Fuels, 2020, 4, 3726-3731.	2.5	14
793	Ternary Snâ€īiâ€O Electrocatalyst Boosts the Stability and Energy Efficiency of CO ₂ Reduction. Angewandte Chemie - International Edition, 2020, 59, 12860-12867.	7.2	68
794	Reaction mechanism and kinetics for CO2 reduction on nickel single atom catalysts from quantum mechanics. Nature Communications, 2020, 11, 2256.	5.8	140
795	Synergy between a Silver–Copper Surface Alloy Composition and Carbon Dioxide Adsorption and Activation. ACS Applied Materials & Interfaces, 2020, 12, 25374-25382.	4.0	19
796	Ternary Snâ€Tiâ€O Electrocatalyst Boosts the Stability and Energy Efficiency of CO 2 Reduction. Angewandte Chemie, 2020, 132, 12960-12967.	1.6	8
797	Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature, 2020, 581, 178-183.	13.7	807
798	Synergetic catalysis of a cobalt-based coordination polymer for selective visible-light driven CO ₂ -to-CO conversion. RSC Advances, 2020, 10, 17951-17954.	1.7	6
799	Highly efficient mixed-metal spinel cobaltite electrocatalysts for the oxygen evolution reaction. Chinese Journal of Catalysis, 2020, 41, 1855-1863.	6.9	39
800	Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy and Environmental Science, 2020, 13, 3439-3446.	15.6	507
801	Ammonia Thermal Treatment toward Topological Defects in Porous Carbon for Enhanced Carbon Dioxide Electroreduction. Advanced Materials, 2020, 32, e2001300.	11.1	130
802	Adsorptionâ€Free Growth of Ultraâ€Thin Molybdenum Membranes with a Lowâ€Symmetry Rectangular Lattice Structure. Small, 2020, 16, 2001325.	5.2	7

#	Article	IF	CITATIONS
803	Copper-indium bimetallic catalysts for the selective electrochemical reduction of carbon dioxide. Chinese Journal of Catalysis, 2020, 41, 1393-1400.	6.9	42
804	High selective and efficient Fe2–N6 sites for CO2 electroreduction: A theoretical investigation. International Journal of Hydrogen Energy, 2020, 45, 14311-14319.	3.8	26
805	Bimetallenes for selective electrocatalytic conversion of CO ₂ : a first-principles study. Journal of Materials Chemistry A, 2020, 8, 12457-12462.	5.2	14
806	Wellâ€Defined Singleâ€Atom Cobalt Catalyst for Electrocatalytic Flue Gas CO ₂ Reduction. Small, 2020, 16, e2001896.	5.2	85
807	Selective electroreduction of CO2 to acetone by single copper atoms anchored on N-doped porous carbon. Nature Communications, 2020, 11, 2455.	5.8	265
808	A Universal Principle to Accurately Synthesize Atomically Dispersed Metal–N4 Sites for CO2 Electroreduction. Nano-Micro Letters, 2020, 12, 108.	14.4	65
809	Highly efficient and stable bicomponent cobalt oxide-copper catalysts for dehydrogenation. Catalysis Communications, 2020, 142, 106043.	1.6	5
810	Spontaneously Formed CuS _{<i>x</i>} Catalysts for Selective and Stable Electrochemical Reduction of Industrial CO ₂ Gas to Formate. ACS Applied Materials & Interfaces, 2020, 12, 22891-22900.	4.0	37
811	Regulation of metal ions in smart metal-cluster nodes of metal-organic frameworks with open metal sites for improved photocatalytic CO2 reduction reaction. Applied Catalysis B: Environmental, 2020, 276, 119173.	10.8	138
812	Electrocatalytic carbon dioxide reduction: from fundamental principles to catalyst design. Materials Today Advances, 2020, 7, 100074.	2.5	95
813	Actinyl-Modified g-C ₃ N ₄ as CO ₂ Activation Materials for Chemical Conversion and Environmental Remedy via an Artificial Photosynthetic Route. Inorganic Chemistry, 2020, 59, 8369-8379.	1.9	8
814	Designing CO ₂ reduction electrode materials by morphology and interface engineering. Energy and Environmental Science, 2020, 13, 2275-2309.	15.6	251
815	Metal–organic framework-derived cupric oxide polycrystalline nanowires for selective carbon dioxide electroreduction to C2 valuables. Journal of Materials Chemistry A, 2020, 8, 12418-12423.	5.2	38
816	Highly stable two-dimensional bismuth metal-organic frameworks for efficient electrochemical reduction of CO2. Applied Catalysis B: Environmental, 2020, 277, 119241.	10.8	109
817	Manipulating electronic delocalization of Mn3O4 by manganese defects for oxygen reduction reaction. Applied Catalysis B: Environmental, 2020, 277, 119247.	10.8	65
818	Solid-state synthesis of Cu nanoparticles embedded in carbon substrate for efficient electrochemical reduction of carbon dioxide to formic acid. Chemical Engineering Journal, 2020, 400, 125879.	6.6	33
819	Recent breakthroughs in two-dimensional van der Waals magnetic materials and emerging applications. Nano Today, 2020, 34, 100902.	6.2	49
820	Nitrogen doping and titanium vacancies synergistically promote CO ₂ fixation in seawater. Nanoscale, 2020, 12, 17191-17195.	2.8	23

\sim	T A T I	0.11	Repo	DT
			REDU	
	/		ILLI U	- C - L

#	Article	IF	CITATIONS
821	Recent Progress in Singleâ€Atom Catalysts for Photocatalytic Water Splitting. Solar Rrl, 2020, 4, 2000283.	3.1	59
822	Chloroplast-like porous bismuth-based core–shell structure for high energy efficiency CO2 electroreduction. Science Bulletin, 2020, 65, 1635-1642.	4.3	52
823	Controlled Synthesis of EDTA-Modified Porous Hollow Copper Microspheres for High-Efficiency Conversion of CO ₂ to Multicarbon Products. Nano Letters, 2020, 20, 4823-4828.	4.5	48
824	Electrochemical CO ₂ -to-CO conversion: electrocatalysts, electrolytes, and electrolyzers. Journal of Materials Chemistry A, 2020, 8, 15458-15478.	5.2	118
825	Synergies between electronic and geometric effects of Mo-doped Au nanoparticles for effective CO ₂ electrochemical reduction. Journal of Materials Chemistry A, 2020, 8, 12291-12295.	5.2	21
826	Cu nanowire bridged Bi nanosheet arrays for efficient electrochemical CO2 reduction toward formate. Journal of Alloys and Compounds, 2020, 841, 155789.	2.8	41
827	Electroreduction of CO2 in Ionic Liquid-Based Electrolytes. Innovation(China), 2020, 1, 100016.	5.2	70
828	Rational Design of Nanocatalysts with Nonmetal Species Modification for Electrochemical CO ₂ Reduction. Advanced Energy Materials, 2020, 10, 2000588.	10.2	53
829	Atomic Thickness Catalysts: Synthesis and Applications. Small Methods, 2020, 4, 2000248.	4.6	32
830	Bi/Bi2O3 nanoparticles supported on N-doped reduced graphene oxide for highly efficient CO2 electroreduction to formate. Chinese Chemical Letters, 2020, 31, 1415-1421.	4.8	51
831	In situ encapsulated and well dispersed Co3O4 nanoparticles as efficient and stable electrocatalysts for high-performance CO2 reduction. Journal of Materials Chemistry A, 2020, 8, 15675-15680.	5.2	24
832	Rich Bismuthâ€Oxygen Bonds in Bismuth Derivatives from Bi ₂ S ₃ Preâ€Catalysts Promote the Electrochemical Reduction of CO ₂ . ChemElectroChem, 2020, 7, 2864-2868.	1.7	12
833	CO2 electrochemical reduction using single-atom catalysts.ÂPreparation, characterization and anchoring strategies: a review. Environmental Chemistry Letters, 2020, 18, 1593-1623.	8.3	19
834	Ethylene Selectivity in Electrocatalytic CO ₂ Reduction on Cu Nanomaterials: A Crystal Phase-Dependent Study. Journal of the American Chemical Society, 2020, 142, 12760-12766.	6.6	183
835	Ionic liquidâ€assisted synthesis of defectâ€rich BiOI with controllable structure and high surface area for excellent visibleâ€light photocatalytic activity. Applied Organometallic Chemistry, 2020, 34, e5816.	1.7	2
836	Singleâ€Atom Catalysts for Electrocatalytic Applications. Advanced Functional Materials, 2020, 30, 2000768.	7.8	390
837	Tuning adsorption strength of CO2 and its intermediates on tin oxide-based electrocatalyst for efficient CO2 reduction towards carbonaceous products. Applied Catalysis B: Environmental, 2020, 277, 119252.	10.8	50
838	Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks. Nature Communications, 2020, 11, 1409.	5.8	317

#	ARTICLE	IF	Citations
839	Modulating the electronic and optical properties for SrTiO ₃ /LaAlO ₃ bilayers treated as the 2D materials by biaxial strains. Journal of Physics Condensed Matter, 2020, 32, 215701.	0.7	4
840	Electrochemical Oxidation of Nitrogen towards Direct Nitrate Production on Spinel Oxides. Angewandte Chemie - International Edition, 2020, 59, 9418-9422.	7.2	108
841	Design of a Graphene Nitrene Two-Dimensional Catalyst Heterostructure Providing a Well-Defined Site Accommodating One to Three Metals, with Application to CO ₂ Reduction Electrocatalysis for the Two-Metal Case. Journal of Physical Chemistry Letters, 2020, 11, 2541-2549.	2.1	51
842	Covalent Triazine Framework Confined Copper Catalysts for Selective Electrochemical CO ₂ Reduction: Operando Diagnosis of Active Sites. ACS Catalysis, 2020, 10, 4534-4542.	5.5	112
843	Roles of Oxygen Functional Groups in Carbon Nanotubes‣upported Ag Catalysts for Electrochemical Conversion of CO ₂ to CO. ChemElectroChem, 2020, 7, 1869-1876.	1.7	12
844	Two-Dimensional Amorphous SnO _{<i>x</i>} from Liquid Metal: Mass Production, Phase Transfer, and Electrocatalytic CO ₂ Reduction toward Formic Acid. Nano Letters, 2020, 20, 2916-2922.	4.5	97
845	Two-Dimensional SnO ₂ Nanosheets for Efficient Carbon Dioxide Electroreduction to Formate. ACS Sustainable Chemistry and Engineering, 2020, 8, 4975-4982.	3.2	59
846	Ultrathin low dimensional heterostructure composites with superior photocatalytic activity: Insight into the multichannel charge transfer mechanism. Chemical Engineering Journal, 2020, 393, 124718.	6.6	54
847	Hollow Metal–Organicâ€Frameworkâ€Mediated Inâ€Situ Architecture of Copper Dendrites for Enhanced CO 2 Electroreduction. Angewandte Chemie, 2020, 132, 8981-8986.	1.6	19
848	Engineering Co Nanoparticles Supported on Defect MoS _{2–<i>x</i>} for Mild Deoxygenation of Lignin-Derived Phenols to Arenes. ACS Energy Letters, 2020, 5, 1330-1336.	8.8	68
849	A CO ₂ /H ₂ fuel cell: reducing CO ₂ while generating electricity. Journal of Materials Chemistry A, 2020, 8, 8329-8336.	5.2	16
850	Surface composition dominates the electrocatalytic reduction of CO ₂ on ultrafine CuPd nanoalloys. , 2020, 2, 443-451.		56
851	Heterostructured Catalysts for Electrocatalytic and Photocatalytic Carbon Dioxide Reduction. Advanced Functional Materials, 2020, 30, 1910768.	7.8	227
852	Enhanced CO ₂ Electroreduction on Neighboring Zn/Co Monomers by Electronic Effect. Angewandte Chemie - International Edition, 2020, 59, 12664-12668.	7.2	164
853	Boosting CO ₂ Electroreduction on N,Pâ€Coâ€doped Carbon Aerogels. Angewandte Chemie - International Edition, 2020, 59, 11123-11129.	7.2	138
854	Orderedâ€Mesoporousâ€Carbonâ€Confined Pb/PbO Composites: Superior Electrocatalysts for CO ₂ Reduction. ChemSusChem, 2020, 13, 6346-6352.	3.6	22
855	The Origin of the Electrocatalytic Activity for CO ₂ Reduction Associated with Metalâ€Organic Frameworks. ChemSusChem, 2020, 13, 2552-2556.	3.6	17
856	Application of two-dimensional materials for electrochemical carbon dioxide reduction. , 2020, , 289-326.		1

#	Article	IF	Citations
857	Hollow Metal–Organicâ€Frameworkâ€Mediated Inâ€Situ Architecture of Copper Dendrites for Enhanced CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2020, 59, 8896-8901.	7.2	85
858	Highly Selective Reduction of CO ₂ to C ₂₊ Hydrocarbons at Copper/Polyaniline Interfaces. ACS Catalysis, 2020, 10, 4103-4111.	5.5	220
859	An intriguing window opened by a metallic two-dimensional Lindqvist-cobaltporphyrin organic framework as an electrochemical catalyst for the CO ₂ reduction reaction. Journal of Materials Chemistry A, 2020, 8, 14807-14814.	5.2	38
860	A Universal Process: Self-Templated and Orientated Fabrication of XMoO ₄ (X: Ni, Co, or Fe) Nanosheets on MoO ₂ Nanoplates as Electrocatalysts for Efficient Water Splitting. ACS Applied Materials & Interfaces, 2020, 12, 33785-33794.	4.0	23
861	Unveiling hydrocerussite as an electrochemically stable active phase for efficient carbon dioxide electroreduction to formate. Nature Communications, 2020, 11, 3415.	5.8	121
862	Significant role of reconstructed character on CuO-derived catalyst for enhanced electrocatalytic reduction of CO2 to multicarbon products. Electrochimica Acta, 2020, 354, 136753.	2.6	21
863	Stability and synthesis of 2D metals and alloys: a review. Materials Today Advances, 2020, 8, 100092.	2.5	43
864	Heterophase engineering of SnO2/Sn3O4 drives enhanced carbon dioxide electrocatalytic reduction to formic acid. Science China Materials, 2020, 63, 2314-2324.	3.5	36
865	Surface Nitrogen-Injection Engineering for High Formation Rate of CO ₂ Reduction to Formate. Nano Letters, 2020, 20, 6097-6103.	4.5	71
866	A SiW11Mn-assisted indium electrocatalyst for carbon dioxide reduction into formate and acetate. Journal of CO2 Utilization, 2020, 38, 299-305.	3.3	13
867	lon‣nhanced Conversion of CO 2 into Formate on Porous Dendritic Bismuth Electrodes with High Efficiency and Durability. ChemSusChem, 2020, 13, 662-662.	3.6	2
868	Multi-shelled CuO microboxes for carbon dioxide reduction to ethylene. Nano Research, 2020, 13, 768-774.	5.8	60
869	Bismuthene for highly efficient carbon dioxide electroreduction reaction. Nature Communications, 2020, 11, 1088.	5.8	278
870	Electrochemically Driven Cation Exchange Enables the Rational Design of Active CO ₂ Reduction Electrocatalysts. Angewandte Chemie, 2020, 132, 8339-8346.	1.6	24
871	Electrochemically Driven Cation Exchange Enables the Rational Design of Active CO ₂ Reduction Electrocatalysts. Angewandte Chemie - International Edition, 2020, 59, 8262-8269.	7.2	50
872	Morphology controlling of silver by plasma engineering for electrocatalytic carbon dioxide reduction. Journal of Power Sources, 2020, 453, 227846.	4.0	22
873	Integration of Strong Electron Transporter Tetrathiafulvalene into Metalloporphyrin-Based Covalent Organic Framework for Highly Efficient Electroreduction of CO ₂ . ACS Energy Letters, 2020, 5, 1005-1012.	8.8	180
874	Promotion of CO ₂ Electrochemical Reduction via Cu Nanodendrites. ACS Applied Materials & Interfaces, 2020, 12, 11562-11569.	4.0	54

#	Article	IF	Citations
875	Achieving Multiple and Tunable Ratios of Syngas to Meet Various Downstream Industrial Processes. ACS Sustainable Chemistry and Engineering, 2020, 8, 3328-3335.	3.2	11
876	Accelerating CO ₂ Electroreduction to CO Over Pd Singleâ€Atom Catalyst. Advanced Functional Materials, 2020, 30, 2000407.	7.8	173
877	Fluorine Doped Cagelike Carbon Electrocatalyst: An Insight into the Structure-Enhanced CO Selectivity for CO ₂ Reduction at High Overpotential. ACS Nano, 2020, 14, 2014-2023.	7.3	119
878	One-Step Direct Fixation of Atmospheric CO2 by Si-H Surface in Solution. IScience, 2020, 23, 100806.	1.9	3
879	Visible light photo-treatment of simulated wastewater activated by high-efficient photocatalyst: A novel heterojunction of Bi2MoO6 balls and Pd nanoskeletons. Applied Surface Science, 2020, 510, 145468.	3.1	19
880	Oxygen Functionalized Copper Nanoparticles for Solar-Driven Conversion of Carbon Dioxide to Methane. ACS Nano, 2020, 14, 2099-2108.	7.3	21
881	In Situ Reconstruction of a Hierarchical Sn u/SnO _{<i>x</i>} Core/Shell Catalyst for Highâ€Performance CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2020, 59, 4814-4821.	7.2	270
882	Electrodeposited Bi dendrites/2D black phosphorus nanosheets composite used for boosting formic acid production from CO2 electroreduction. Journal of CO2 Utilization, 2020, 38, 32-38.	3.3	29
883	Tuning Oxygen Vacancies of Oxides to Promote Electrocatalytic Reduction of Carbon Dioxide. ACS Energy Letters, 2020, 5, 552-558.	8.8	54
884	Novel folic acid complex derived nitrogen and nickel co-doped carbon nanotubes with embedded Ni nanoparticles as efficient electrocatalysts for CO ₂ reduction. Journal of Materials Chemistry A, 2020, 8, 5105-5114.	5.2	18
885	Two-dimensional materials for energy conversion and storage. Progress in Materials Science, 2020, 111, 100637.	16.0	134
886	Synergy effects on Sn-Cu alloy catalyst for efficient CO2 electroreduction to formate with high mass activity. Science Bulletin, 2020, 65, 711-719.	4.3	142
887	Engineering Electronic Structure of Stannous Sulfide by Aminoâ€Functionalized Carbon: Toward Efficient Electrocatalytic Reduction of CO ₂ to Formate. Advanced Energy Materials, 2020, 10, 1903664.	10.2	86
888	In Situ Reconstruction of a Hierarchical Sn u/SnO _{<i>x</i>} Core/Shell Catalyst for Highâ€Performance CO ₂ Electroreduction. Angewandte Chemie, 2020, 132, 4844-4851.	1.6	29
889	Carbon dioxide electroreduction on single-atom nickel decorated carbon membranes with industry compatible current densities. Nature Communications, 2020, 11, 593.	5.8	330
890	A bis(thiosemicarbazonato)-copper complex, a new catalyst for electro- and photo-reduction of CO2 to methanol. New Journal of Chemistry, 2020, 44, 2721-2726.	1.4	15
891	Efficient Methane Electrosynthesis Enabled by Tuning Local CO ₂ Availability. Journal of the American Chemical Society, 2020, 142, 3525-3531.	6.6	154
892	Cu ₂ 0 Nanoparticles with Both {100} and {111} Facets for Enhancing the Selectivity and Activity of CO ₂ Electroreduction to Ethylene. Advanced Science, 2020, 7, 1902820.	5.6	196

#	Article	IF	CITATIONS
893	Ultrathin Ni(0)â€Embedded Ni(OH) ₂ Heterostructured Nanosheets with Enhanced Electrochemical Overall Water Splitting. Advanced Materials, 2020, 32, e1906915.	11.1	259
894	CO ₂ Photoreduction on Metal Oxide Surface Is Driven by Transient Capture of Hot Electrons: <i>Ab Initio</i> Quantum Dynamics Simulation. Journal of the American Chemical Society, 2020, 142, 3214-3221.	6.6	63
895	Mesoporous NiCo2O4 network constructed from ultrathin-mesoporous nanosheets as high performance electrocatalyst in dye sensitized solar cell. Journal of Electroanalytical Chemistry, 2020, 861, 113907.	1.9	8
896	Polymers with intrinsic microporosity (PIMs) for targeted CO2 reduction to ethylene. Chemosphere, 2020, 248, 125993.	4.2	30
897	The main factor to improve the performance of CoSe ₂ for photocatalytic CO ₂ reduction: element doping or phase transformation. Journal of Materials Chemistry A, 2020, 8, 4457-4463.	5.2	23
898	Photoanode driven photoelectrocatalytic system for CO2 reduction to formic acid by using CoOx cathode. Applied Surface Science, 2020, 511, 145497.	3.1	24
899	Carbon-based single-atom catalysts for CO ₂ electroreduction: progress and optimization strategies. Journal of Materials Chemistry A, 2020, 8, 10695-10708.	5.2	86
900	Bismuthâ€Oxideâ€Decorated Graphene Oxide Hybrids for Catalytic and Electrocatalytic Reduction of CO ₂ . Chemistry - A European Journal, 2020, 26, 8801-8809.	1.7	21
901	Synergistic tuning of oxygen vacancies and d-band centers of ultrathin cobaltous dihydroxycarbonate nanowires for enhanced electrocatalytic oxygen evolution. Nanoscale, 2020, 12, 11735-11745.	2.8	10
902	Enhanced CO ₂ Electroreduction on Neighboring Zn/Co Monomers by Electronic Effect. Angewandte Chemie, 2020, 132, 12764-12768.	1.6	23
903	Electrochemical Oxidation of Nitrogen towards Direct Nitrate Production on Spinel Oxides. Angewandte Chemie, 2020, 132, 9504-9508.	1.6	31
904	Boosting CO ₂ Electroreduction on N,Pâ€Coâ€doped Carbon Aerogels. Angewandte Chemie, 2020, 132, 11216-11222.	1.6	39
905	Investigation of Structural Evolution of SnO 2 Nanosheets towards Electrocatalytic CO 2 Reduction. Chemistry - an Asian Journal, 2020, 15, 1558-1561.	1.7	13
906	Ultra stable multinuclear metal complexes as homogeneous catalysts for visible-light driven syngas production from pure and diluted CO2. Journal of Catalysis, 2020, 385, 70-75.	3.1	19
907	The <i>in situ</i> morphology transformation of bismuth-based catalysts for the effective electroreduction of carbon dioxide. Sustainable Energy and Fuels, 2020, 4, 2831-2840.	2.5	27
908	A cold plasma-activated <i>in situ</i> AgCo surface alloy for enhancing the electroreduction of CO ₂ to ethanol. Journal of Materials Chemistry A, 2020, 8, 8410-8420.	5.2	40
909	Broad-Spectral-Response Photocatalysts for CO ₂ Reduction. ACS Central Science, 2020, 6, 653-660.	5.3	79
910	Atomically Dispersed Iron–Nitrogen Sites on Hierarchically Mesoporous Carbon Nanotube and Graphene Nanoribbon Networks for CO ₂ Reduction. ACS Nano, 2020, 14, 5506-5516.	7.3	125

ARTICLE IF CITATIONS Highly efficient and durable aqueous electrocatalytic reduction of CO₂ to HCOOH with a 911 5.2 73 novel bismuth–MOF: experimental and DFT studies. Journal of Materials Chemistry A, 2020, 8, 9776-9787. M2C-type MXenes: Promising catalysts for CO2 capture and reduction. Applied Surface Science, 2020, 3.1 521, 146436. Exploring Bi₂Te₃ Nanoplates as Versatile Catalysts for Electrochemical 913 11.1 65 Reduction of Small Molecules. Advanced Materials, 2020, 32, e1906477. Nanostructures for Electrocatalytic CO₂ Reduction. Chemistry - A European Journal, 914 2020, 26, 14024-14035. Toward Excellence of Transition Metalâ€Based Catalysts for CO₂ Electrochemical 915 4.6 60 Reduction: An Overview of Strategies and Rationales. Small Methods, 2020, 4, 2000033. Boosting formate production at high current density from CO2 electroreduction on defect-rich hierarchical mesoporous Bi/Bi2O3 junction nanosheets. Applied Catalysis B: Environmental, 2020, 271, 10.8 118957. Unveiling in situ evolved In/In2O3a^{^,} heterostructure as the active phase of In2O3 toward efficient 917 4.3 105 electroreduction of CO2 to formate. Science Bulletin, 2020, 65, 1547-1554. Construction of cobalt-copper bimetallic oxide heterogeneous nanotubes for high-efficient and 7.1 26 low-overpotential electrochemical CO2 reduction. Journal of Energy Chemistry, 2021, 54, 1-6. Controlling cation migration and inter-diffusion across cathode/interlayer/electrolyte interfaces of 919 2.3 55 solid oxide fuel cells: Ă review. Ceramics International, 2021, 47, 5839-5869. Electrochemistry: Retrospect and Prospects. Israel Journal of Chemistry, 2021, 61, 120-151. 1.0 Ordered cone-structured tin directly grown on carbon paper as efficient electrocatalyst for CO2 921 7.1 29 electrochemical reduction to formate. Journal of Energy Chemistry, 2021, 55, 236-243. Cobalt nitride as a novel cocatalyst to boost photocatalytic CO2 reduction. Nano Energy, 2021, 79, 8.2 105429. Ultrathin two-dimensional metal–organic framework nanosheets for efficient electrochemical CO2 923 7.1 8 reduction. Journal of Energy Chemistry, 2021, 57, 627-631. Thermally-assisted photocatalytic CO2 reduction to fuels. Chemical Engineering Journal, 2021, 408, 924 6.6 127280 Valence state of transition metal center as an activity descriptor for CO2 reduction on single atom 925 20 7.1 catalysts. Journal of Energy Chemistry, 2021, 56, 444-448. In-situ construction of lattice-matching NiP2/NiSe2 heterointerfaces with electron redistribution for 171 boosting overall water splitting. Applied Catalysis B: Environmental, 2021, 282, 119584. Production of advanced fuels through integration of biological, thermo-chemical and power to gas technologies in a circular cascading bio-based system. Renewable and Sustainable Energy Reviews, 927 8.2 33 2021, 135, 110371. Monoclinic Scheelite Bismuth Vanadate Derived Bismuthene Nanosheets with Rapid Kinetics for 928 Electrochemically Reducing Carbon Dioxide to Formate. Advanced Functional Materials, 2021, 31, 2006704.

#	Article	IF	CITATIONS
929	Elucidation of the Synergistic Effect of Dopants and Vacancies on Promoted Selectivity for CO ₂ Electroreduction to Formate. Advanced Materials, 2021, 33, e2005113.	11.1	95
930	Structure, Preparation, and Applications of 2D Materialâ€Based Metal–Semiconductor Heterostructures. Small Structures, 2021, 2, 2000093.	6.9	71
931	Regulating the oxidation state of nanomaterials for electrocatalytic CO ₂ reduction. Energy and Environmental Science, 2021, 14, 1121-1139.	15.6	178
932	Elemental 2D Materials: Progress and Perspectives Toward Unconventional Structures. Small Structures, 2021, 2, 2000101.	6.9	30
933	Atomically precise metal nanoclusters for (photo)electroreduction of CO2: Recent advances, challenges and opportunities. Journal of Energy Chemistry, 2021, 57, 359-370.	7.1	43
934	NiSn Atomic Pair on an Integrated Electrode for Synergistic Electrocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2021, 60, 7382-7388.	7.2	137
935	Unveiling the Synergistic Effect between Graphitic Carbon Nitride and Cu ₂ O toward CO ₂ Electroreduction to C ₂ H ₄ . ChemSusChem, 2021, 14, 929-937.	3.6	40
936	Utility of Core–Shell Nanomaterials in the Catalytic Transformations of Renewable Substrates. Chemistry - A European Journal, 2021, 27, 12-19.	1.7	4
937	Recent progress in structural modulation of metal nanomaterials for electrocatalytic CO2 reduction. Rare Metals, 2021, 40, 1412-1430.	3.6	61
938	Identification of the activity source of CO2 electroreduction by strategic catalytic site distribution in stable supramolecular structure system. National Science Review, 2021, 8, nwaa195.	4.6	23
939	A highly active and carbon-tolerant anode decorated with in situ grown cobalt nano-catalyst for intermediate-temperature solid oxide fuel cells. Applied Catalysis B: Environmental, 2021, 282, 119553.	10.8	56
940	Reticular materials for electrochemical reduction of CO2. Coordination Chemistry Reviews, 2021, 427, 213564.	9.5	29
941	Noble-Metal Based Random Alloy and Intermetallic Nanocrystals: Syntheses and Applications. Chemical Reviews, 2021, 121, 736-795.	23.0	269
942	Recent Advances on Metalâ€Organic Frameworks in the Conversion of Carbon Dioxide. Chinese Journal of Chemistry, 2021, 39, 440-462.	2.6	51
943	Synergistic carbon and hydrogen reactions in the electrochemical reduction of CO ₂ to liquid fuels. Journal of Materials Chemistry A, 2021, 9, 10546-10561.	5.2	18
944	DFT calculations for single-atom confinement effects of noble metals on monolayer g-C ₃ N ₄ for photocatalytic applications. RSC Advances, 2021, 11, 4276-4285.	1.7	29
945	Direct Growth of Oxygen Vacancy-Enriched Co ₃ O ₄ Nanosheets on Carbon Nanotubes for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2021, 13, 4419-4428.	4.0	55
946	Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. Chemical Society Reviews, 2021, 50, 11381-11485.	18.7	129

ARTICLE IF CITATIONS Quasi-double-star nickel and iron active sites for high-efficiency carbon dioxide electroreduction. 947 15.6 43 Energy and Environmental Science, 2021, 14, 4847-4857. Electrocatalysis for CO₂conversion: from fundamentals to value-added products. 948 18.7 559 Chemical Society Reviews, 2021, 50, 4993-5061. 949 Synthesis and characterization of 2D materials., 2021, , 77-104. 2 Metallenes as functional materials in electrocatalysis. Chemical Society Reviews, 2021, 50, 6700-6719. 950 253 <i>In Situ</i> Formed Metal Oxide/Metal Interface Enhanced Câ€"C Coupling in CO₂ Reduction into CH₃COOH over Hexagonal Closed-Packed Cobalt. ACS Sustainable 951 3.2 19 Chemistry and Engineering, 2021, 9, 1203-1212. Tunable electronic and optical properties in buckling a non-lamellar B₃S monolayer. Physical Chemistry Chemical Physics, 2021, 23, 18669-18677. 1.3 Atomic-thin hexagonal CuCo nanocrystals with d-band tuning for CO₂ reduction. Journal 953 5.2 24 of Materials Chemistry A, 2021, 9, 7496-7502. Enhance the activity of multi-carbon products for Cu via P doping towards CO2 reduction. Science 954 4.2 China Chemistry, 2021, 64, 1096-1102. Electronic and geometric determinants of adsorption: fundamentals and applications. JPhys Energy, 955 2.3 18 2021, 3, 022001. Polyoxometalate-induced â€~cage-within-cage' metal–organic frameworks with high efficiency towards 2.5 CO(sub>2</sub> photoreduction. Sustainable Energy and Fuels, 2021, 5, 3876-3883. Emerging beyond-graphene elemental 2D materials for energy and catalysis applications. Chemical 957 18.7 170 Society Reviews, 2021, 50, 10983-11031. Engineering a conductive network of atomically thin bismuthene with rich defects enables CO₂ reduction to formate with industry-compatible current densities and stability. 15.6 119 Energy and Environmental Science, 2021, 14, 4998-5008. Photocatalytic CO₂ reduction to CH₄ on iron porphyrin supported on 959 2.1 13 atomically thin defective titanium dioxide. Catalysis Science and Technology, 2021, 11, 6103-6111. Nitrogen dopant induced highly selective CO₂ reduction over lotus-leaf shaped ZnO 3.2 nanorods. Materials Chemistry Frontiers, 2021, 5, 4225-4230. Designing electrode materials for the electrochemical reduction of carbon dioxide. Materials 961 6.4 18 Horizons, 2021, 8, 2420-2443. 2D Materials for electrochemical carbon dioxide reduction., 2021, , 183-196. Recent progresses in the mechanism, performance, and fabrication methods of metal-derived 963 nanomaterials for efficient electrochemical CO₂reduction. Journal of Materials 5.28 Chemistry A, 2021, 9, 4558-4588. Wet-chemical synthesis of two-dimensional metal nanomaterials for electrocatalysis. National 964 Science Review, 2022, 9, nwab142.

#	Article	IF	CITATIONS
965	A light-fostered supercapacitor performance of multi-layered ReS ₂ grown on conducting substrates. Nanoscale Advances, 2021, 3, 2089-2102.	2.2	17
966	Boosting HMF oxidation performance <i>via</i> decorating ultrathin nickel hydroxide nanosheets with amorphous copper hydroxide islands. Journal of Materials Chemistry A, 2021, 9, 9685-9691.	5.2	45
967	Nickel-Nitrogen-Doped Ordered Macro-/Mesoporous Carbon Supported Ag Nanoparticles for Efficient Electrocatalytic CO ₂ Reduction. Acta Chimica Sinica, 2021, 79, 925.	0.5	5
968	Research Progress on Triphase Interface Electrocatalytic Carbon Dioxide Reduction. Acta Chimica Sinica, 2021, 79, 369.	0.5	4
969	Hydrophobic thiol coatings to facilitate a triphasic interface for carbon dioxide reduction to ethylene at gas diffusion electrodes. Faraday Discussions, 2021, 230, 375-387.	1.6	10
970	Power to formic acid. , 2021, , 169-210.		2
971	Structure Dependent Product Selectivity for CO ₂ Electroreduction on ZnO Derived Catalysts. ChemCatChem, 2021, 13, 1998-2004.	1.8	9
972	Selective and High Current CO ₂ Electro-Reduction to Multicarbon Products in Near-Neutral KCl Electrolytes. Journal of the American Chemical Society, 2021, 143, 3245-3255.	6.6	108
973	Highly Boosted Reaction Kinetics in Carbon Dioxide Electroreduction by Surfaceâ€Introduced Electronegative Dopants. Advanced Functional Materials, 2021, 31, 2008146.	7.8	88
974	Operando Electrochemical Spectroscopy for CO on Cu(100) at pH 1 to 13: Validation of Grand Canonical Potential Predictions. ACS Catalysis, 2021, 11, 3173-3181.	5.5	6
975	Singleâ€Atom Catalysts Derived from Metal–Organic Frameworks for Electrochemical Applications. Small, 2021, 17, e2004809.	5.2	139
976	NiSn Atomic Pair on an Integrated Electrode for Synergistic Electrocatalytic CO ₂ Reduction. Angewandte Chemie, 2021, 133, 7458-7464.	1.6	25
977	Interface-Enhanced Catalytic Selectivity on the C ₂ Products of CO ₂ Electroreduction. ACS Catalysis, 2021, 11, 2473-2482.	5.5	92
978	Metal-support interactions in designing noble metal-based catalysts for electrochemical CO2 reduction: Recent advances and future perspectives. Nano Research, 2021, 14, 3795-3809.	5.8	80
979	Syngas Production via Carbon Dioxide Electroreduction Over CdS Nanorods. International Journal of Electrochemical Science, 2021, 16, 210369.	0.5	1
980	Boosting Production of HCOOH from CO ₂ Electroreduction via Bi/CeO _{<i>x</i>} . Angewandte Chemie - International Edition, 2021, 60, 8798-8802.	7.2	130
981	Achieving Strong Coherency for a Composite Electrode via One-Pot Method with Enhanced Electrochemical Performance in Reversible Solid Oxide Cells. ACS Catalysis, 2021, 11, 3704-3714.	5.5	36
982	Electrochemical Production of Formic Acid from CO 2 with Cetyltrimethylammonium Bromideâ€Assisted Copperâ€Based Catalysts. ChemSusChem, 2021, 14, 1962-1969.	3.6	1

#	Article	IF	Citations
984	Insight into Improving Energy Efficiency of Electrochemical CO2 Reduction to Formate in Divided H-type Cell. International Journal of Electrochemical Science, 0, , 210353.	0.5	0
985	Acceleration of Electrochemical CO ₂ Reduction to Formate at the Sn/Reduced Graphene Oxide Interface. ACS Catalysis, 2021, 11, 3310-3318.	5.5	92
986	Optimization Strategies for Selective CO2 Electroreduction to Fuels. Transactions of Tianjin University, 2021, 27, 180-200.	3.3	50
987	Boosting Production of HCOOH from CO 2 Electroreduction via Bi/CeO x. Angewandte Chemie, 2021, 133, 8880-8884.	1.6	3
988	Derived CuSn Alloys from Heterointerfaces in Bimetallic Oxides Promote the CO ₂ Electroreduction to Formate. ChemElectroChem, 2021, 8, 1150-1155.	1.7	11
989	BiPO ₄ â€Đerived 2D Nanosheets for Efficient Electrocatalytic Reduction of CO ₂ to Liquid Fuel. Angewandte Chemie, 2021, 133, 7759-7763.	1.6	10
990	Nanocapillarity and Nanoconfinement Effects of Pipet-like Bismuth@Carbon Nanotubes for Highly Efficient Electrocatalytic CO ₂ Reduction. Nano Letters, 2021, 21, 2650-2657.	4.5	95
991	Solid–liquid phase transition induced electrocatalytic switching from hydrogen evolution to highly selective CO2 reduction. Nature Catalysis, 2021, 4, 202-211.	16.1	89
992	BiPO ₄ â€Derived 2D Nanosheets for Efficient Electrocatalytic Reduction of CO ₂ to Liquid Fuel. Angewandte Chemie - International Edition, 2021, 60, 7681-7685.	7.2	98
993	Twoâ€Dimensional Metal–Organic Frameworks and Covalent–Organic Frameworks for Electrocatalysis: Distinct Merits by the Reduced Dimension. Advanced Energy Materials, 2022, 12, 2003990.	10.2	78
994	Atomic Indium Catalysts for Switching CO ₂ Electroreduction Products from Formate to CO. Journal of the American Chemical Society, 2021, 143, 6877-6885.	6.6	140
995	Recent Advances in Catalyst Structure and Composition Engineering Strategies for Regulating CO ₂ Electrochemical Reduction. Advanced Materials, 2021, 33, e2005484.	11.1	100
996	Recent Advances on Nanomaterials for Electrocatalytic CO ₂ Conversion. Energy & Fuels, 2021, 35, 7485-7510.	2.5	24
997	Engineering Ag–N <i>_x</i> Single-Atom Sites on Porous Concave N-Doped Carbon for Boosting CO ₂ Electroreduction. ACS Applied Materials & Interfaces, 2021, 13, 17736-17744.	4.0	45
998	Efficient Electron Transfer from Electronâ€Sponge Polyoxometalate to Singleâ€Metal Site Metal–Organic Frameworks for Highly Selective Electroreduction of Carbon Dioxide. Small, 2021, 17, e2100762.	5.2	34
999	Single atom catalyst for electrocatalysis. Chinese Chemical Letters, 2021, 32, 2947-2962.	4.8	43
1000	A Tandem (Bi ₂ O ₃ → Bi _{met}) Catalyst for Highly Efficient <i>ec</i> -CO ₂ Conversion into Formate: <i>Operando</i> Raman Spectroscopic Evidence for a Reaction Pathway Change. ACS Catalysis, 2021, 11, 4988-5003.	5.5	67
1001	Metal-organic framework membranes with single-atomic centers for photocatalytic CO2 and O2 reduction. Nature Communications, 2021, 12, 2682.	5.8	154

# 1002	ARTICLE Two-Dimensional Covalent Organic Frameworks with Cobalt(II)-Phthalocyanine Sites for Efficient Electrocatalytic Carbon Dioxide Reduction. Journal of the American Chemical Society, 2021, 143, 7104-7113.	IF 6.6	Citations 198
1003	Effect of Precipitated Precursor on the Catalytic Performance of Mesoporous Carbon Supported CuO-ZnO Catalysts. Crystals, 2021, 11, 582.	1.0	2
1004	Review—CO ₂ Attenuation: Electrochemical Methods and Perspectives. Journal of the Electrochemical Society, 2021, 168, 056515.	1.3	3
1005	Excellent Electrochemical Performance of La _{0.3} Sr _{0.7} Fe _{0.9} Ti _{0.1} O _{3â^{^1}î} as a Symmetric Electrode for Solid Oxide Cells. ACS Applied Materials & Interfaces, 2021, 13, 22381-22390.	4.0	38
1006	Cu2â^'xS derived copper nanoparticles: A platform for unraveling the role of surface reconstruction in efficient electrocatalytic CO2-to-C2H4 conversion. Nano Research, 2023, 16, 4494-4498.	5.8	42
1007	In Situ Growth of Transition Metal Nanoparticles on Aluminosilicate Minerals for Oxygen Evolution. Advanced Energy and Sustainability Research, 2021, 2, 2100057.	2.8	3
1008	Nitrogen-doped carbon with high graphitic-N exposure for electroreduction of CO2 to CO. Ionics, 2021, 27, 3089-3098.	1.2	12
1009	Coupling ferroelectric polarization and anisotropic charge migration for enhanced CO2 photoreduction. Applied Catalysis B: Environmental, 2021, 284, 119709.	10.8	74
1010	A review of non-noble metal-based electrocatalysts for CO2 electroreduction. Rare Metals, 2021, 40, 3019.	3.6	74
1011	Synthesis and Applications of Nanostructured Hollow Transition Metal Chalcogenides. Small, 2021, 17, e2006813.	5.2	29
1012	Electronic Modulation of Nonâ€van der Waals 2D Electrocatalysts for Efficient Energy Conversion. Advanced Materials, 2021, 33, e2008422.	11.1	190
1013	Atomic Structural Evolution of Singleâ€Layer Pt Clusters as Efficient Electrocatalysts. Small, 2021, 17, e2100732.	5.2	26
1014	Metal-semiconductor oxide (WO3@W) induces an efficient electro–photo synergistic catalysis for MOR and ORR. Chemical Engineering Journal, 2021, 414, 128814.	6.6	40
1015	Synthesis and functionalization of 2D nanomaterials for application in lithium-based energy storage systems. Energy Storage Materials, 2021, 38, 200-230.	9.5	29
1016	Boron Dopant Induced Electronâ€Rich Bismuth for Electrochemical CO ₂ Reduction with High Solar Energy Conversion Efficiency. Small, 2021, 17, e2101128.	5.2	42
1017	Metastable Two-Dimensional Materials for Electrocatalytic Energy Conversions. Accounts of Materials Research, 2021, 2, 559-573.	5.9	97
1018	Microenvironment and Nanoreactor Engineering of Single-Site Metal Catalysts for Electrochemical CO ₂ Reduction. Energy & amp; Fuels, 2021, 35, 9795-9808.	2.5	19
1019	Sn(101) Derived from Metal–Organic Frameworks for Efficient Electrocatalytic Reduction of CO ₂ . Inorganic Chemistry, 2021, 60, 9653-9659.	1.9	24

#	Article	IF	CITATIONS
1020	Recent Progresses in Electrochemical Carbon Dioxide Reduction on Copperâ€Based Catalysts toward Multicarbon Products. Advanced Functional Materials, 2021, 31, 2102151.	7.8	123
1021	Common strategies for improving the performances of tin and bismuth-based catalysts in the electrocatalytic reduction of CO2 to formic acid/formate. Renewable and Sustainable Energy Reviews, 2021, 143, 110952.	8.2	55
1023	Recent progress in high-entropy alloys for catalysts: synthesis, applications, and prospects. Materials Today Energy, 2021, 20, 100638.	2.5	73
1024	Interfacial Interactions between Coâ€Based Cocatalysts and Semiconducting Light Absorbers for Solarâ€Lightâ€Driven Redox Reactions. Solar Rrl, 2021, 5, 2100234.	3.1	2
1025	Toward an Understanding of the Enhanced CO ₂ Electroreduction in NaCl Electrolyte over CoPc Moleculeâ€Implanted Graphitic Carbon Nitride Catalyst. Advanced Energy Materials, 2021, 11, 2100075.	10.2	36
1026	Forging Inspired Processing of Sodiumâ€Fluorinated Graphene Composite as Dendriteâ€Free Anode for Longâ€Life Na–CO ₂ Cells. Energy and Environmental Materials, 2022, 5, 572-581.	7.3	8
1027	In-Sn alloy core-shell nanoparticles: In-doped SnOx shell enables high stability and activity towards selective formate production from electrochemical reduction of CO2. Applied Catalysis B: Environmental, 2021, 288, 119979.	10.8	65
1030	Largeâ€Area Vertically Aligned Bismuthene Nanosheet Arrays from Galvanic Replacement Reaction for Efficient Electrochemical CO ₂ Conversion. Advanced Materials, 2021, 33, e2100910.	11.1	81
1031	Constructing low-valent Ni nanoparticles for highly selective CO2 reduction. Chinese Chemical Letters, 2022, 33, 424-427.	4.8	12
1032	Aqueous Formateâ€Based Liâ€CO ₂ Battery with Low Charge Overpotential and High Working Voltage. Advanced Energy Materials, 2021, 11, 2101630.	10.2	19
1033	Insights into the critical dual-effect of acid treatment on ZnxCd1-xS for enhanced photocatalytic production of syngas under visible light. Applied Catalysis B: Environmental, 2021, 288, 119976.	10.8	41
1034	Fabrication of two-dimensional 3d transition metal oxides through template assisted cations hydrolysis method. Chemical Engineering Journal, 2021, 415, 129044.	6.6	6
1035	Noble-Metal-Free Multicomponent Nanointegration for Sustainable Energy Conversion. Chemical Reviews, 2021, 121, 10271-10366.	23.0	156
1036	<scp> CO ₂ </scp> electroreduction by <scp>AuCu</scp> bimetallic clusters: A first principles study. International Journal of Energy Research, 2021, 45, 18684-18694.	2.2	9
1037	Intimate atomic Cu-Ag interfaces for high CO2RR selectivity towards CH4 at low over potential. Nano Research, 2021, 14, 3497-3501.	5.8	54
1038	Facile Fabrication of Pt-Doped Mesoporous ZnS as High Efficiency for Photocatalytic CO2 Conversion. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 4637-4647.	1.9	5
1039	Electrochemical CO ₂ Reduction on Transition-Metal Chalcogenide Catalysts: Recent Advances and Future Perspectives. Energy & Fuels, 2021, 35, 12869-12883.	2.5	33
1040	Visualizing highly selective electrochemical CO2 reduction on a molecularly dispersed catalyst. Materials Today Physics, 2021, 19, 100427.	2.9	15

#	Article	IF	CITATIONS
1041	Emerging Dualâ€Atomic‧ite Catalysts for Efficient Energy Catalysis. Advanced Materials, 2021, 33, e2102576.	11.1	226
1042	Nanoporous Intermetallic Cu ₃ Sn/Cu Hybrid Electrodes as Efficient Electrocatalysts for Carbon Dioxide Reduction. Small, 2021, 17, e2100683.	5.2	22
1043	Separated growth of Bi-Cu bimetallic electrocatalysts on defective copper foam for highly converting CO2 to formate with alkaline anion-exchange membrane beyond KHCO3 electrolyte. Applied Catalysis B: Environmental, 2021, 288, 120003.	10.8	63
1044	Aâ€site Cation Defects (Ba _{0.} <scp>₅Sr₀_{.5})_{1–}<scp>_{<i>x< Perovskites as Active Oxygen Evolution Reaction Catalyst in Alkaline Electrolyte^{â€}. Chinese lournal of Chemistry. 2021. 39. 2692-2698.</i>}</scp></scp>	/i>	Co _{0< 14}
1045	Activity descriptor of Ni,N-Codoped carbon electrocatalyst in CO2 electroreduction reaction. Chemical Engineering Journal, 2022, 433, 131965.	6.6	13
1046	Atomic nickel cluster decorated defect-rich copper for enhanced C2 product selectivity in electrocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2021, 291, 120030.	10.8	66
1047	Integration of data-intensive, machine learning and robotic experimental approaches for accelerated discovery of catalysts in renewable energy-related reactions. Materials Reports Energy, 2021, 1, 100049.	1.7	7
1048	Enhanced Activation of CO ₂ on <i>h</i> BN Nanosheets via Forming a Donor–Acceptor Heterostructure with 2D M ₂ X Electrenes. Journal of Physical Chemistry C, 2021, 125, 18762-18769.	1.5	7
1049	Tetrameric and Polymeric Zn(II) Coordination Complexes of 4-Diallylaminobenzoic Acid and Their Applications in the Electroreduction of CO ₂ and Schottky Diode Behavior. Crystal Growth and Design, 2021, 21, 5240-5250.	1.4	6
1050	Decorating graphdiyne on ultrathin bismuth subcarbonate nanosheets to promote CO2 electroreduction to formate. Science Bulletin, 2021, 66, 1533-1541.	4.3	45
1051	The reduction of CO2/bicarbonate to ethanol driven by Bio-electrochemical system using reduced graphene oxide modified nickel foam. Separation and Purification Technology, 2022, 280, 119437.	3.9	1
1052	Highly Efficient CO ₂ Electroreduction to Methanol through Atomically Dispersed Sn Coupled with Defective CuO Catalysts. Angewandte Chemie, 2021, 133, 22150-22158.	1.6	11
1053	The Review of Carbon Capture-Storage Technologies and Developing Fuel Cells for Enhancing Utilization. Energies, 2021, 14, 4978.	1.6	25
1054	Covalent Bonding Between Be ⁺ and CO ₂ in BeOCO ⁺ with a Surprisingly High Antisymmetric OCO Stretching Vibration. Journal of the American Chemical Society, 2021, 143, 14300-14305.	6.6	10
1055	Highly Efficient CO ₂ Electroreduction to Methanol through Atomically Dispersed Sn Coupled with Defective CuO Catalysts. Angewandte Chemie - International Edition, 2021, 60, 21979-21987.	7.2	90
1056	Electrochemical Reduction of CO2: A Review of Cobalt Based Catalysts for Carbon Dioxide Conversion to Fuels. Nanomaterials, 2021, 11, 2029.	1.9	60
1057	Boosting sensitive and selective detection toward Pb(II) via activation effect of Co and orbital coupling between Pb and O over Co@Co3O4 nanocatalyst. Journal of Hazardous Materials, 2021, 416, 126157.	6.5	15
1058	Lewis Acid Site-Promoted Single-Atomic Cu Catalyzes Electrochemical CO ₂ Methanation. Nano Letters, 2021, 21, 7325-7331.	4.5	133

#	Article	IF	CITATIONS
1059	Spontaneously Sn-Doped Bi/BiO _{<i>x</i>} Core–Shell Nanowires Toward High-Performance CO ₂ Electroreduction to Liquid Fuel. Nano Letters, 2021, 21, 6907-6913.	4.5	69
1060	In(III) Metal–Organic Framework Incorporated with Enzyme-Mimicking Nickel Bis(dithiolene) Ligand for Highly Selective CO ₂ Electroreduction. Journal of the American Chemical Society, 2021, 143, 14071-14076.	6.6	54
1061	Ca-doped La0.75Sr0.25Cr0.5Mn0.5O3 cathode with enhanced CO2 electrocatalytic performance for high-temperature solid oxide electrolysis cells. International Journal of Hydrogen Energy, 2021, 46, 33349-33359.	3.8	13
1062	Enhancement of Mass Transfer for Facilitating Industrialâ€Level CO ₂ Electroreduction on Atomic NiN ₄ Sites. Advanced Energy Materials, 2021, 11, 2102152.	10.2	56
1063	Investigating the Effect of the Initial Valence States of Copper on CO ₂ Electroreduction. ChemElectroChem, 2021, 8, 3366-3370.	1.7	5
1064	Electrochemical reduction of CO2 to CH4 over transition metal atom embedded antimonene: First-principles study. Journal of CO2 Utilization, 2021, 51, 101645.	3.3	13
1065	Electronâ€Rich Pincer Ligandâ€Coupled Cobalt Porphyrin Polymer with Singleâ€Atom Sites for Efficient (Photo)Electrocatalytic CO ₂ Reduction at Ultralow Overpotential. Small, 2021, 17, e2102957.	5.2	22
1066	Efficient Aqueous Electroreduction of CO ₂ to Formate at Low Overpotential on Indium Tin Oxide Nanocrystals. Chemistry of Materials, 2021, 33, 7675-7685.	3.2	16
1067	Highâ€Temperature Nitridation Induced Carbon Nanotubes@NiFe‣ayeredâ€Đoubleâ€Hydroxide Nanosheets Taking as an Oxygen Evolution Reaction Electrocatalyst for CO ₂ Electroreduction. Advanced Materials Interfaces, 2021, 8, 2101165.	1.9	13
1068	Design and mechanistic study of advanced cobalt-based nanostructured catalysts for electrochemical carbon dioxide reduction. Applied Catalysis B: Environmental, 2022, 301, 120761.	10.8	16
1069	Metal–Organic Frameworkâ€Based Electrocatalysts for CO ₂ Reduction. Small Structures, 2022, 3, 2100090.	6.9	90
1070	Surface Oxygen Injection in Tin Disulfide Nanosheets for Efficient CO2 Electroreduction to Formate and Syngas. Nano-Micro Letters, 2021, 13, 189.	14.4	36
1071	Modulation of electronic structure and oxygen vacancies of perovskites SrCoO3-δ by sulfur doping enables highly active and stable oxygen evolution reaction. Electrochimica Acta, 2021, 390, 138872.	2.6	16
1072	A New Hexagonal Cobalt Nanosheet Catalyst for Selective CO ₂ Conversion to Ethanal. Journal of the American Chemical Society, 2021, 143, 15335-15343.	6.6	64
1073	Modulation of Conductivity and Contact Resistance of RuO2 Nanosheets via Metal Nano-Particles Surface Decoration. Nanomaterials, 2021, 11, 2444.	1.9	3
1074	Metal-Nitrogen-doped carbon single-atom electrocatalysts for CO2 electroreduction. Composites Part B: Engineering, 2021, 220, 108986.	5.9	35
1075	Design of transition metal oxides nanosheets for the direct electrocatalytic oxidation of glucose. Materials Chemistry and Physics, 2021, 269, 124770.	2.0	11
1076	Plasmon-driven engineering in bimetallic CuCo combined with reduced graphene oxide for photocatalytic overall water splitting. Applied Surface Science, 2021, 559, 149865.	3.1	10

#	Article	IF	CITATIONS
1077	The anolyte matters: Towards highly efficient electrochemical CO2 reduction. Chemical Engineering Journal, 2021, 422, 129923.	6.6	4
1078	Theoretical investigation of electrochemical reduction mechanism of CO2 on the Cu(1Â1Â1), Sn@Cu(1Â1Â1) and Sn(2Â1Â1) surfaces. Applied Surface Science, 2021, 564, 150418.	3.1	9
1079	Van der waals heterostructures by single cobalt sites-anchored graphene and g-C3N4 nanosheets for photocatalytic syngas production with tunable CO/H2 ratio. Applied Catalysis B: Environmental, 2021, 295, 120261.	10.8	51
1080	Co–Co3O4 nanostructure with nitrogen-doped carbon as bifunctional catalyst for oxygen electrocatalysis. International Journal of Hydrogen Energy, 2021, 46, 34701-34712.	3.8	15
1081	Boosting carbon monoxide production during CO2 reduction reaction via Cu-Sb2O3 interface cooperation. Journal of Colloid and Interface Science, 2021, 601, 661-668.	5.0	10
1082	In-situ formation of ligand-stabilized bismuth nanosheets for efficient CO2 conversion. Applied Catalysis B: Environmental, 2021, 297, 120481.	10.8	52
1083	Progress in the electrochemical reduction of CO2 to formic acid: A review on current trends and future prospects. Journal of Environmental Chemical Engineering, 2021, 9, 106394.	3.3	53
1084	Boron, nitrogen co-doped carbon with abundant mesopores for efficient CO2 electroreduction. Applied Catalysis B: Environmental, 2021, 298, 120543.	10.8	61
1085	A perspective on the electrocatalytic conversion of carbon dioxide to methanol with metallomacrocyclic catalysts. Journal of Energy Chemistry, 2022, 64, 263-275.	7.1	28
1086	Gel-assisted synthesis of CIZS for visible-light photocatalytic reduction reaction. Chemical Engineering Journal, 2022, 429, 132364.	6.6	14
1087	Fabrication of Bi/Sn bimetallic electrode for high-performance electrochemical reduction of carbon dioxide to formate. Chemical Engineering Journal, 2022, 428, 130901.	6.6	27
1088	History and development of nanomaterials. , 2021, , 1-14.		3
1089	Electrochemical reduction of carbon dioxide (CO ₂): bismuth-based electrocatalysts. Journal of Materials Chemistry A, 2021, 9, 13770-13803.	5.2	55
1090	Electrocatalytic carboxylation of halogenated compounds with mesoporous silver electrode materials. RSC Advances, 2021, 11, 21986-21990.	1.7	8
1091	Exfoliated Ultrathin ZnIn ₂ S ₄ Nanosheets with Abundant Zinc Vacancies for Enhanced CO ₂ Electroreduction to Formate. ChemSusChem, 2021, 14, 852-859.	3.6	45
1092	Efficient and steady production of 1 : 2 syngas (CO/H ₂) by simultaneous electrochemical reduction of CO ₂ and H ₂ O. Inorganic Chemistry Frontiers, 2021, 8, 1695-1701.	3.0	9
1093	Enabling storage and utilization of low-carbon electricity: power to formic acid. Energy and Environmental Science, 2021, 14, 1194-1246.	15.6	119
1094	Rational catalyst design for oxygen evolution under acidic conditions: strategies toward enhanced electrocatalytic performance. Journal of Materials Chemistry A, 2021, 9, 5890-5914.	5.2	65

#	Article	IF	CITATIONS
1095	Interface engineering of a hierarchical Zn _x Cd _{1â^'x} S architecture with favorable kinetics for high-performance solar water splitting. Physical Chemistry Chemical Physics, 2021, 23, 9347-9356.	1.3	1
1096	Ensemble effects in Cu/Au ultrasmall nanoparticles control the branching point for C1 selectivity during CO ₂ electroreduction. Chemical Science, 2021, 12, 9146-9152.	3.7	9
1097	Investigation of <i>ab initio</i> nonadiabatic molecular dynamics of excited carriers in condensed matter systems. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 177101.	0.2	3
1098	Single Metal Atom Decorated Carbon Nitride for Efficient Photocatalysis: Synthesis, Structure, and Applications. Solar Rrl, 2021, 5, 2000609.	3.1	51
1099	Bifunctional Pt–Co ₃ O ₄ electrocatalysts for simultaneous generation of hydrogen and formate <i>via</i> energy-saving alkaline seawater/methanol co-electrolysis. Journal of Materials Chemistry A, 2021, 9, 6316-6324.	5.2	65
1100	Atomic-level engineering of two-dimensional electrocatalysts for CO ₂ reduction. Nanoscale, 2021, 13, 7081-7095.	2.8	24
1101	Supporting nickel on vanadium nitride for comparable hydrogen evolution performance to platinum in alkaline solution. Journal of Materials Chemistry A, 2021, 9, 19669-19674.	5.2	19
1102	Amination strategy to boost the CO ₂ electroreduction current density of M–N/C single-atom catalysts to the industrial application level. Energy and Environmental Science, 2021, 14, 2349-2356.	15.6	148
1103	N-Bridged Co–N–Ni: new bimetallic sites for promoting electrochemical CO ₂ reduction. Energy and Environmental Science, 2021, 14, 3019-3028.	15.6	128
1104	Edge Sites with Unsaturated Coordination on Core–Shell Mn ₃ O ₄ @Mn <i>_x</i> Co _{3â^'} <i>_x</i> O ₄ Nanostructures for Electrocatalytic Water Oxidation. Advanced Materials, 2017, 29, 1701820.	sult >1	115
1105	Structural Optimization of Metal Oxyhalide for <scp>CO₂</scp> Reduction with High Selectivity and Current Density. Chinese Journal of Chemistry, 2020, 38, 1752-1756.	2.6	8
1106	Enhanced CO2 electroreduction to ethylene via strong metal-support interaction. Green Energy and Environment, 2022, 7, 792-798.	4.7	19
1107	Dynamic restructuring induced Cu nanoparticles with ideal nanostructure for selective multi-carbon compounds production via carbon dioxide electroreduction. Journal of Catalysis, 2020, 383, 42-50.	3.1	22
1108	Oxygen vacancies enhanced cooperative electrocatalytic reduction of carbon dioxide and nitrite ions to urea. Journal of Colloid and Interface Science, 2020, 577, 109-114.	5.0	120
1109	Surface Defects in Two-Dimensional Photocatalysts for Efficient Organic Synthesis. Matter, 2020, 2, 842-861.	5.0	107
1110	Universal Principle to Describe Reactivity and Selectivity of CO ₂ Electroreduction on Transition Metals and Single-Atom Catalysts. Journal of Physical Chemistry C, 2020, 124, 25898-25906.	1.5	20
1111	Interface Engineering of Silver-Based Heterostructures for CO ₂ Reduction Reaction. ACS Applied Materials & Interfaces, 2020, 12, 56642-56649.	4.0	27

#	Article	IF	CITATIONS
1113	Ultrathin, Polycrystalline, Two-Dimensional Co ₃ O ₄ for Low-Temperature CO Oxidation. ACS Catalysis, 2019, 9, 2558-2567.	5.5	116
1114	Ultrathin cadmium sulfide nanosheets for visible-light photocatalytic hydrogen production. Journal of Materials Chemistry A, 2020, 8, 3586-3589.	5.2	13
1115	A strategy to control the grain boundary density and Cu ⁺ /Cu ⁰ ratio of Cu-based catalysts for efficient electroreduction of CO ₂ to C2 products. Green Chemistry, 2020, 22, 1572-1576.	4.6	49
1116	Dissociative electron attachment to carbon dioxide. Chinese Journal of Chemical Physics, 2020, 33, 521-531.	0.6	4
1117	Direct and continuous generation of pure acetic acid solutions via electrocatalytic carbon monoxide reduction. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	93
1118	Boron Doping in Tin Catalysts Towards Gas-Phase CO ₂ to Formic Acid/Formate Electroreduction with High Production Efficiency and Rate. Journal of the Electrochemical Society, 2020, 167, 114508.	1.3	4
1119	Single atom catalysis for electrocatalytic ammonia synthesis. Catalysis Science and Technology, 2022, 12, 38-56.	2.1	8
1120	Liquidâ€Metalâ€Enabled Mechanicalâ€Energyâ€Induced CO ₂ Conversion. Advanced Materials, 2022, 34, e2105789.	' 11.1	58
1121	Recent Advances in Interface Engineering for Electrocatalytic CO2 Reduction Reaction. Nano-Micro Letters, 2021, 13, 216.	14.4	58
1122	Significant influence of controllable surface oxygen vacancies of CuO for enhancing sensitivity of glucose detection. Applied Surface Science, 2022, 574, 151649.	3.1	15
1123	In-situ growth of zero-valent iron in FeOx/Mn3O4 to improve the surficial redox for high-efficient electrocatalysis of Pb(II). Chemical Engineering Journal, 2022, 430, 132959.	6.6	15
1124	Modulating carbon dioxide activation on carbon nanotube immobilized salophen complexes by varying metal centers for efficient electrocatalytic reduction. Journal of Colloid and Interface Science, 2022, 608, 1827-1836.	5.0	8
1125	Polymeric carbon nitride supported Bi nanoparticles as highly efficient CO2 reduction electrocatalyst in a wide potential range. Journal of Colloid and Interface Science, 2022, 608, 1676-1684.	5.0	16
1126	CeO2-modified Cu electrode for efficient CO2 electroreduction to multi-carbon products. Journal of CO2 Utilization, 2021, 54, 101741.	3.3	16
1127	Cobalt oxide decorated zirconium oxide immobilized multiwalled carbon nanotubes as scaffolds for supercapacitors and the CO2 reduction reaction. Journal of Energy Storage, 2021, 44, 103312.	3.9	8
1128	Self-assembly of Pd@Au core/shell nanosheets used as a highly sensitive SERS substrate based on the determination of trace fluorescent dye. International Journal of Materials Research, 2019, 110, 563-569.	0.1	0
1129	Maximizing Electroactive Sites in a Threeâ€Dimensional Covalent Organic Framework for Significantly Improved Carbon Dioxide Reduction Electrocatalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	83
1130	Atomically Thin Materials for Next-Generation Rechargeable Batteries. Chemical Reviews, 2022, 122, 957-999.	23.0	87

#	Article	IF	CITATIONS
1131	Maximizing Electroactive Sites in a Threeâ€dimensional Covalent Organic Framework for Significantly Improved Carbon Dioxide Reduction Electrocatalysis. Angewandte Chemie, 0, , .	1.6	30
1133	Earth-abundant electrocatalysts for sustainable energy conversion. , 2022, , 131-168.		Ο
1134	Pd homojunctions enable remarkable CO ₂ electroreduction. Chemical Communications, 2022, 58, 387-390.	2.2	9
1135	Water Purification Using Subnanostructured Photocatalysts. ACS Symposium Series, 2020, , 189-225.	0.5	0
1136	Conversion of Carbon Dioxide into Liquid Hydrocarbons Using Cobalt-Bearing Catalysts. Environmental Chemistry for A Sustainable World, 2020, , 1-23.	0.3	0
1137	Two-dimensional PdMo curved nanosheets for tunable CO2 electrocatalytic reduction to syngas. Cell Reports Physical Science, 2021, 2, 100619.	2.8	7
1138	Ultrafine CuS anchored on nitrogen and sulfur Co-doped graphene for selective CO2 elective co2 electroreduction to formate. Applied Surface Science, 2022, 575, 151796.	3.1	19
1139	Nitrogen-doped Carbon Catalyst by Ultrasonic for Electrocatalytic CO ₂ Reduction. Polish Journal of Chemical Technology, 2020, 22, 24-38.	0.3	1
1140	Regulating the coordination metal center in immobilized molecular complexes as single-atomic electrocatalysts for highly active, selective and durable electrochemical CO2 reduction. Journal of Power Sources, 2022, 519, 230788.	4.0	8
1141	Atomically dispersed Sn modified with trace sulfur species derived from organosulfide complex for electroreduction of CO2. Applied Catalysis B: Environmental, 2022, 304, 120936.	10.8	29
1142	Going Beyond the dâ€Band Center to Describe CO ₂ Activation on Singleâ€Atom Alloys. Advanced Energy and Sustainability Research, 2022, 3, 2100152.	2.8	16
1143	Constructing artificial mimic-enzyme catalysts for carbon dioxide electroreduction. Science China Chemistry, 2022, 65, 106-113.	4.2	7
1144	Implanting Polypyrrole in Metal-Porphyrin MOFs: Enhanced Electrocatalytic Performance for CO ₂ RR. ACS Applied Materials & Interfaces, 2021, 13, 54959-54966.	4.0	45
1145	A Multiscale Strategy to Construct Cobalt Nanoparticles Confined within Hierarchical Carbon Nanofibers for Efficient CO ₂ Electroreduction. Small, 2022, 18, e2104958.	5.2	4
1146	Ultrathin Inâ€Plane Heterostructures for Efficient CO ₂ Chemical Fixation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	23
1147	Solar Fuel Production from CO ₂ Using a 1 m-Square-Sized Reactor with a Solar-to-Formate Conversion Efficiency of 10.5%. ACS Sustainable Chemistry and Engineering, 2021, 9, 16031-16037.	3.2	18
1148	Twoâ€dimensional Metalâ€organic Frameworks for Electrochemical CO ₂ Reduction Reaction. ChemCatChem, 2022, 14, .	1.8	17
1149	Enabling durable selectivity of CO2 electroreduction to formate achieved by a multi-layer SnOx structure. Applied Surface Science, 2022, 579, 151971.	3.1	3

#	Article	IF	CITATIONS
1150	<i>In Situ</i> Carbon Encapsulation Confined Nickel-Doped Indium Oxide Nanocrystals for Boosting CO ₂ Electroreduction to the Industrial Level. ACS Catalysis, 2021, 11, 14596-14604.	5.5	33
1151	Ultrathin Inâ€Plane Heterostructures for Efficient CO 2 Chemical Fixation. Angewandte Chemie, 0, , .	1.6	2
1152	Tailoring the Electrochemical Protonation Behavior of CO ₂ by Tuning Surface Noncovalent Interactions. ACS Catalysis, 2021, 11, 14986-14994.	5.5	13
1153	Proton/Electronâ€Donors Enhancing Electrocatalytic Activity of Supported Conjugated Microporous Polymers for CO2 Reduction. Angewandte Chemie, 0, , .	1.6	0
1154	Proton/Electron Donors Enhancing Electrocatalytic Activity of Supported Conjugated Microporous Polymers for CO ₂ Reduction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	34
1155	Recent Advances in Metal–Gas Batteries with Carbonâ€Based Nonprecious Metal Catalysts. Small, 2022, 18, e2103747.	5.2	10
1156	Two-dimensional materials for electrochemical CO ₂ reduction: materials, <i>in situ</i> / <i>operando</i> characterizations, and perspective. Nanoscale, 2021, 13, 19712-19739.	2.8	18
1157	Recent advances in electrocatalysis with phthalocyanines. Chemical Society Reviews, 2021, 50, 12985-13011.	18.7	135
1158	Towards a broad-operation window for stable CO ₂ electroreduction to HCOOH by a design involving upcycling electroplating sludge-derived Sn@N/P-doped carbon. Environmental Science: Nano, 2022, 9, 511-522.	2.2	5
1159	Fabricating Pt/CeO2/N–C ternary ORR electrocatalysts with extremely low platinum content and excellent performance. Journal of Materials Science, 2022, 57, 538-552.	1.7	7
1160	Electrocatalysis enabled transformation of earth-abundant water, nitrogen and carbon dioxide for a sustainable future. Materials Advances, 2022, 3, 1359-1400.	2.6	17
1161	The boosting of electrocatalytic CO2-to-CO transformation by using the carbon nanotubes-supported PCN-222(Fe) nanoparticles composite. Journal of Materials Science, 2022, 57, 526-537.	1.7	9
1162	Electrochemical CO2 reduction (CO2RR) to multi-carbon products over copper-based catalysts. Coordination Chemistry Reviews, 2022, 454, 214340.	9.5	175
1163	Edge-located Fe-N4 sites on porous Graphene-like nanosheets for boosting CO2 electroreduction. Chemical Engineering Journal, 2022, 431, 134269.	6.6	12
1164	Constructing holey γ-Fe2O3 nanosheets with enhanced capability for microwave absorption. Materials Today Chemistry, 2022, 23, 100690.	1.7	4
1166	Modulating the electrocatalytic CO ₂ reduction performances of bismuth nanoparticles with carbon substrates with controlled degrees of oxidation. Nanoscale, 2021, 13, 20091-20097.	2.8	7
1167	Advances in Kola Cobalt Production Technology: An 80-Year Journey. Theoretical Foundations of Chemical Engineering, 2021, 55, 1062-1068.	0.2	0
1168	Rationalâ€Designed Principles for Electrochemical and Photoelectrochemical Upgrading of CO ₂ to Valueâ€Added Chemicals. Advanced Science, 2022, 9, e2105204.	5.6	75

#	Article	IF	CITATIONS
1169	Assembling Metal Organic Layer Composites for Highâ€Performance Electrocatalytic CO ₂ Reduction to Formate. Angewandte Chemie, 2022, 134, .	1.6	3
1170	Electrocatalytic CO ₂ reduction to ethylene over ZrO ₂ /Cu-Cu ₂ O catalysts in aqueous electrolytes. Green Chemistry, 2022, 24, 1527-1533.	4.6	28
1171	Single-phase proton- and electron-conducting Ag-organic coordination polymers for efficient CO ₂ electroreduction. Journal of Materials Chemistry A, 2022, 10, 3216-3225.	5.2	7
1172	Influence of halide ions on the electrochemical reduction of carbon dioxide over a copper surface. Journal of Materials Chemistry A, 2022, 10, 1086-1104.	5.2	31
1173	Assembling Metal Organic Layer Composites for Highâ€Performance Electrocatalytic CO ₂ Reduction to Formate. Angewandte Chemie - International Edition, 2022, 61, .	7.2	25
1174	Progress and perspectives for engineering and recognizing active sites of two-dimensional materials in CO2 electroreduction. Science China Chemistry, 2022, 65, 428-440.	4.2	19
1175	Regulating electron transfer over asymmetric low-spin Co(II) for highly selective electrocatalysis. Chem Catalysis, 2022, 2, 372-385.	2.9	50
1176	An unprecedented polyoxometalate-encapsulated organo–metallophosphate framework as a highly efficient cocatalyst for CO ₂ photoreduction. Journal of Materials Chemistry A, 2022, 10, 3469-3477.	5.2	21
1177	Boosting CO ₂ electroreduction towards C ₂₊ products <i>via</i> CO* intermediate manipulation on copper-based catalysts. Environmental Science: Nano, 2022, 9, 911-953.	2.2	23
1178	<i>In silico</i> design of dual-doped nitrogenated graphene (C ₂ N) employed in electrocatalytic reduction of carbon monoxide to ethylene. Journal of Materials Chemistry A, 2022, 10, 4703-4710.	5.2	12
1179	Two-Dimensional Confined Synthesis of Metastable 1T-Phase MoS ₂ Nanosheets for the Hydrogen Evolution Reaction. ACS Applied Nano Materials, 2022, 5, 1377-1384.	2.4	15
1180	Electrochemical Deposited Zeolitic Imidazolate Frameworks as an Efficient Electrocatalyst for CO ₂ Electrocatalytic Reduction. ChemCatChem, 2022, 14, .	1.8	13
1181	Rational design of electrocatalytic carbon dioxide reduction for a zero-carbon network. Chemical Society Reviews, 2022, 51, 1234-1252.	18.7	148
1182	Tunable electronic structure and CO2 adsorption of hb-Sb/graphene van der Waals heterostructure. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 139, 115154.	1.3	4
1183	NiMo/NiCo2O4 as synergy catalyst supported on nickel foam for efficient overall water splitting. Molecular Catalysis, 2022, 518, 112086.	1.0	12
1184	High-efficient carbon dioxide-to-formic acid conversion on bimetallic PbIn alloy catalysts with tuned composition and morphology. Chemosphere, 2022, 293, 133595.	4.2	11
1185	Electrodeposition of NiFe-layered double hydroxide layer on sulfur-modified nickel molybdate nanorods for highly efficient seawater splitting. Journal of Colloid and Interface Science, 2022, 613, 349-358.	5.0	58
1186	High-performance electroreduction CO2 to formate at Bi/Nafion interface. Applied Catalysis B: Environmental, 2022, 306, 121135.	10.8	37

#	Article	IF	CITATIONS
1187	Uniform zinc deposition on O,N-dual functionalized carbon cloth current collector. Journal of Energy Chemistry, 2022, 69, 76-83.	7.1	19
1188	Boosting water decomposition by sulfur vacancies for efficient CO ₂ photoreduction. Energy and Environmental Science, 2022, 15, 1556-1562.	15.6	104
1189	Triple captured iron by defect abundant NiO for efficient water oxidation. Inorganic Chemistry Frontiers, 2022, 9, 1281-1292.	3.0	0
1190	Opportunities for Ultrathin 2D Catalysts in Promoting CO2 Photoreduction. Inorganic Materials Series, 2022, , 65-149.	0.5	1
1191	Diminishing the Uncoordinated N Species in Co-N-C Catalysts toward Highly Efficient Electrochemical CO ₂ Reduction. ACS Catalysis, 2022, 12, 2513-2521.	5.5	38
1192	Complex Nanomaterials in Catalysis for Chemically Significant Applications: From Synthesis and Hydrocarbon Processing to Renewable Energy Applications. Advances in Materials Science and Engineering, 2022, 2022, 1-72.	1.0	25
1193	2D Heterostructures for Ubiquitous Electronics and Optoelectronics: Principles, Opportunities, and Challenges. Chemical Reviews, 2022, 122, 6514-6613.	23.0	187
1194	Co9S8 nanoparticles encapsulated in N,S co-doped hierarchical carbon as an efficient oxygen reduction electrocatalyst for microbial fuel cells. Journal of Electroanalytical Chemistry, 2022, 909, 116130.	1.9	8
1195	Insight into the Effect of the d-Orbital Energy of Copper Ions in Metal–Organic Frameworks on the Selectivity of Electroreduction of CO ₂ to CH ₄ . ACS Catalysis, 2022, 12, 2749-2755.	5.5	53
1196	Valence oscillation and dynamic active sites in monolayer NiCo hydroxides for water oxidation. Nature Catalysis, 2021, 4, 1050-1058.	16.1	272
1197	Coupling Co2 Reduction with Ch3oh Oxidation for Efficient Electrosynthesis of Formate on Hierarchical Bifunctional Cusn Alloy. SSRN Electronic Journal, 0, , .	0.4	0
1198	Structural Design and Performance of Electrocatalysts for Carbon Dioxide Reduction: A Review. Acta Chimica Sinica, 2022, 80, 199.	0.5	3
1199	Circumventing the scaling relationship on bimetallic monolayer electrocatalysts for selective CO ₂ reduction. Chemical Science, 2022, 13, 3880-3887.	3.7	9
1200	Metal Oxides for the Electrocatalytic Reduction of Carbon Dioxide Active Sites, Composites, Interface and Defect Engineering Strategies. SSRN Electronic Journal, 0, , .	0.4	0
1201	Ultrahigh oxygen evolution reaction activity in Au doped co-based nanosheets. RSC Advances, 2022, 12, 6205-6213.	1.7	56
1202	Ultrathin perovskite derived Ir-based nanosheets for high-performance electrocatalytic water splitting. Energy and Environmental Science, 2022, 15, 1672-1681.	15.6	41
1203	Constructing a full-space internal electric field in a hematite photoanode to facilitate photogenerated-carrier separation and transfer. Journal of Materials Chemistry A, 2022, 10, 8546-8555.	5.2	17
1204	Boron bridged NiN4B2Cx single-atom catalyst for superior electrochemical CO2 reduction. Materials Today, 2022, 54, 63-71.	8.3	26

#	Article	IF	CITATIONS
1205	Engineering Steam Induced Surface Oxygen Vacancy onto Ni–Fe Bimetallic Nanocomposite for CO ₂ Electroreduction. Small, 2022, 18, e2108034.	5.2	20
1206	Technical Perspective of Carbon Capture, Utilization, and Storage. Engineering, 2022, 14, 27-32.	3.2	47
1207	Promoting the Electrocatalytic Reduction of CO ₂ on Ultrathin Porous Bismuth Nanosheets with Tunable Surface-Active Sites and Local pH Environments. ACS Applied Materials & Interfaces, 2022, 14, 10648-10655.	4.0	23
1208	Strong Correlation between the Dynamic Chemical State and Product Profile of Carbon Dioxide Electroreduction. ACS Applied Materials & amp; Interfaces, 2022, 14, 22681-22696.	4.0	30
1209	Electroreduction of CO ₂ with Tunable Selectivity on Au–Pd Bimetallic Catalyst: A First Principle Study. ACS Applied Materials & Interfaces, 2022, 14, 11313-11321.	4.0	4
1210	Ultrathin two-dimensional metallenes for heterogeneous catalysis. Chem Catalysis, 2022, 2, 693-723.	2.9	39
1211	Electrochemical conversion of CO ₂ in nonâ€conventional electrolytes: Recent achievements and future challenges. Electrochemical Science Advances, 2023, 3, .	1.2	8
1212	Boosting ORR performance by single atomic divacancy Zn–N3C–C8 sites on ultrathin N-doped carbon nanosheets. Chem Catalysis, 2022, 2, 836-852.	2.9	25
1213	Recent Progress in Two-Dimensional Materials for Electrocatalytic CO2 Reduction. Catalysts, 2022, 12, 228.	1.6	23
1214	In Situ Halogenâ€ion Leaching Regulates Multiple Sites on Tandem Catalysts for Efficient CO ₂ Electroreduction to C ₂₊ Products. Angewandte Chemie, 2022, 134, .	1.6	9
1215	Mo/Fe bimetallic pyrophosphates derived from Prussian blue analogues for rapid electrocatalytic oxygen evolution. Green Energy and Environment, 2023, 8, 1450-1458.	4.7	4
1216	Recent advances in two-dimensional layered and non-layered materials hybrid heterostructures. Chinese Physics B, 2022, 31, 108502.	0.7	5
1217	Electroâ€Reconstructionâ€Induced Strain Regulation and Synergism of Agâ€Inâ€S toward Highly Efficient CO ₂ Electrolysis to Formate. Advanced Functional Materials, 2022, 32, .	7.8	41
1218	Facet-Dependent Electrocatalytic Reduction of CO ₂ to HCOOH over Pd Nanoparticles. Key Engineering Materials, 0, 915, 115-120.	0.4	0
1219	In Situ Halogenâ€lon Leaching Regulates Multiple Sites on Tandem Catalysts for Efficient CO ₂ Electroreduction to C ₂₊ Products. Angewandte Chemie - International Edition, 2022, 61, .	7.2	67
1220	Observation of Cobalt Species Evolution in Mesoporous Carbon by Inâ€Situ STEMâ€HAADF Imaging and Related Hydrogenation Process. ChemistrySelect, 2022, 7, .	0.7	0
1221	Densely packed ultrafine SnO2 nanoparticles grown on carbon cloth for selective CO2 reduction to formate. Journal of Energy Chemistry, 2022, 71, 159-166.	7.1	17
1222	Ultrasmall Cu Nanocrystals Dispersed in Nitrogen-Doped Carbon as Highly Efficient Catalysts for CO ₂ Electroreduction. ACS Applied Materials & Interfaces, 2022, 14, 17240-17248.	4.0	8

#	Article	IF	CITATIONS
1223	Boosting Li-CO2 battery performances by creating holey structure on CNT cathodes. Electrochimica Acta, 2022, 417, 140310.	2.6	12
1224	CdS/ethylenediamine nanowires 3D photocatalyst with rich sulfur vacancies for efficient syngas production from CO2 photoreduction. Applied Catalysis B: Environmental, 2022, 308, 121227.	10.8	59
1225	Transition metal-based single-atom catalysts (TM-SACs); rising materials for electrochemical CO2 reduction. Journal of Energy Chemistry, 2022, 70, 444-471.	7.1	44
1226	A novel π-d conjugated cobalt tetraaza[14]annulene based atomically dispersed electrocatalyst for efficient CO2 reduction. Chemical Engineering Journal, 2022, 442, 136129.	6.6	16
1227	Hollow CoFe-layered double hydroxide polyhedrons for highly efficient CO2 electrolysis. Science China Materials, 2022, 65, 536-542.	3.5	47
1228	CO2 reduction with coin catalyst. Nano Research, 2022, 15, 3859-3865.	5.8	9
1229	Promoting Electrocatalytic Reduction of CO ₂ to C ₂ H ₄ Production by Inhibiting C ₂ H ₅ OH Desorption from Cu ₂ O/C Composite. Small, 2022, 18, e2105212.	5.2	15
1230	Atomic Bridging Structure of Nickel–Nitrogen–Carbon for Highly Efficient Electrocatalytic Reduction of CO ₂ . Angewandte Chemie - International Edition, 2022, 61, e202113918.	7.2	85
1231	Engineering Electrochemical Surface for Efficient Carbon Dioxide Upgrade. Advanced Energy Materials, 2022, 12, .	10.2	33
1232	Accelerating Electroenzymatic CO ₂ Reduction by Immobilizing Formate Dehydrogenase on Polyethylenimine-Modified Mesoporous Silica. ACS Sustainable Chemistry and Engineering, 2022, 10, 633-644.	3.2	15
1233	Atomic Bridging Structure of Nickel–Nitrogen–Carbon for Highly Efficient Electrocatalytic Reduction of CO ₂ . Angewandte Chemie, 2022, 134, .	1.6	12
1234	Tailorâ€Engineered 2D Cocatalysts: Harnessing Electron–Hole Redox Center of 2D gâ€C ₃ N ₄ Photocatalysts toward Solarâ€toâ€Chemical Conversion and Environmental Purification. Advanced Functional Materials, 2022, 32, .	7.8	93
1235	CO2 Electroreduction over Metallic Oxide, Carbon-Based, and Molecular Catalysts: A Mini-Review of the Current Advances. Catalysts, 2022, 12, 450.	1.6	14
1236	In situ dual doping for constructing efficient CO2-to-methanol electrocatalysts. Nature Communications, 2022, 13, 1965.	5.8	84
1237	Amorphous Copperâ€modified Gold Interface Promotes Selective CO ₂ Electroreduction to CO. ChemCatChem, 2022, 14, .	1.8	9
1238	Coupling CO2 reduction with CH3OH oxidation for efficient electrosynthesis of formate on hierarchical bifunctional CuSn alloy. Nano Energy, 2022, 98, 107277.	8.2	38
1239	Active and conductive layer stacked superlattices for highly selective CO2 electroreduction. Nature Communications, 2022, 13, 2039.	5.8	69
1240	Cobalt-decorated carbon nanofibers as a low overpotential cathode for nonaqueous Na-CO2 batteries. Journal of Alloys and Compounds, 2022, 911, 165054.	2.8	5

#	Article	IF	CITATIONS
1241	Nitrogen-doped mesoporous carbon supported CuSb for electroreduction of CO ₂ . RSC Advances, 2022, 12, 12997-13002.	1.7	3
1242	Sulfur-Modified Copper Synergizing with Nitrogen-Defect Sites for the Electroreduction of Co2 to Formate at Low Overpotentials. SSRN Electronic Journal, 0, , .	0.4	0
1243	Insight into the effects of the crystal phase of Ru over ultrathin Ru@Pt core–shell nanosheets for methanol electrooxidation. Nanoscale, 2022, 14, 8096-8102.	2.8	10
1244	Aromatic Carboxylic Acid Derived Bimetallic Nickel/Cobalt Electrocatalysts for Oxygen Evolution Reaction and Hydrogen Peroxide Sensing Applications. SSRN Electronic Journal, 0, , .	0.4	0
1245	A heterogeneous reaction strategy towards the general synthesis of 2D non-layered nanomaterials. Materials Advances, 0, , .	2.6	0
1246	Cu cluster embedded porous nanofibers for high-performance CO2 electroreduction. Chinese Chemical Letters, 2023, 34, 107458.	4.8	9
1247	Boosting CO2 electroreduction performance over fullerene-modified MOF-545-Co promoted by π–π interaction. Chinese Chemical Letters, 2023, 34, 107459.	4.8	12
1248	Controllable Assembly of Vanadium-Containing Polyoxoniobate-Based Materials and Their Electrocatalytic Activity for Selective Benzyl Alcohol Oxidation. Molecules, 2022, 27, 2862.	1.7	6
1249	Catalyst designing strategies for electrochemical CO ₂ reduction: a perspective. Progress in Energy, 2022, 4, 032002.	4.6	5
1250	Metal-Organic Frameworks-derived Indium Clusters/Carbon Nanocomposites for Efficient CO2 Electroreduction. Chemical Research in Chinese Universities, 2022, 38, 1287-1291.	1.3	5
1251	Molecular engineering to introduce carbonyl between nickel salophen active sites to enhance electrochemical CO2 reduction to methanol. Applied Catalysis B: Environmental, 2022, 314, 121451.	10.8	32
1252	Polyethyleneimine-reinforced Sn/Cu foam dendritic self-supporting catalytic cathode for CO2 reduction to HCOOH. Chemosphere, 2022, 301, 134704.	4.2	8
1253	Atomistic Understanding of Two-dimensional Electrocatalysts from First Principles. Chemical Reviews, 2022, 122, 10675-10709.	23.0	60
1254	Sulfur-modified copper synergy with nitrogen-defect sites for the electroreduction of CO2 to formate at low overpotentials. Electrochimica Acta, 2022, 422, 140557.	2.6	6
1255	Covalent organic frameworks based on tetraphenyl- <i>p</i> -phenylenediamine and metalloporphyrin for electrochemical conversion of CO ₂ to CO. Inorganic Chemistry Frontiers, 2022, 9, 3217-3223.	3.0	11
1256	Charge transfer and orbital reconstruction of non-noble transition metal single-atoms anchored on Ti2CT -MXenes for highly selective CO2 electrochemical reduction. Chinese Journal of Catalysis, 2022, 43, 1906-1917.	6.9	29
1257	Quasi-Covalently Coupled Ni–Cu Atomic Pair for Synergistic Electroreduction of CO ₂ . Journal of the American Chemical Society, 2022, 144, 9661-9671.	6.6	134
1258	Co-Based Nanosheets with Transitional Metal Doping for Oxygen Evolution Reaction. Nanomaterials, 2022, 12, 1788.	1.9	0

#	Article	IF	CITATIONS
1259	Exploring the effects of temperature-driven phase transition on supercapacitive performance of cobalt diselenide. Journal of Power Sources, 2022, 541, 231683.	4.0	6
1260	Nanotechnology for CO2 Capture, Storage, and Conversion. RSC Nanoscience and Nanotechnology, 2022, , 65-116.	0.2	0
1261	Heterostructured ZnCo ₂ O ₄ –CoOOH nanosheets on Ni foam for a high performance bifunctional alkaline water splitting catalyst. Dalton Transactions, 2022, 51, 10061-10068.	1.6	5
1262	NiCoPd Inlaid NiCo-Bimetallene for Efficient Electrocatalytic Methanol Oxidation. Inorganic Chemistry, 2022, 61, 10211-10219.	1.9	12
1263	Z-Scheme Heterojunction of SnS2/Bi2WO6 for Photoreduction of CO2 to 100% Alcohol Products by Promoting the Separation of Photogenerated Charges. Nanomaterials, 2022, 12, 2030.	1.9	7
1264	Tandem Electrocatalytic CO ₂ Reduction inside a Membrane with Enhanced Selectivity for Ethylene. Journal of Physical Chemistry C, 2022, 126, 10045-10052.	1.5	15
1265	Emerging Graphene Derivatives and Analogues for Efficient Energy Electrocatalysis. Advanced Functional Materials, 2022, 32, .	7.8	22
1266	Robust palladium hydride catalyst for electrocatalytic formate formation with high CO tolerance. Applied Catalysis B: Environmental, 2022, 316, 121659.	10.8	11
1267	N-Bridged Ni and Mn Single-Atom Pair Sites: A Highly Efficient Electrocatalyst for Co2 Conversion to Co. SSRN Electronic Journal, 0, , .	0.4	0
1268	Cobalt telluride electrocatalyst for selective electroreduction of CO2 to value-added chemicals. Materials for Renewable and Sustainable Energy, 2022, 11, 115-129.	1.5	8
1269	CoN ₅ Sites Constructed by Anchoring Co Porphyrins on Vinyleneâ€Linked Covalent Organic Frameworks for Electroreduction of Carbon Dioxide. Small, 2022, 18, .	5.2	23
1270	Investigation of bi/reduced graphene oxide electro-catalyst for CO2 reduction reaction. Materials Today: Proceedings, 2022, , .	0.9	0
1271	Electrochemical reduction of CO2 on single-atom catalysts anchored on N-terminated TiN (1 1 1): Low overpotential and high selectivity. Applied Surface Science, 2022, 602, 154239.	3.1	5
1272	Interface modification of Ru-CeO2 co-infiltrated SFM electrode and construction of SDC/YSZ bilayer electrolyte for direct CO2 electrolysis. Electrochimica Acta, 2022, 426, 140771.	2.6	9
1273	Surface restructuring in AgCu single-atom alloy catalyst and self-enhanced selectivity toward CO2 reduction. Electrochimica Acta, 2022, 426, 140774.	2.6	16
1274	In Situ Periodic Regeneration of Catalyst during CO ₂ Electroreduction to C ₂₊ Products. Angewandte Chemie - International Edition, 2022, 61, .	7.2	30
1275	Interface Molecular Functionalization of Cu ₂ O for Synchronous Electrocatalytic Generation of Formate. Nano Letters, 2022, 22, 6298-6305.	4.5	7
1276	Design and Synthesis of Agâ€based Catalysts for Electrochemical CO ₂ Reduction: Advances and Perspectives. Chemistry - an Asian Journal, 2022, 17, .	1.7	4

#	ARTICLE Ultrafast transformation of metal–organic frameworks into advanced oxygen evolution	IF	Citations
1277	electrocatalysts with good universality and scalability. Journal of Materials Chemistry A, 2022, 10, 17552-17560.	5.2	9
1278	Evolution of bismuth-based metal–organic frameworks for efficient electroreduction of CO ₂ . Journal of Materials Chemistry A, 2022, 10, 17801-17807.	5.2	4
1279	CHAPTER 2. Synthesis and Characterization of Two Dimensional Materials. , 2022, , 36-63.		0
1280	Progress on nanostructured gel catalysts for oxygen electrocatalysis. Nano Research, 2022, 15, 10343-10356.	5.8	11
1281	Electrochemical CO ₂ -to-Formate Conversion Over Positive Charge Depleted Tin Sites. ACS Applied Energy Materials, 2022, 5, 9324-9332.	2.5	6
1282	Visualization and Bibliometric Analysis of Carbon Neutrality Research for Global Health. Frontiers in Public Health, 0, 10, .	1.3	6
1283	Selfâ€Formation CoO Nanodots Catalyst in Co(TFSI) ₂ â€Modified Electrolyte for High Efficient Liâ€O ₂ Batteries. Advanced Materials, 2022, 34, .	11.1	15
1284	Copper-Based Catalysts for Electrochemical Carbon Dioxide Reduction to Multicarbon Products. Electrochemical Energy Reviews, 2022, 5, .	13.1	49
1285	Dual Functionality of Dichalcogenide-Supported Pentagon Core–Hexagon Ring-Structured NiCo ₂ O ₄ Nanoplates: An Effective Hybridization for Tuning of a Diffused- to a Surface-Controlled Process and Boosting of CO ₂ Electrocatalysis. ACS Applied Energy Materials, 2022, 5, 10149-10164.	2.5	6
1286	Challenges and Opportunities in Electrocatalytic CO ₂ Reduction to Chemicals and Fuels. Angewandte Chemie, 2022, 134, .	1.6	8
1287	Review on Heteroatom Doping Carbonaceous Materials Toward Electrocatalytic Carbon Dioxide Reduction. Transactions of Tianjin University, 2022, 28, 292-306.	3.3	15
1288	Review on Heteroatom Doping Carbonaceous Materials Toward Electrocatalytic Carbon Dioxide Reduction. Transactions of Tianjin University, 0, , .	3.3	Ο
1289	Advances of Cobalt Phthalocyanine in Electrocatalytic CO2 Reduction to CO: a Mini Review. Electrocatalysis, 2022, 13, 675-690.	1.5	19
1290	Recent Advances in Photothermal CO _{<i>x</i>} Conversion. Solar Rrl, 2022, 6, .	3.1	14
1291	Efficient and Selective Electroreduction of CO ₂ to HCOOH over Bismuthâ€Based Bromide Perovskites in Acidic Electrolytes. Chemistry - A European Journal, 2022, 28, .	1.7	11
1292	In Situ Periodic Regeneration of Catalyst during CO ₂ Electroreduction to C ₂₊ Products. Angewandte Chemie, 2022, 134, .	1.6	4
1293	Unveiling the Electrocatalytic Activity of Crystal Facet-Tailored Cobalt Oxide-rGO Heterostructure Toward Selective Reduction of CO ₂ to Ethanol. ACS Applied Nano Materials, 2022, 5, 10369-10382.	2.4	7
1294	Efficient Electrocatalytic Reduction of CO ₂ to Ethane over Nitrogen-Doped Fe ₂ O ₃ . Journal of the American Chemical Society, 2022, 144, 14769-14777.	6.6	41

#	Article	IF	CITATIONS
1295	Electrochemical Characteristics of Nanosized Cu, Ni, and Zn Cobaltite Spinel Materials. Catalysts, 2022, 12, 893.	1.6	7
1296	Interface Engineering-Induced 1T-MoS2/NiS Heterostructure for Efficient Hydrogen Evolution Reaction. Catalysts, 2022, 12, 947.	1.6	10
1297	Challenges and Opportunities in Electrocatalytic CO ₂ Reduction to Chemicals and Fuels. Angewandte Chemie - International Edition, 2022, 61, .	7.2	62
1298	Room-temperature Electrochemical C1-to-fuel Conversion: Perspectives from Material Engineering and Device Design. EnergyChem, 2022, 4, 100086.	10.1	5
1299	A special Bi-S motif catalyst for highly selective CO2 conversion to methanol. Journal of Catalysis, 2022, 413, 1077-1088.	3.1	5
1300	Electrochemical reduction of carbon dioxide on the oxide-containing electrocatalysts. Journal of CO2 Utilization, 2022, 64, 102194.	3.3	13
1301	Cuprous Sulfide Nanoarrays for Selective Electroreduction of CO2 to Formate at Low Overpotentials. Chemical Engineering Journal Advances, 2022, 12, 100383.	2.4	1
1302	Metal oxides for the electrocatalytic reduction of carbon dioxide: Mechanism of active sites, composites, interface and defect engineering strategies. Coordination Chemistry Reviews, 2022, 471, 214716.	9.5	38
1303	Grain boundary and interface interaction Co-regulation promotes SnO2 quantum dots for efficient CO2 reduction. Chemical Engineering Journal, 2023, 451, 138477.	6.6	11
1304	Advancement in electrochemical, photocatalytic, and photoelectrochemical CO2 reduction: Recent progress in the role of oxygen vacancies in catalyst design. Journal of CO2 Utilization, 2022, 65, 102211.	3.3	14
1305	N-bridged Ni and Mn single-atom pair sites: A highly efficient electrocatalyst for CO2 conversion to CO. Applied Catalysis B: Environmental, 2023, 320, 121953.	10.8	13
1307	Facile fabrication of self-supporting porous CuMoO ₄ @Co ₃ O ₄ nanosheets as a bifunctional electrocatalyst for efficient overall water splitting. Dalton Transactions, 2022, 51, 12736-12745.	1.6	3
1308	Recent advancement in heterogeneous CO ₂ reduction processes in aqueous electrolyte. Journal of Materials Chemistry A, 2022, 10, 20667-20706.	5.2	6
1309	Synergistic effect of Cu/Cu ₂ O surfaces and interfaces for boosting electrosynthesis of ethylene from CO ₂ in a Zn–CO ₂ battery. Catalysis Science and Technology, 2022, 12, 5671-5678.	2.1	3
1310	Partially Oxidized Ultrathin SnS2 Nanosheets Realizing High-Efficiency CO2 Photoreduction Performance. Springer Theses, 2022, , 65-86.	0.0	0
1311	Cation Doped Ultrathin Nb2O5 Nanosheets Regulating Product Selectivity of CO2 Photoreduction. Springer Theses, 2022, , 87-106.	0.0	0
1312	Defective Ultrathin ZnIn2S4 Nanosheets Boosting CO2 Photoreduction Property. Springer Theses, 2022, , 47-64.	0.0	0
1313	A unifying mechanism for cation effect modulating C1 and C2 productions from CO2 electroreduction. Nature Communications, 2022, 13, .	5.8	51

#	Article	IF	CITATIONS
1314	What It Takes for Imidazolium Cations to Promote Electrochemical Reduction of CO ₂ . ACS Energy Letters, 2022, 7, 3439-3446.	8.8	12
1315	Heterostructured Ru/Ni(OH) ₂ Nanomaterials as Multifunctional Electrocatalysts for Selective Reforming of Ethanol. ACS Applied Materials & Interfaces, 2022, 14, 45042-45050.	4.0	8
1316	Highâ€Areal Density Singleâ€Atoms/Metal Oxide Nanosheets: A Microâ€Gas Blasting Synthesis and Superior Catalytic Properties. Angewandte Chemie, 2022, 134, .	1.6	3
1317	Phase engineering of metal nanocatalysts for electrochemical CO2 reduction. EScience, 2022, 2, 467-485.	25.0	44
1318	CO2 High-Temperature Electrolysis Technology Toward Carbon Neutralization in the Chemical Industry. Engineering, 2023, 21, 101-114.	3.2	8
1319	Highâ€Areal Density Singleâ€Atoms/Metal Oxide Nanosheets: A Microâ€Gas Blasting Synthesis and Superior Catalytic Properties. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
1320	Effect of Halide Anions on the Electroreduction of CO 2 Âto C 2 H 4 : A Density Functional Theory Study. ChemPhysChem, 0, , .	1.0	3
1322	Defective hBN-Supported Fe ₂ N Single Cluster Catalyst for Active and Selective Electro-Reduction of Multiple CO to Propane: Theoretical Elucidation of Metal–Nonmetal Synergic Effects. ACS Applied Materials & Interfaces, 2022, 14, 46657-46664.	4.0	2
1323	Bifunctional CuCo2O4/CoOOH as a synergistic catalyst supported on nickel foam for alkaline overall water splitting. Journal of Alloys and Compounds, 2022, 929, 167367.	2.8	11
1324	The reduction reaction of carbon dioxide on a precise number of Fe atoms anchored on two-dimensional biphenylene. Physical Chemistry Chemical Physics, 2022, 24, 27474-27482.	1.3	4
1325	Ampere-level CO ₂ reduction to multicarbon products over a copper gas penetration electrode. Energy and Environmental Science, 2022, 15, 5391-5404.	15.6	33
1326	Current state of copper-based bimetallic materials for electrochemical CO ₂ reduction: a review. RSC Advances, 2022, 12, 30056-30075.	1.7	6
1327	Transition metal single atom embedded GaN monolayer surface for efficient and selective CO ₂ electroreduction. Journal of Materials Chemistry A, 2022, 10, 24280-24289.	5.2	5
1328	Fast Screening for Copperâ€Based Bimetallic Electrocatalysts: Efficient Electrocatalytic Reduction of CO ₂ to C ₂₊ Products on Magnesiumâ€Modified Copper. Angewandte Chemie, 2022, 134, .	1.6	1
1329	Recent Progress in Surface and Interface Engineering for Electrocatalytic CO ₂ Reduction. Chemistry - an Asian Journal, 2022, 17, .	1.7	7
1330	Chemically coupling SnO ₂ quantum dots and MXene for efficient CO ₂ electroreduction to formate and Zn–CO ₂ battery. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	27
1331	Mechanistic insights into CO2 conversion chemistry of copper bis-(terpyridine) molecular electrocatalyst using accessible operando spectrochemistry. Nature Communications, 2022, 13, .	5.8	24
1332	Fast Screening for Copperâ€Based Bimetallic Electrocatalysts: Efficient Electrocatalytic Reduction of CO ₂ to C ₂₊ Products on Magnesiumâ€Modified Copper. Angewandte Chemie - International Edition, 2022, 61, .	7.2	44

#	Article	IF	CITATIONS
1333	Activated Ni–O–Ir Enhanced Electron Transfer for Boosting Oxygen Evolution Reaction Activity of LaNi _{1â€x} Ir _x O ₃ . Small, 2022, 18, .	5.2	7
1334	Toward Unifying the Mechanistic Concepts in Electrochemical CO ₂ Reduction from an Integrated Material Design and Catalytic Perspective. Advanced Functional Materials, 2022, 32, .	7.8	15
1335	Interfacial engineering of SnO2/Bi2O2CO3 heterojunction on heteroatoms-doped carbon for high-performance CO2 electroreduction to formate. Nano Research, 2023, 16, 2278-2285.	5.8	12
1336	Transition Metalâ€Based Electrocatalysts for Seawater Oxidation. Advanced Materials Interfaces, 2022, 9, .	1.9	11
1337	Aromatic carboxylic acid derived bimetallic nickel/cobalt electrocatalysts for oxygen evolution reaction and hydrogen peroxide sensing applications. Journal of Electroanalytical Chemistry, 2022, 925, 116904.	1.9	4
1338	Emerging two-dimensional metallenes: Recent advances in structural regulations and electrocatalytic applications. Chinese Journal of Catalysis, 2022, 43, 2802-2814.	6.9	9
1339	Selective conversion of CO2 to CO under visible light by modulating Cd to In ratio: A case study of Cd-In-S colloidal catalysts. Applied Surface Science, 2023, 610, 155546.	3.1	4
1340	Metallic bismuth nanoclusters confined in micropores for efficient electrocatalytic reduction of carbon dioxide with long-term stability. Journal of Colloid and Interface Science, 2023, 630, 81-90.	5.0	8
1341	Bimetallic Zn3Sn2 electrocatalyst derived from mixed oxides enhances formate production towards CO2 electroreduction reaction. Applied Surface Science, 2023, 608, 155110.	3.1	3
1342	Fabricated noble-metal free Co2B/g-C3N4 photocatalyst with 2D/2D structure achieved remarkable water splitting performance from visible to near-infrared wavelengths. Fuel, 2023, 333, 126280.	3.4	6
1343	Controlled synthesis of a Ni2 dual-atom catalyst for synergistic CO2 electroreduction. Applied Catalysis B: Environmental, 2023, 322, 122073.	10.8	17
1344	Highâ€Entropy Alloy Aerogels: A New Platform for Carbon Dioxide Reduction. Advanced Materials, 2023, 35, .	11.1	43
1346	Strong Electron Coupling Effect at the CoO/CeO ₂ Interface Enables Efficient Oxygen Evolution Reaction. , 2022, 4, 2572-2578.		16
1347	Boosting CO2 electroreduction to formate via bismuth oxide clusters. Nano Research, 2023, 16, 12050-12057.	5.8	9
1349	Progress and perspectives of metal (Li, Na, Al, Zn and K)–CO2 batteries. Materials Today Energy, 2023, 31, 101196.	2.5	7
1350	Bismuth nanosheets with rich grain boundaries for efficient electroreduction of CO2 to formate under high pressures. Chinese Journal of Catalysis, 2022, 43, 3161-3169.	6.9	10
1351	Boosting Electroreduction of CO ₂ to Tunable Syngas by Using a Pdâ€Based Trimetallic Alloy. ChemNanoMat, 2023, 9, .	1.5	3
1352	In situ probing of liquid-solid interfaces using core-shell nanoparticles-enhanced Raman spectroscopy. , 2023, , .		0

#	Article	IF	CITATIONS
1353	Progress and perspective for conversion of plastic wastes into valuable chemicals. Chemical Society Reviews, 2023, 52, 8-29.	18.7	78
1354	Metallene-related materials for electrocatalysis and energy conversion. Materials Horizons, 2023, 10, 407-431.	6.4	13
1355	Construction of Sr@Mn ₃ O ₄ /GO nanocomposite: a synergistic electrocatalyst for nitrofurantoin detection in biological and environmental samples. Environmental Science: Nano, 2023, 10, 503-518.	2.2	4
1356	Recent advances in reducible metal oxide catalysts for C1 reactions. Catalysis Science and Technology, 0, , .	2.1	1
1357	Effects of electrolytes on the electrochemical reduction of CO ₂ to C ₂ H ₄ : a mechanistic point of view. Catalysis Science and Technology, 0, , .	2.1	1
1358	A crystal growth kinetics guided Cu aerogel for highly efficient CO ₂ electrolysis to C ₂₊ alcohols. Chemical Science, 2023, 14, 310-316.	3.7	7
1359	Ag-organic coordination polymers with multi-dimensional electron transfer channels for enhancing CO2 electroreduction. Chemical Engineering Journal, 2023, 454, 140496.	6.6	5
1360	Edge engineering on layered WS ₂ toward the electrocatalytic reduction of CO ₂ : a first principles study. Physical Chemistry Chemical Physics, 2022, 24, 30027-30034.	1.3	3
1361	Dual‣ite Functionalization on Supported Metal Monolayer Electrocatalysts for Selective CO ₂ Reduction. Advanced Energy Materials, 2023, 13, .	10.2	17
1362	Design of Single-Atom Catalysts and Tracking Their Fate Using <i>Operando</i> and Advanced X-ray Spectroscopic Tools. Chemical Reviews, 2023, 123, 379-444.	23.0	50
1363	O-hetero-Fe-N3.6 active sites in ZIF-derived carbon nanotubes for the electrocatalytic oxygen evolution reaction. Chemical Engineering Journal, 2023, 455, 140694.	6.6	3
1364	Review of Carbon Capture and Methane Production from Carbon Dioxide. Atmosphere, 2022, 13, 1958.	1.0	9
1365	Self-supported ultrathin Co3O4 nanoarray enabling efficient paired electrolysis of 5-hydroxymethylfurfural for simultaneous dihydroxymethylfuran (DHMF) and furandicarboxylic acid (FDCA) production. Chinese Chemical Letters, 2023, 34, 108034.	4.8	3
1366	Engineered 2D Metal Oxides for Photocatalysis as Environmental Remediation: A Theoretical Perspective. Catalysts, 2022, 12, 1613.	1.6	5
1367	Surface and Interface Engineering for the Catalysts of Electrocatalytic CO ₂ Reduction. Chemistry - an Asian Journal, 2023, 18, .	1.7	5
1368	Selective Hydrogenation of CO ₂ to CH ₃ OH on a Dynamically Magic Single-Cluster Catalyst: Cu ₃ /MoS ₂ /Ag(111). ACS Catalysis, 2023, 13, 714-724.	5.5	9
1369	Converting CO2 to ethanol on Ag nanowires with high selectivity investigated by operando Raman spectroscopy. Science China Chemistry, 2023, 66, 259-265.	4.2	5
1370	Interfacial role of Ionic liquids in CO2 electrocatalytic Reduction: A mechanistic investigation. Chemical Engineering Journal, 2023, 457, 141076.	6.6	1

		Citation Report		
#	Article		IF	CITATIONS
1371	A Scientometric Review of CO2 Electroreduction Research from 2005 to 2022. Energies, 2	2023, 16, 616.	1.6	8
1372	Metal and metal oxide electrocatalysts for the electrochemical reduction of CO ₂	sub> -to-C1	2.1	10
1373	Metal–Nitrogen–Carbon Catalysts by Dynamic Template Removal for Highly Efficient Electroreduction of CO ₂ . ACS Applied Energy Materials, 2023, 6, 678-691.	and Selective	2.5	3
1374	Recent Advances in Electrochemical, Photochemical, and Photoelectrochemical Reduction CO ₂ to C ₂₊ Products. Small, 2023, 19, .	of	5.2	30
1375	Electrochemical scanning probe microscopies for artificial photosynthesis. Nano Research 4013-4028.	, 2023, 16,	5.8	2
1376	Positive Valent Metal Sites in Electrochemical CO ₂ Reduction Reaction. Cher 2023, 24, .	nPhysChem,	1.0	0
1377	Tailoring zeolite ERI aperture for efficient separation of CO2 from gas mixtures. Separation Purification Technology, 2023, 309, 123078.	n and	3.9	7
1378	Regulating charge distribution of Ru atoms in ruthenium phosphide/carbon nitride/carbon promoting hydrogen evolution reaction. Journal of Alloys and Compounds, 2023, 939, 16		2.8	10
1379	Self-Supported Porous Carbon Nanofibers Decorated with Single Ni Atoms for Efficient CO ₂ Electroreduction. ACS Applied Materials & Interfaces, 2023, 15, 13	76-1383.	4.0	11
1380	Perovskite-based nanomaterials for CO2 conversion. , 2023, , 181-209.			1
1381	Recent progress on the electroreduction of carbon dioxide to C1 liquid products. Current Electrochemistry, 2023, 38, 101219.	Opinion in	2.5	3
1382	A hydrophobic Cu/Cu2O sheet catalyst for selective electroreduction of CO to ethanol. Na Communications, 2023, 14, .	ature	5.8	23
1383	Electrochemical CO2 reduction: Progress and opportunity with alloying copper. Materials Energy, 2023, 3, 100175.	Reports	1.7	5
1384	Operando reconstruction-induced CO2 reduction activity and selectivity for cobalt-based photocatalysis. Nano Research, 2023, 16, 4812-4820.		5.8	7
1385	Advances and challenges of electrolyzers for large-scale CO2 electroreduction. Materials F Energy, 2023, 3, 100177.	leports	1.7	7
1386	Photoelectrochemical reduction of CO ₂ catalyzed by a 3D core–shell NiMoO ₄ @ZnO heterojunction with bicentre at the (111) plane and thermal assistance. Journal of Materials Chemistry A, 2023, 11, 4230-4237.	electron	5.2	11
1387	Rational design of atomic site catalysts for electrochemical CO ₂ reduction. C Communications, 2023, 59, 2682-2696.	hemical	2.2	1
1389	Ultrasensitive determination of metronidazole using flower-like cobalt anchored on reduct graphene oxide nanocomposite electrochemical sensor. Microchemical Journal, 2023, 188		2.3	12

#	Article	IF	CITATIONS
1390	Theory-Guided S-Defects Boost Selective Conversion of CO ₂ to HCOOH over In ₄ SnS ₈ Nanoflowers. ACS Catalysis, 2023, 13, 2998-3006.	5.5	12
1391	Unravelling the Complex Na ₂ CO ₃ Electrochemical Process in Rechargeable Na O ₂ Batteries. Advanced Energy Materials, 2023, 13, .	10.2	11
1392	SO42â^' mediated CO2 activation on metal electrode for efficient CO2 electroreduction. Chemical Engineering Journal, 2023, 464, 142510.	6.6	5
1393	Structural construction of Bi-anchored honeycomb N-doped porous carbon catalyst for efficient CO2 conversion. Chemical Engineering Journal, 2023, 464, 142672.	6.6	5
1394	In-situ growing nickel phthalocyanine supramolecular structure on carbon nanotubes for efficient electrochemical CO2 conversion. Applied Catalysis B: Environmental, 2023, 327, 122446.	10.8	5
1395	Boosting electrochemical CO2 directly electrolysis by tuning the surface oxygen defect of perovskite. Journal of Power Sources, 2023, 570, 233032.	4.0	7
1396	Heterostructured CNT-RuSx nanomaterials for efficient electrochemical hydrogen evolution reaction. Applied Catalysis B: Environmental, 2023, 331, 122681.	10.8	5
1397	Electrochemical reduction of carbon dioxide into valuable chemicals: a review. Environmental Chemistry Letters, 2023, 21, 1515-1553.	8.3	10
1398	Highly Ethylene-Selective Electroreduction CO2 Over Cu Phosphate Nanostructures with Tunable Morphology. Topics in Catalysis, 2023, 66, 1527-1538.	1.3	2
1399	Highâ€Concentration Electrosynthesis of Formic Acid/Formate from <scp>CO₂</scp> : Reactor and Electrode Design Strategies. Energy and Environmental Materials, 2023, 6, .	7.3	11
1400	Promoting water dissociation for efficient solar driven CO2 electroreduction via improving hydroxyl adsorption. Nature Communications, 2023, 14, .	5.8	13
1401	Nano-polyaniline enables highly efficient electrocatalytic reduction of CO ₂ to methanol in supporting electrolyte-free media and the detection of free-radical signals. Materials Chemistry Frontiers, 2023, 7, 1385-1394.	3.2	1
1402	Improving the activity of electrochemical reduction of CO2 to C1 products by oxidation derived copper catalyst. Materials Reports Energy, 2023, 3, 100180.	1.7	1
1403	Rational Design of Novel Reaction Pathways and Tailor-Made Catalysts for Value-Added Chemicals Synthesis from CO2 Hydrogenation. Bulletin of the Chemical Society of Japan, 2023, 96, 291-302.	2.0	7
1404	Interface-Rich Highly Oxophilic Copper/Tin–Oxide Nanocomposite on Reduced Graphene Oxide for Efficient Electroreduction of CO ₂ to Formate. ACS Applied Energy Materials, 2023, 6, 3020-3031.	2.5	5
1405	Solarâ€Triggered Engineered 2Dâ€Materials for Environmental Remediation: Status and Future Insights. Advanced Materials Interfaces, 2023, 10, .	1.9	8
1406	Oxidation of metallic Cu by supercritical CO2 and control synthesis of amorphous nano-metal catalysts for CO2 electroreduction. Nature Communications, 2023, 14, .	5.8	17
1407	Ordered Co ^{III} â€MOF@Co ^{II} â€MOF Heterojunction for Highly Efficient Photocatalytic Syngas Production. Small Science, 2023, 3, .	5.8	2

#	Article	IF	CITATIONS
1408	Microwave-assisted synthesis of metal-organic chalcogenolate assemblies as electrocatalysts for syngas production. Communications Chemistry, 2023, 6, .	2.0	5
1409	Spinel-Anchored Iridium Single Atoms Enable Efficient Acidic Water Oxidation via Intermediate Stabilization Effect. ACS Catalysis, 2023, 13, 3757-3767.	5.5	21
1410	Nanotubular TiO _{<i>x</i>} N _{<i>y</i>} -Supported Ir Single Atoms and Clusters as Thin-Film Electrocatalysts for Oxygen Evolution in Acid Media. Chemistry of Materials, 2023, 35, 2612-2623.	3.2	5
1411	Copper Cobalt Selenide as a Bifunctional Electrocatalyst for the Selective Reduction of CO ₂ to Carbon-Rich Products and Alcohol Oxidation. ACS Applied Materials & Interfaces, 0, , .	4.0	4
1412	Metal functionalization of two-dimensional nanomaterials for electrochemical carbon dioxide reduction. Nanoscale, 2023, 15, 6456-6475.	2.8	7
1413	Selective CO ₂ Electroreduction with Enhanced Oxygen Evolution Efficiency in Affordable Borate-Mediated Molten Electrolyte. ACS Energy Letters, 2023, 8, 1762-1771.	8.8	8
1414	Bi ₂ S ₃ nanorods grown on multiwalled carbon nanotubes as highly active catalysts for CO ₂ electroreduction to formate. Physical Chemistry Chemical Physics, 2023, 25, 9198-9207.	1.3	2
1415	Balancing subâ€reaction activity to boost electrocatalytic urea synthesis using a metalâ€free electrocatalyst. , 2023, 5, .		13
1416	Advancing direct seawater electrocatalysis for green and affordable hydrogen. One Earth, 2023, 6, 267-277.	3.6	19
1417	Recent Progress in Electrocatalytic Reduction of CO2. Catalysts, 2023, 13, 644.	1.6	4
1418	Photocatalytic Reduction of Carbon Dioxide in Aqueous Suspensions of a Titania Semiconductor. High Energy Chemistry, 2023, 57, 12-17.	0.2	0
1419	Simultaneous facilitation of CO ₂ adsorption and proton feeding in Bi/Bi ₂ O ₃ heterostructure nanosheets for enhanced electroreduction of CO ₂ to formate in a wide potential window. New Journal of Chemistry, 2023, 47, 8894-8905.	1.4	2
1420	Ultrafine Fe ₂ C Iron Carbide Nanoclusters Trapped in Topological Carbon Defects for Efficient Electroreduction of Carbon Dioxide. Advanced Energy Materials, 2023, 13, .	10.2	4
1421	Facile Synthesis of Heterogeneous Indium Nanoparticles for Formate Production via CO2 Electroreduction. Nanomaterials, 2023, 13, 1304.	1.9	0
1422	The role of oxygen-vacancy in bifunctional indium oxyhydroxide catalysts for electrochemical coupling of biomass valorization with CO2 conversion. Nature Communications, 2023, 14, .	5.8	37
1423	Mn-Incorporation-Induced Phase Transition in Bottom-Up Synthesized Colloidal Sub-1-nm Ni(OH) ₂ Nanosheets for Enhanced Oxygen Evolution Catalysis. Nano Letters, 2023, 23, 3259-3266.	4.5	4
1424	Recent advances, properties, fabrication and opportunities in two-dimensional materials for their potential sustainable applications. Energy Storage Materials, 2023, 59, 102780.	9.5	12
1425	Metallene-based catalysts towards hydrogen evolution reaction. Current Opinion in Electrochemistry, 2023, 39, 101303.	2.5	1

#	Article	IF	CITATIONS
1426	Understanding Boosted Selective CO ₂ â€toâ€CO Photoreduction with Pure Water Vapor over Hierarchical Biomassâ€Derived Carbon Matrix. Advanced Functional Materials, 2023, 33, .	7.8	5
1427	Hydroxypillar[5]areneâ€Confined Silver Nanocatalyst for Selective Electrochemical Reduction of CO ₂ to Ethanol. Advanced Functional Materials, 2023, 33, .	7.8	5
1428	Direct electrochemical formation of carbonaceous material from CO2 in LiCl-KCl melt. Electrochimica Acta, 2023, 456, 142464.	2.6	2
1440	Ammonia-assisted synthesis of low-crystalline FeCo hydroxides for efficient electrochemical overall water splitting. Nanoscale, 0, , .	2.8	0
1443	Nanoarchitectonics of Metallene Materials for Electrocatalysis. ACS Nano, 2023, 17, 13017-13043.	7.3	34
1467	Flow Cells for CO2 Reduction. Green Energy and Technology, 2023, , 199-228.	0.4	0
1475	Application of oxygen vacancy defects in enhanced anti-cancer nanomedicine. Science China Chemistry, 2023, 66, 2492-2512.	4.2	0
1483	Environment applications of non-layered 2D materials. Semiconductors and Semimetals, 2023, , 277-295.	0.4	1
1499	Harnessing single-atom catalysts for CO ₂ electroreduction: a review of recent advances. , 2024, 2, 71-93.		0
1509	A critical review of current conversion facilities and research output on carbon dioxide utilization. MRS Energy & Sustainability, 0, , .	1.3	0
1520	Acidic CO ₂ Electroreduction for High CO ₂ Utilization: Catalysts, Electrodes, and Electrolyzers. Nanoscale, 0, , .	2.8	1
1539	Interfacial Co–O–Cu bonds prompt electrochemical nitrate reduction to ammonia in neutral electrolyte. Chemical Communications, 2024, 60, 2756-2759.	2.2	0
1542	Tuning the local coordination environment of silver(I) coordination networks with counterions for enhanced electrocatalytic CO2 reduction. Science China Chemistry, 0, , .	4.2	0
1546	Electrified CO ₂ valorization in emerging nanotechnologies: a technical analysis of gas feedstock purity and nanomaterials in electrocatalytic and bio-electrocatalytic CO ₂ conversion. Environmental Science: Nano, 0, , .	2.2	0