Host-directed therapy targeting the Mycobacterium tul

Seminars in Immunopathology 38, 167-183 DOI: 10.1007/s00281-015-0537-x

Citation Report

#	Article	IF	CITATIONS
1	Adjunct Strategies for Tuberculosis Vaccines: Modulating Key Immune Cell Regulatory Mechanisms to Potentiate Vaccination. Frontiers in Immunology, 2016, 7, 577.	2.2	18
2	Genetic background affects the expansion of macrophage subsets in the lungs of <i>Mycobacterium tuberculosis</i> â€infected hosts. Immunology, 2016, 148, 102-113.	2.0	16
3	Sharpening nature's tools for efficient tuberculosis control: A review of the potential role and development of host-directed therapies and strategies for targeted respiratory delivery. Advanced Drug Delivery Reviews, 2016, 102, 33-54.	6.6	29
4	Efficacy and safety of quercetin and polyvinylpyrrolidone in treatment of patients with newly diagnosed destructive pulmonary tuberculosis in comparison with standard antimycobacterial therapy. International Journal of Mycobacteriology, 2016, 5, 446-453.	0.3	13
5	Immunopathology of mycobacterial diseases. Seminars in Immunopathology, 2016, 38, 135-138.	2.8	4
6	Dietary Vitamin D3 Suppresses Pulmonary Immunopathology Associated with Late-Stage Tuberculosis in C3HeB/FeJ Mice. Journal of Immunology, 2016, 196, 1293-1304.	0.4	25
7	The long and winding road to inhaled TB therapy: not only the bug's fault. Drug Development and Industrial Pharmacy, 2017, 43, 347-363.	0.9	15
8	Striking the right immunological balance prevents progression of tuberculosis. Inflammation Research, 2017, 66, 1031-1056.	1.6	11
9	Histone Methyltransferase SET8 Epigenetically Reprograms Host Immune Responses to Assist Mycobacterial Survival. Journal of Infectious Diseases, 2017, 216, 477-488.	1.9	38
10	Lung cancer screening and prevention in a still endemic region for granulomatous disease: Brazil. AME Medical Journal, 0, 2, 170-170.	0.4	0
11	Animal Models for Tuberculosis in Translational and Precision Medicine. Frontiers in Microbiology, 2017, 8, 717.	1.5	62
12	Non-Steroidal Anti-inflammatory Drugs As Host-Directed Therapy for Tuberculosis: A Systematic Review. Frontiers in Immunology, 2017, 8, 772.	2.2	64
13	Toxoplasma gondii GRA7-Targeted ASC and PLD1 Promote Antibacterial Host Defense via PKCα. PLoS Pathogens, 2017, 13, e1006126.	2.1	33
14	Flavin Storage and Sequestration by <i>Mycobacterium tuberculosis</i> Dodecin. ACS Infectious Diseases, 2018, 4, 1082-1092.	1.8	12
15	Immunological roulette: Luck or something more? Considering the connections between host and environment in TB. Cellular and Molecular Immunology, 2018, 15, 226-232.	4.8	3
16	Microbial Offense vs Host Defense: Who Controls the TB Granuloma?. Veterinary Pathology, 2018, 55, 14-26.	0.8	24
17	Principles of Immunotherapy: Implications for Treatment Strategies in Cancer and Infectious Diseases. Frontiers in Microbiology, 2018, 9, 3158.	1.5	66
19	Granulomatous Response to Mycobacterium tuberculosis Infection. , 2018, , 41-66.		2

#	Article	IF	CITATIONS
20	Epidemiology of Mycobacterium bovis and Mycobacterium tuberculosis in animals: Transmission dynamics and control challenges of zoonotic TB in Ethiopia. Preventive Veterinary Medicine, 2018, 158, 1-17.	0.7	23
21	A Beneficial Effect of Low-Dose Aspirin in a Murine Model of Active Tuberculosis. Frontiers in Immunology, 2018, 9, 798.	2.2	47
22	Host Directed Therapies for Tuberculosis: Futures Strategies for an Ancient Disease. Chemotherapy, 2018, 63, 172-180.	0.8	75
23	Antituberculosis agents: Beyond medicinal chemistry rules. Annual Reports in Medicinal Chemistry, 2019, 52, 27-69.	0.5	4
24	microRNA-579 upregulation mediates death of human macrophages with mycobacterium tuberculosis infection. Biochemical and Biophysical Research Communications, 2019, 518, 219-226.	1.0	21
25	Inhibition of inflammatory-molecule synthesis in THP-1 cells stimulated with phorbol 12-myristate 13-acetate by brefelamide derivatives. International Immunopharmacology, 2019, 75, 105831.	1.7	8
26	Extracellular vesicles deliver <i>Mycobacterium</i> <scp>RNA</scp> to promote host immunity and bacterial killing. EMBO Reports, 2019, 20, .	2.0	66
27	Transcriptionally induced enhancers in the macrophage immune response to Mycobacterium tuberculosis infection. BMC Genomics, 2019, 20, 71.	1.2	16
28	Targeted depletion of BTF3a in macrophages activates autophagic pathway to eliminate Mycobacterium tuberculosis. Life Sciences, 2019, 220, 21-31.	2.0	4
29	The lung microbiome, vitamin D, and the tuberculous granuloma: A balance triangle. Microbial Pathogenesis, 2019, 131, 158-163.	1.3	28
30	A major role for ferroptosis in <i>Mycobacterium tuberculosis</i> –induced cell death and tissue necrosis. Journal of Experimental Medicine, 2019, 216, 556-570.	4.2	231
31	Metformin as a host-directed therapeutic in tuberculosis: Is there a promise?. Tuberculosis, 2019, 115, 76-80.	0.8	30
32	Dysregulation of VEGF-dependent angiogenesis in cavernous lung tuberculosis. Pathophysiology, 2019, 26, 381-387.	1.0	4
33	Iron Acquisition in <i>Mycobacterium tuberculosis</i> . Chemical Reviews, 2019, 119, 1193-1220.	23.0	80
34	Efferocytosis of Apoptotic Neutrophils Enhances Control of <i>Mycobacterium tuberculosis</i> in HIV-Coinfected Macrophages in a Myeloperoxidase-Dependent Manner. Journal of Innate Immunity, 2020, 12, 235-247.	1.8	12
35	Temporal modulation of host aerobic glycolysis determines the outcome of Mycobacterium marinum infection. Fish and Shellfish Immunology, 2020, 96, 78-85.	1.6	5
36	Association Between Functional Nucleotide Polymorphisms Up-regulating Transforming Growth Factor β1 Expression and Increased Tuberculosis Susceptibility. Journal of Infectious Diseases, 2020, , .	1.9	4
38	Bactericidal Activity of Liposomal Form of Lytic Mycobacteriophage D29 in Cell Models of Tuberculosis Infection In Vitro. Bulletin of Experimental Biology and Medicine, 2020, 169, 361-364.	0.3	8

#	Article	IF	Citations
39	Sirtuin 3 is essential for host defense against <i>Mycobacterium abscessus</i> infection through regulation of mitochondrial homeostasis. Virulence, 2020, 11, 1225-1239.	1.8	14
40	Small Animal Models for Human Immunodeficiency Virus (HIV), Hepatitis B, and Tuberculosis: Proceedings of an NIAID Workshop. Current HIV Research, 2020, 18, 19-28.	0.2	9
41	Neutrophils in Tuberculosis-Associated Inflammation and Lung Pathology. Frontiers in Immunology, 2020, 11, 962.	2.2	62
42	Multi-functionalized nanocarriers targeting bacterial reservoirs to overcome challenges of multi drug-resistance. DARU, Journal of Pharmaceutical Sciences, 2020, 28, 319-332.	0.9	6
43	Effects of hostâ€directed therapies on the pathology of tuberculosis. Journal of Pathology, 2020, 250, 636-646.	2.1	34
44	Bevacizumab as a potential antiâ€angiogenic therapy in schistosomiasis: A doubleâ€edged, but adjustable weapon. Parasite Immunology, 2020, 42, e12724.	0.7	5
45	FX11 limits <i>Mycobacterium tuberculosis</i> growth and potentiates bactericidal activity of isoniazid through host-directed activity. DMM Disease Models and Mechanisms, 2020, 13, .	1.2	15
46	3D host cell and pathogen-based bioassay development for testing anti-tuberculosis (TB) drug response and modeling immunodeficiency. Biomolecular Concepts, 2021, 12, 117-128.	1.0	3
47	Lactate Metabolism and Signaling in Tuberculosis and Cancer: A Comparative Review. Frontiers in Cellular and Infection Microbiology, 2021, 11, 624607.	1.8	18
48	Longer-Term Omega-3 LCPUFA More Effective Adjunct Therapy for Tuberculosis Than Ibuprofen in a C3HeB/FeJ Tuberculosis Mouse Model. Frontiers in Immunology, 2021, 12, 659943.	2.2	4
50	The protected physiological state of intracellular Salmonella enterica persisters reduces host cell-imposed stress. Communications Biology, 2021, 4, 520.	2.0	12
51	The Oral Delivery of Water-Soluble Phenol TS-13 Ameliorates Granuloma Formation in an In Vivo Model of Tuberculous Granulomatous Inflammation. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-10.	1.9	6
52	To Trap a Pathogen: Neutrophil Extracellular Traps and Their Role in Mucosal Epithelial and Skin Diseases. Cells, 2021, 10, 1469.	1.8	16
53	Immunoadjunctive Therapy against Bacterial Infections Using Herbal Medicines Based on Th17 Cell-mediated Protective Immunity. Current Pharmaceutical Design, 2021, 27, 3949-3962.	0.9	2
54	Establishment of a Patient-Derived, Magnetic Levitation-Based, Three-Dimensional Spheroid Granuloma Model for Human Tuberculosis. MSphere, 2021, 6, e0055221.	1.3	7
55	Host Immune-Metabolic Adaptations Upon Mycobacterial Infections and Associated Co-Morbidities. Frontiers in Immunology, 2021, 12, 747387.	2.2	14
58	Targeting cyclophilin-D by miR-1281 protects human macrophages from Mycobacterium tuberculosis-induced programmed necrosis and apoptosis. Aging, 2019, 11, 12661-12673.	1.4	18
59	Nano-antimicrobials: A New Paradigm for Combating Mycobacterial Resistance. Current Pharmaceutical Design, 2019, 25, 1554-1579.	0.9	21

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
60	Host-targeted therapy for tuberculosis: Time to revisit the concept. Indian Journal of Medical Research, 2018, 147, 233.	0.4	4
61	Targeting Molecular Inflammatory Pathways in Granuloma as Host-Directed Therapies for Tuberculosis. Frontiers in Immunology, 2021, 12, 733853.	2.2	20
65	Fenofibrate Facilitates Post-Active Tuberculosis Infection in Macrophages and is Associated with Higher Mortality in Patients under Long-Term Treatment. Journal of Clinical Medicine, 2020, 9, 337.	1.0	2
66	Tuberculosis drug discovery: Progression and future interventions in the wake of emerging resistance. European Journal of Medicinal Chemistry, 2022, 229, 114066.	2.6	23
67	Cascadeâ€Targeting Poly(amino acid) Nanoparticles Eliminate Intracellular Bacteria via On‧ite Antibiotic Delivery. Advanced Materials, 2022, 34, e2109789.	11.1	51
68	All trans retinoic acid as a host-directed immunotherapy for tuberculosis. Current Research in Immunology, 2022, 3, 54-72.	1.2	6
69	Photoclick Reaction Constructs Glutathione-Responsive Theranostic System for Anti-Tuberculosis. Frontiers in Molecular Biosciences, 2022, 9, 845179.	1.6	26
70	Recent Developments in Drug Delivery for Treatment of Tuberculosis by Targeting Macrophages. Advanced Therapeutics, 2022, 5, .	1.6	5
71	Chemical modulation of SQSTM1/p62-mediated xenophagy that targets a broad range of pathogenic bacteria. Autophagy, 2022, 18, 2926-2945.	4.3	15
72	Epigenetic changes in Mycobacterium tuberculosis and its host provide potential targets or biomarkers for drug discovery and clinical diagnosis. Pharmacological Research, 2022, 179, 106195.	3.1	8
74	A century of attempts to develop an effective tuberculosis vaccine: Why they failed?. International Immunopharmacology, 2022, 109, 108791.	1.7	5
75	Anti-cancer peptides: their current trends in the development of peptide-based therapy and anti-tumor drugs. Biotechnology and Genetic Engineering Reviews, 2023, 39, 45-84.	2.4	18
76	Stimulated expression of ELR+ chemokines, VEGFA and TNF-AIP3 promote mycobacterial dissemination in extrapulmonary tuberculosis patients and Cavia porcellus model of tuberculosis. Tuberculosis, 2022, 135, 102224.	0.8	4
77	The Ambiguous Role of Macrophages in Pulmonary Tuberculosis. , 0, , .		0
78	Development of Inhalable ATRA-Loaded PLGA Nanoparticles as Host-Directed Immunotherapy against Tuberculosis. Pharmaceutics, 2022, 14, 1745.	2.0	12
79	Medications for Short-Course Chemotherapy of Drug Resistant Tuberculosis and Their Effect on the Host. Tuberculosis and Lung Diseases, 2022, 100, 54-64.	0.2	5
80	Immunomodulatory Activity of Diterpenes over Innate Immunity and Cytokine Production in a Human Alveolar Epithelial Cell Line Infected with Mycobacterium tuberculosis. Current Molecular Pharmacology, 2022, 15, .	0.7	0
81	Synthetic approaches to potent heterocyclic inhibitors of tuberculosis: A decade review. Frontiers in Pharmacology, 0, 13, .	1.6	2

#	Article	IF	CITATIONS
82	Measurement of Autophagy Activity Reveals Time-Dependent, Bacteria-Specific Turnover during Mycobacterium tuberculosis Infection. Pathogens, 2023, 12, 24.	1.2	0
83	Repurposing inhibitors of phosphoinositide 3-kinase as adjuvant therapeutics for bacterial infections. , 0, 2, .		1
84	Gamma-aminobutyric acid type A receptor alpha 4 coordinates autophagy, inflammation, and immunometabolism to promote innate immune activation. , 2023, 2, .		2
85	Role of Micronutrients in Tuberculosis Management. Integrated Science, 2023, , 321-329.	0.1	0

CITATION REPORT