Furfural: a renewable and versatile platform molecule for fuels

Energy and Environmental Science 9, 1144-1189 DOI: 10.1039/c5ee02666k

Citation Report

#	Article	IF	CITATIONS
3	Microscale In Vitro Assays for the Investigation of Neutral Red Retention and Ethoxyresorufin-O-Deethylase of Biofuels and Fossil Fuels. PLoS ONE, 2016, 11, e0163862.	1.1	14
4	A Belated Green Revolution for Cannabis: Virtual Genetic Resources to Fast-Track Cultivar Development. Frontiers in Plant Science, 2016, 7, 1113.	1.7	65
5	Process analytical technology (PAT) applied to biomass valorisation: a kinetic study on the multiphase dehydration of xylose to furfural. Reaction Chemistry and Engineering, 2016, 1, 521-532.	1.9	15
6	Selective hydrogenation of furfural on Ru/Al-MIL-53: a comparative study on the effect of aromatic and aliphatic organic linkers. RSC Advances, 2016, 6, 92299-92304.	1.7	25
7	The Modern Face of Synthetic Heterocyclic Chemistry. Journal of Organic Chemistry, 2016, 81, 10109-10125.	1.7	149
8	Furfural: A Promising Platform Compound for Sustainable Production of C ₄ and C ₅ Chemicals. ACS Catalysis, 2016, 6, 7621-7640.	5.5	607
9	One-pot cascade transformation of xylose into γ-valerolactone (GVL) over bifunctional BrÃ,nsted–Lewis Zr–Al-beta zeolite. Green Chemistry, 2016, 18, 5777-5781.	4.6	76
10	Enhancement of indoles production and catalyst stability in thermo-catalytic conversion and ammonization of furfural with NH3 and N2 environments. Journal of Analytical and Applied Pyrolysis, 2016, 121, 258-266.	2.6	16
11	Zeolite and zeotype-catalysed transformations of biofuranic compounds. Green Chemistry, 2016, 18, 5701-5735.	4.6	142
12	Methyl vinyl glycolate as a diverse platform molecule. Green Chemistry, 2016, 18, 5448-5455.	4.6	26
13	One-pot conversion of furfural to alkyl levulinate over bifunctional Au-H ₄ SiW ₁₂ O ₄₀ /ZrO ₂ without external H ₂ . Green Chemistry, 2016, 18, 5667-5675.	4.6	63
14	pHâ€Regulated Aqueous Catalytic Hydrogenation of Biomass Carbohydrate Derivatives by Using Semisandwich Iridium Complexes. ChemCatChem, 2016, 8, 3375-3380.	1.8	21
15	Acid–Base Bifunctional Zirconium <i>N</i> -Alkyltriphosphate Nanohybrid for Hydrogen Transfer of Biomass-Derived Carboxides. ACS Catalysis, 2016, 6, 7722-7727.	5.5	158
16	Catalytic Transfer Hydrogenation of Furfural to 2â€Methylfuran and 2â€Methyltetrahydrofuran over Bimetallic Copper–Palladium Catalysts. ChemSusChem, 2016, 9, 3330-3337.	3.6	128
17	Morphology evolution, formation mechanism and adsorption properties of hydrochars prepared by hydrothermal carbonization of corn stalk. RSC Advances, 2016, 6, 107829-107835.	1.7	48
18	Impact of guaiacol on the formation of undesired macromolecules during catalytic hydroconversion of bio-oil: A model compounds study. Biomass and Bioenergy, 2016, 95, 194-205.	2.9	12
19	Understanding macromolecules formation from the catalytic hydroconversion of pyrolysis bio-oil model compounds. Biomass and Bioenergy, 2016, 95, 182-193.	2.9	8
20	Facile and green preparation of biobased graphene oxide/furan resin nanocomposites with enhanced thermal and mechanical properties. RSC Advances, 2016, 6, 62572-62578.	1.7	9

#	Article	IF	CITATIONS
21	Ruthenium-catalyzed solvent-free conversion of furfural to furfuryl alcohol. RSC Advances, 2017, 7, 3331-3335.	1.7	34
22	Continuousâ€Flow <i>O</i> â€Alkylation of Biobased Derivatives with Dialkyl Carbonates in the Presence of Magnesium–Aluminium Hydrotalcites as Catalyst Precursors. ChemSusChem, 2017, 10, 1571-1583.	3.6	13
23	Liquid Phase Furfural Hydrotreatment to 2â€Methylfuran with Carbon Supported Copper, Nickel, and Iron Catalysts. ChemistrySelect, 2017, 2, 51-60.	0.7	25
24	Microbial biodiesel production from oil palm biomass hydrolysate using marine Rhodococcus sp. YHY01. Bioresource Technology, 2017, 233, 99-109.	4.8	69
25	Recent advances in catalytic transformation of biomass-derived 5-hydroxymethylfurfural into the innovative fuels and chemicals. Renewable and Sustainable Energy Reviews, 2017, 74, 230-257.	8.2	308
26	Synthesis of 1,5â€Pentanediol by Hydrogenolysis of Furfuryl Alcohol over Ni–Y ₂ O ₃ Composite Catalyst. ChemCatChem, 2017, 9, 2869-2874.	1.8	40
27	Activity of continuous flow synthesized Pd-based nanocatalysts in the flow hydroconversion of furfural. Tetrahedron, 2017, 73, 5599-5604.	1.0	34
28	Porous Zirconium–Furandicarboxylate Microspheres for Efficient Redox Conversion of Biofuranics. ChemSusChem, 2017, 10, 1761-1770.	3.6	81
29	Selective Production of 2â€Methylfuran by Gasâ€Phase Hydrogenation of Furfural on Copper Incorporated by Complexation in Mesoporous Silica Catalysts. ChemSusChem, 2017, 10, 1448-1459.	3.6	49
30	A Comprehensive Depiction of the Furanâ€Maleimide Coupling via Kinetic and Thermodynamic Investigations of the Dielsâ€Alder Reaction of Poly(styrene– <i>co</i> â€2â€vinylfuran) with Maleimides. ChemistrySelect, 2017, 2, 1605-1612.	0.7	16
31	Advanced Biofuels and Beyond: Chemistry Solutions for Propulsion and Production. Angewandte Chemie - International Edition, 2017, 56, 5412-5452.	7.2	224
32	A catalytic aldol condensation system enables one pot conversion of biomass saccharides to biofuel intermediates. Green Chemistry, 2017, 19, 1751-1756.	4.6	37
33	Direct decarbonylation of furfural to furan: A density functional theory study on Pt-graphene. Applied Surface Science, 2017, 405, 395-404.	3.1	27
34	Synthese, motorische Verbrennung, Emissionen: Chemische Aspekte des Kraftstoffdesigns. Angewandte Chemie, 2017, 129, 5500-5544.	1.6	43
35	Atmospheric Oxidation Mechanism of Furfural Initiated by Hydroxyl Radicals. Journal of Physical Chemistry A, 2017, 121, 3247-3253.	1.1	27
36	Fabrication of â^`SO3H functionalized aromatic carbon microspheres directly from waste Camellia oleifera shells and their application on heterogeneous acid catalysis. Molecular Catalysis, 2017, 433, 193-201.	1.0	46
37	Selective Furfural Hydrogenation to Furfuryl Alcohol Using Cu-Based Catalysts Supported on Clay Minerals. Topics in Catalysis, 2017, 60, 1040-1053.	1.3	42
38	Hydrogenolysis of Furfural into 1,5-Pentanediol by Employing Ni-M (M = Y or La) Composite Catalysts. Chemistry Letters, 2017, 46, 744-746.	0.7	21

#	Article	IF	CITATIONS
" 39	Structure, activity, and selectivity of bimetallic Pd-Fe/SiO2 and Pd-Fe/γ-Al2O3 catalysts for the	3.1	105
0,7	conversion of furfural. Journal of Catalysis, 2017, 350, 30-40.	0.1	100
40	Conversion of Furfural to 1,5-Pentanediol: Process Synthesis and Analysis. ACS Sustainable Chemistry and Engineering, 2017, 5, 4699-4706.	3.2	104
41	Carbon-embedded Ni nanocatalysts derived from MOFs by a sacrificial template method for efficient hydrogenation of furfural to tetrahydrofurfuryl alcohol. Dalton Transactions, 2017, 46, 6358-6365.	1.6	88
42	Bifunctional Lewis and BrÃ,nsted acidic zeolites permit the continuous production of bio-renewable furanic ethers. Green Chemistry, 2017, 19, 2846-2854.	4.6	42
43	Porous Ti/Zr Microspheres for Efficient Transfer Hydrogenation of Biobased Ethyl Levulinate to γ-Valerolactone. ACS Omega, 2017, 2, 1047-1054.	1.6	34
44	Support Induced Control of Surface Composition in Cu–Ni/TiO ₂ Catalysts Enables High Yield Co-Conversion of HMF and Furfural to Methylated Furans. ACS Catalysis, 2017, 7, 4070-4082.	5.5	152
45	Murai Reaction on Furfural Derivatives Enabled by Removable <i>N</i> , <i>N</i> ′â€Bidentate Directing Groups. Chemistry - A European Journal, 2017, 23, 8385-8389.	1.7	30
46	Synthesis of high-density biofuel with excellent low-temperature properties from lignocellulose-derived feedstock. Fuel Processing Technology, 2017, 163, 45-50.	3.7	45
47	An economically viable ionic liquid for the fractionation of lignocellulosic biomass. Green Chemistry, 2017, 19, 3078-3102.	4.6	296
48	Highly stable and selective Ru/NiFe 2 O 4 catalysts for transfer hydrogenation of biomass-derived furfural to 2-methylfuran. Journal of Energy Chemistry, 2017, 26, 799-807.	7.1	50
49	Metal-organic frameworks derived bimetallic Cu-Co catalyst for efficient and selective hydrogenation of biomass-derived furfural to furfuryl alcohol. Molecular Catalysis, 2017, 436, 128-137.	1.0	92
50	Selective, aerobic oxidation reaction of alcohols by hybrid Pd/ZrO 2 /PVA catalytic membranes. Applied Catalysis A: General, 2017, 530, 217-225.	2.2	10
51	Effect of promoter on selective hydrogenation of furfural over Cu-Cr/TiO2 catalyst. Russian Journal of Applied Chemistry, 2017, 90, 304-309.	0.1	9
52	Application of sulfonated carbon-based catalyst for the furfural production from d -xylose and xylan in a microwave-assisted biphasic reaction. Molecular Catalysis, 2017, 438, 167-172.	1.0	67
53	Borate-Stabilized Transformation of C6 Aldose to C4 Aldose. ACS Catalysis, 2017, 7, 4473-4478.	5.5	14
54	Catalytic application of layered double hydroxide-derived catalysts for the conversion of biomass-derived molecules. Catalysis Science and Technology, 2017, 7, 1622-1645.	2.1	163
55	Electrocatalysis of Furfural Oxidation Coupled with H ₂ Evolution via Nickelâ€Based Electrocatalysts in Water. ChemNanoMat, 2017, 3, 491-495.	1.5	78
56	Nickel Phosphide/Silica Catalysts for the Casâ€Phase Hydrogenation of Furfural to High–Added–Value Chemicals. ChemCatChem, 2017, 9, 2881-2889.	1.8	36

#	Article	IF	Citations
57	Direct Synthesis of Ultrasmall Ruthenium Nanoparticles on Porous Supports Using Natural Sources for Highly Efficient and Selective Furfural Hydrogenation. ChemCatChem, 2017, 9, 2448-2452.	1.8	25
58	New catalytic strategies for α,ï‰-diols production from lignocellulosic biomass. Faraday Discussions, 2017, 202, 247-267.	1.6	61
59	Gas phase oxidation of furfural to maleic anhydride on V 2 O 5 /γ-Al 2 O 3 catalysts: Reaction conditions to slow down the deactivation. Journal of Catalysis, 2017, 348, 265-275.	3.1	48
60	Meso-Zr-Al-beta zeolite as a robust catalyst for cascade reactions in biomass valorization. Applied Catalysis B: Environmental, 2017, 205, 393-403.	10.8	152
61	One-Pot Conversion of Carbohydrates in Biomass to Isobutyroin-Rich Branched Oxygenates: Carbohydrate Depolymerization and Methyl Introduction in Supercritical Methanol. Energy & Fuels, 2017, 31, 688-692.	2.5	0
62	Novel Organic-Dehydration Membranes Prepared from Zirconium Metal-Organic Frameworks. Advanced Functional Materials, 2017, 27, 1604311.	7.8	98
63	Highly selective liquid-phase hydrogenation of furfural over N-doped carbon supported metallic nickel catalyst under mild conditions. Molecular Catalysis, 2017, 429, 51-59.	1.0	81
64	Catalytic Transfer Hydrogenation of Furfural into Furfuryl Alcohol over Magnetic γ-Fe ₂ O ₃ @HAP Catalyst. ACS Sustainable Chemistry and Engineering, 2017, 5, 942-947.	3.2	162
65	Chemoselective Synthesis of Dithioacetals from Bioâ€aldehydes with Zeolites under Ambient and Solventâ€free Conditions. ChemCatChem, 2017, 9, 1097-1104.	1.8	16
66	Enhanced Catalytic Transfer Hydrogenation of Ethyl Levulinate to γ-Valerolactone over a Robust Cu–Ni Bimetallic Catalyst. ACS Sustainable Chemistry and Engineering, 2017, 5, 1322-1331.	3.2	115
67	Catalytic transfer hydrogenation of ethyl levulinate to γ-valerolactone over a novel porous Zirconium trimetaphosphate. Molecular Catalysis, 2017, 442, 107-114.	1.0	35
68	A simple synthesis of benzofurans by acid-catalyzed domino reaction of salicyl alcohols with N-tosylfurfurylamine. Tetrahedron, 2017, 73, 6523-6529.	1.0	11
69	Integrated production of furfural and levulinic acid from corncob in a one-pot batch reaction incorporating distillation using step temperature profiling. RSC Advances, 2017, 7, 46208-46214.	1.7	20
70	Mechanistic Insights Evaluating Ag, Pb, and Ni as Electrocatalysts for Furfural Reduction from First-Principles Methods. Journal of Physical Chemistry C, 2017, 121, 25768-25777.	1.5	35
71	Efficient Synthesis of 2-Methylfuran from Bio-Derived Furfural over Supported Copper Catalyst: The Synergistic Effect of CuO _x and Cu. ChemistrySelect, 2017, 2, 9984-9991.	0.7	14
72	Biodegradability of polyesters comprising a bio-based monomer derived from furfural. Polymer Degradation and Stability, 2017, 146, 121-125.	2.7	24
73	Catalytic Synthesis of 2,5-Furandicarboxylic Acid from Furoic Acid: Transformation from C5 Platform to C6 Derivatives in Biomass Utilizations. ACS Sustainable Chemistry and Engineering, 2017, 5, 9360-9369.	3.2	39
74	Accessing the HMF Derivatives from Furfural Acetate through Oxidative Carbonylation. ChemistrySelect, 2017, 2, 7096-7099.	0.7	9

#	Article	IF	CITATIONS
75	Rh(II)-Catalyzed Cyclopropanation of Furans and Its Application to the Total Synthesis of Natural Product Derivatives. Organic Letters, 2017, 19, 4722-4725.	2.4	48
76	Insight into Aluminum Sulfateâ€Catalyzed Xylan Conversion into Furfural in a γâ€Valerolactone/Water Biphasic Solvent under Microwave Conditions. ChemSusChem, 2017, 10, 4066-4079.	3.6	72
77	Clean synthesis of furfural oxime through liquid-phase ammoximation of furfural over titanosilicate catalysts. Green Chemistry, 2017, 19, 4871-4878.	4.6	29
78	Pt and Pd Nanoparticles Immobilized on Amine-Functionalized Hypercrosslinked Porous Polymer Nanotubes as Selective Hydrogenation Catalyst for α,β-Unsaturated Aldehydes. ChemistrySelect, 2017, 2, 7535-7543.	0.7	23
79	Mechanism and kinetics of the electrocatalytic hydrogenation of furfural to furfuryl alcohol. Journal of Electroanalytical Chemistry, 2017, 804, 248-253.	1.9	51
80	Bio-based amines through sustainable heterogeneous catalysis. Green Chemistry, 2017, 19, 5303-5331.	4.6	210
81	[Ru(triphos)(CH ₃ CN) ₃](OTf) ₂ as a homogeneous catalyst for the hydrogenation of biomass derived 2,5-hexanedione and 2,5-dimethyl-furan in aqueous acidic medium. Green Chemistry, 2017, 19, 4666-4679.	4.6	13
82	Selective aqueous-phase hydrogenation of furfural to cyclopentanol over PdRu/C catalyst. Russian Chemical Bulletin, 2017, 66, 673-676.	0.4	14
83	Oxidative esterification of furfural by Au nanoparticles supported CMK-3 mesoporous catalysts. Applied Catalysis A: General, 2017, 545, 33-43.	2.2	47
84	Kinetic models for hydroconversion of furfural over the ecofriendly Cu-MgO catalyst: An experimental and theoretical study. Applied Catalysis A: General, 2017, 545, 134-147.	2.2	55
85	Furfural Hydrotreatment Applying Isopropanol as a Solvent: The Case of Acetone Formation. Topics in Catalysis, 2017, 60, 1473-1481.	1.3	7
86	In-depth characterization of valuable char obtained from hydrothermal conversion of hazelnut shells to levulinic acid. Bioresource Technology, 2017, 244, 880-888.	4.8	48
87	Dehydrogenaseâ€Catalyzed Oxidation of Furanics: Exploitation of Hemoglobin Catalytic Promiscuity. ChemSusChem, 2017, 10, 3524-3528.	3.6	30
88	Enhanced furfural production from raw corn stover employing a novel heterogeneous acid catalyst. Bioresource Technology, 2017, 245, 258-265.	4.8	88
89	Whole-cell biocatalytic selective oxidation of 5-hydroxymethylfurfural to 5-hydroxymethyl-2-furancarboxylic acid. Green Chemistry, 2017, 19, 4544-4551.	4.6	78
90	Theoretical study on the reaction mechanism of hydrogenation of furfural to furfuryl alcohol on Lewis acidic BEA zeolites: effects of defect structure and tetravalent metals substitution. Physical Chemistry Chemical Physics, 2017, 19, 24042-24048.	1.3	24
91	Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol by using Ultrasmall Rh Nanoparticles Embedded on Diamineâ€Functionalized KITâ€6. ChemCatChem, 2017, 9, 4570-4579.	1.8	47
92	Mechanochemically synthesized LiAlOx catalyst for aqueous aldol condensation of furfural with acetone. Catalysis for Sustainable Energy, 2017, 4, .	0.7	2

#	Article	IF	CITATIONS
93	Green preparation of PtRu and PtCu/SBA-15 catalysts using supercritical CO 2. Journal of CO2 Utilization, 2017, 22, 382-391.	3.3	12
94	Metal–organic-framework-based catalysts for hydrogenation reactions. Chinese Journal of Catalysis, 2017, 38, 1108-1126.	6.9	52
95	Selective transformation of renewable furfural catalyzed by diverse active species derived from 2D co-based metal-organic frameworks. Journal of Catalysis, 2017, 352, 480-490.	3.1	26
96	Mechanism of Microwaveâ€Assisted Pyrolysis of Glucose to Furfural Revealed by Isotopic Tracer and Quantum Chemical Calculations. ChemSusChem, 2017, 10, 3040-3043.	3.6	13
97	Tandem dehydration–transfer hydrogenation reactions of xylose to furfuryl alcohol over zeolite catalysts. Green Chemistry, 2017, 19, 3759-3763.	4.6	33
98	Efficient and versatile CuNi alloy nanocatalysts for the highly selective hydrogenation of furfural. Applied Catalysis B: Environmental, 2017, 203, 227-236.	10.8	211
99	Synergism studies on alumina-supported copper-nickel catalysts towards furfural and 5-hydroxymethylfurfural hydrogenation. Journal of Molecular Catalysis A, 2017, 426, 244-256.	4.8	121
100	NHC-based coordination polymers as solid molecular catalysts for reductive amination of biomass levulinic acid. Green Chemistry, 2017, 19, 789-794.	4.6	71
101	Rational Design of Highâ€Mobility Semicrystalline Conjugated Polymers with Tunable Charge Polarity: Beyond Benzobisthiadiazoleâ€Based Polymers. Advanced Functional Materials, 2017, 27, 1604608.	7.8	74
102	Efficient catalytic system for the direct transformation of lignocellulosic biomass to furfural and 5-hydroxymethylfurfural. Bioresource Technology, 2017, 224, 656-661.	4.8	116
103	Oxidation of furfural in aqueous H2O2 catalysed by titanium silicalite: Deactivation processes and role of extraframework Ti oxides. Applied Catalysis B: Environmental, 2017, 202, 269-280.	10.8	85
104	Platform Chemicals via Zeolite atalyzed Fast Pyrolysis of Glucose. ChemCatChem, 2017, 9, 1579-1582.	1.8	12
105	Furfurylamines from biomass: transaminase catalysed upgrading of furfurals. Green Chemistry, 2017, 19, 397-404.	4.6	94
106	Upgrading of Biomass-Derived Furans into Value-Added Chemicals. Biofuels and Biorefineries, 2017, , 273-303.	0.5	1
107	A review of furfural derivatives as promising octane boosters. Russian Journal of Applied Chemistry, 2017, 90, 1402-1411.	0.1	20
108	Recycling of Sulfuric Acid in the Valorization of Biomass Residues. Periodica Polytechnica: Chemical Engineering, 2017, 61, 283.	0.5	1
109	Conversion of Furans by Baeyer-Villiger Monooxygenases. Catalysts, 2017, 7, 179.	1.6	18
110	Investigating the Combustion and Emissions Characteristics of Biomass-Derived Platform Fuels as Gasoline Extenders in a Single Cylinder Spark-Ignition Engine. , 0, , .		3

#	Article	IF	CITATIONS
111	Concept for Recycling Waste Biomass from the Sugar Industry for Chemical and Biotechnological Purposes. Molecules, 2017, 22, 1544.	1.7	24
112	Upgrading Lignocellulosic Biomasses: Hydrogenolysis of Platform Derived Molecules Promoted by Heterogeneous Pd-Fe Catalysts. Catalysts, 2017, 7, 78.	1.6	42
113	Room-Temperature Total Hydrogenation of Biomass-Derived Furans and Furan/Acetone Aldol Adducts over a Ni–Pd Alloy Catalyst. ACS Sustainable Chemistry and Engineering, 2018, 6, 4793-4800.	3.2	19
114	Catalytic cascade conversion of furfural to 1,4-pentanediol in a single reactor. Green Chemistry, 2018, 20, 1770-1776.	4.6	71
115	Highly selective hydrogenation of furfural to tetrahydrofurfuryl alcohol over MIL-101(Cr)-NH 2 supported Pd catalyst at low temperature. Chinese Journal of Catalysis, 2018, 39, 319-326.	6.9	48
116	Dehydration of glucose to 5-hydroxymethylfurfural by a core-shell Fe3O4@SiO2-SO3H magnetic nanoparticle catalyst. Fuel, 2018, 221, 407-416.	3.4	82
117	Catalytic Advances in the Production and Application of Biomass-Derived 2,5-Dihydroxymethylfuran. ACS Catalysis, 2018, 8, 2959-2980.	5.5	210
118	Heuristics To Guide the Development of Sustainable, Biomass-Derived, Platform Chemical Derivatives. ACS Sustainable Chemistry and Engineering, 2018, 6, 5533-5539.	3.2	12
119	2â€Methyltetrahydrofuran: A Green Solvent for Iron atalyzed Crossâ€Coupling Reactions. ChemSusChem, 2018, 11, 1290-1294.	3.6	44
120	Opening Furan for Tailoring Properties of Bioâ€based Poly(Furfuryl Alcohol) Thermoset. ChemSusChem, 2018, 11, 1805-1812.	3.6	41
121	Conservative evolution and industrial metabolism in Green Chemistry. Green Chemistry, 2018, 20, 2171-2191.	4.6	45
122	One-pot synthesis of amines from biomass resources catalyzed by HReO ₄ . Green Chemistry, 2018, 20, 2494-2498.	4.6	28
123	Total Hydrogenation of Furfural over Pd/Al ₂ O ₃ and Ru/ZrO ₂ Mixture under Mild Conditions: Essential Role of Tetrahydrofurfural as an Intermediate and Support Effect. ACS Sustainable Chemistry and Engineering, 2018, 6, 6957-6964.	3.2	63
124	Oxygenated commodity chemicals from chemoâ€catalytic conversion of biomass derived heterocycles. AICHE Journal, 2018, 64, 1910-1922.	1.8	73
125	Copper-cobalt catalyzed liquid phase hydrogenation of furfural to 2-methylfuran: An optimization, kinetics and reaction mechanism study. Chemical Engineering Research and Design, 2018, 132, 313-324.	2.7	47
126	Metal Catalysts for the Efficient Transformation of Biomassâ€derived HMF and Furfural to Value Added Chemicals. ChemCatChem, 2018, 10, 2326-2349.	1.8	167
127	Selective Conversion of Concentrated Feeds of Furfuryl Alcohol to Alkyl Levulinates Catalyzed by Metal Triflates. ACS Sustainable Chemistry and Engineering, 2018, 6, 4405-4411.	3.2	21
128	Sustainable Productions of Organic Acids and Their Derivatives from Biomass via Selective Oxidative Cleavage of C–C Bond. ACS Catalysis, 2018, 8, 2129-2165.	5.5	188

#	Article	IF	CITATIONS
129	A Scalable Upgrading of Concentrated Furfural in Ethanol: Combining Meerwein–Ponndorf–Verley Reduction with <i>in Situ</i> Cross Aldol Condensation. ACS Sustainable Chemistry and Engineering, 2018, 6, 4316-4320.	3.2	19
130	Metal-Free and Selective Oxidation of Furfural to Furoic Acid with an N-Heterocyclic Carbene Catalyst. ACS Sustainable Chemistry and Engineering, 2018, 6, 3434-3442.	3.2	67
131	Dehydration of 1,5â€Pentanediol over Naâ€Doped CeO ₂ Catalysts. ChemCatChem, 2018, 10, 1148-1154.	1.8	9
132	Improvement of tensile properties, self-healing and recycle of thermoset styrene/2-vinylfuran copolymers via thermal triggered rearrangement of covalent crosslink. European Polymer Journal, 2018, 99, 368-377.	2.6	13
133	Hydrogen Doping into MoO ₃ Supports toward Modulated Metal–Support Interactions and Efficient Furfural Hydrogenation on Iridium Nanocatalysts. Chemistry - an Asian Journal, 2018, 13, 641-647.	1.7	25
134	Cobalt Nanocluster Supported on ZrRE _{<i>n</i>} O _{<i>x</i>} for the Selective Hydrogenation of Biomass Derived Aromatic Aldehydes and Ketones in Water. ACS Catalysis, 2018, 8, 1268-1277.	5.5	66
135	Encapsulation of ultrafine metal-oxide nanoparticles within mesopores for biomass-derived catalytic applications. Chemical Science, 2018, 9, 1854-1859.	3.7	62
136	Economics of biofuels: Market potential of furfural and its derivatives. Biomass and Bioenergy, 2018, 115, 56-63.	2.9	70
137	A novel hybrid first and second generation hemicellulosic bioethanol production process through steam treatment of dried sorghum biomass. Bioresource Technology, 2018, 263, 103-111.	4.8	28
138	Synthesis of Renewable <i>meta</i> â€Xylylenediamine from Biomassâ€Derived Furfural. Angewandte Chemie - International Edition, 2018, 57, 10510-10514.	7.2	76
139	Some aspects of green solvents. Comptes Rendus Chimie, 2018, 21, 572-580.	0.2	138
140	Understanding the Role of Atomic Ordering in the Crystal Structures of Ni _{<i>x</i>} Sn _{<i>y</i>} toward Efficient Vapor Phase Furfural Hydrogenation. ACS Sustainable Chemistry and Engineering, 2018, 6, 7325-7338.	3.2	46
141	Sulfonate group modified Ni catalyst for highly efficient liquid-phase selective hydrogenation of bio-derived furfural. Chinese Chemical Letters, 2018, 29, 1617-1620.	4.8	22
142	Gas-Phase Fructose Conversion to Furfural in a Microfluidized Bed Reactor. ACS Sustainable Chemistry and Engineering, 2018, 6, 5580-5587.	3.2	13
143	Manufacture of Furfural from Xylan-containing Biomass by Acidic Processing of Hemicellulose-Derived Saccharides in Biphasic Media Using Microwave Heating. Journal of Wood Chemistry and Technology, 2018, 38, 198-213.	0.9	19
144	Facile synthesis of furfuryl ethyl ether in high yield <i>via</i> the reductive etherification of furfural in ethanol over Pd/C under mild conditions. Green Chemistry, 2018, 20, 2110-2117.	4.6	47
145	A novel route for the flexible preparation of hydrocarbon jet fuels from biomass-based platform chemicals: a case of using furfural and 2,3-butanediol as feedstocks. Green Chemistry, 2018, 20, 2018-2026.	4.6	44
146	Selective production of furfuryl alcohol from furfural by catalytic transfer hydrogenation over commercial aluminas. Applied Catalysis A: General, 2018, 556, 1-9.	2.2	87

#	Article	IF	Citations
147	Conversion of Biomass and Its Derivatives to Levulinic Acid and Levulinate Esters via Ionic Liquids. Industrial & Engineering Chemistry Research, 2018, 57, 4749-4766.	1.8	69
148	Single pot selective hydrogenation of furfural to 2-methylfuran over carbon supported iridium catalysts. Green Chemistry, 2018, 20, 2027-2037.	4.6	99
149	Influence of catalyst additives on vapor-phase hydrogenation of furfural to furfuryl alcohol on impregnated copper/magnesia. Biomass Conversion and Biorefinery, 2018, 8, 79-86.	2.9	20
150	Chemoselective hydrogenation of furfural to furfuryl alcohol on ZrO2 systems synthesized through the microemulsion method. Catalysis Today, 2018, 306, 89-95.	2.2	38
151	Camellia oleifera shell as an alternative feedstock for furfural production using a high surface acidity solid acid catalyst. Bioresource Technology, 2018, 249, 536-541.	4.8	62
152	Catalytic Tandem Reaction for the Production of Jet and Diesel Fuel Range Alkanes. Energy Technology, 2018, 6, 1060-1066.	1.8	11
153	Catalytic conversion of furfural to methyl levulinate in a single-step route over Zr/SBA-15 in near-critical methanol. Chemical Engineering Journal, 2018, 333, 434-442.	6.6	27
154	Selective hydrogenolysis of tetrahydrofurfuryl alcohol on Pt/WO 3 /ZrO 2 catalysts: Effect of WO 3 loading amount on activity. Catalysis Today, 2018, 303, 207-212.	2.2	40
155	Synthesis of medium-chain carboxylic acids or α,ω-dicarboxylic acids from cellulose-derived platform chemicals. Green Chemistry, 2018, 20, 362-368.	4.6	31
156	Selective Hydrogenolysis of Furfural Derivative 2â€Methyltetrahydrofuran into Pentanediol Acetate and Pentanol Acetate over Pd/C and Sc(OTf) ₃ Cocatalytic System. ChemSusChem, 2018, 11, 726-734.	3.6	19
157	Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol with Recyclable Al–Zr@Fe Mixed Oxides. ChemCatChem, 2018, 10, 430-438.	1.8	85
158	Functionally graded membranes from nanoporous covalent organic frameworks for highly selective water permeation. Journal of Materials Chemistry A, 2018, 6, 583-591.	5.2	103
159	Selective Hydrogenation of Furfural to Furfuryl Alcohol over Acid-Activated Attapulgite-Supported NiCoB Amorphous Alloy Catalyst. Industrial & Engineering Chemistry Research, 2018, 57, 498-511.	1.8	52
160	Ni- and CuNi-modified activated carbons and ordered mesoporous CMK-3 for furfural hydrotreatment. Journal of Porous Materials, 2018, 25, 1147-1160.	1.3	5
161	Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability. Chemical Reviews, 2018, 118, 505-613.	23.0	898
162	Novel preparation method of bimetallic Ni-In alloy catalysts supported on amorphous alumina for the highly selective hydrogenation of furfural. Molecular Catalysis, 2018, 445, 52-60.	1.0	29
163	The selective hydrogenation of furfural over supported palladium nanoparticle catalysts prepared by sol-immobilisation: effect of catalyst support and reaction conditions. Catalysis Science and Technology, 2018, 8, 252-267.	2.1	39
164	Carbon-Increasing Catalytic Strategies for Upgrading Biomass into Energy-Intensive Fuels and Chemicals. ACS Catalysis, 2018, 8, 148-187.	5.5	267

#	Article	IF	CITATIONS
165	Determination of volatile organic compounds in eucalyptus fast pyrolysis bio-oil by full evaporation headspace gas chromatography. Talanta, 2018, 176, 47-51.	2.9	14
166	The catalytic behaviour in aqueous-phase hydrogenation over a renewable Ni catalyst derived from a perovskite-type oxide. Dalton Transactions, 2018, 47, 17276-17284.	1.6	9
167	FGF10 Is Required for Circumvallate Papilla Morphogenesis by Maintaining Lgr5 Activity. Frontiers in Physiology, 2018, 9, 1192.	1.3	6
168	Selective Electrochemical Conversion of Biomass-derived Valeric Acid to Ethers/Esters. International Journal of Electrochemical Science, 2018, 13, 3210-3223.	0.5	5
169	Effect of Ni–Mo Carbide Catalyst Formation on Furfural Hydrogenation. Catalysts, 2018, 8, 560.	1.6	16
170	DFT Calculations of Hydrogenation of 2(5H)-Furanone over Ni-, Rh-, Pd-, and Pt-Metal Surfaces Considering the Effects of Subsurface H Atoms. Journal of Physical Chemistry C, 2018, 122, 28182-28191.	1.5	5
171	Study of bimetallic Ni-Mo carbides in catalytic hydrogenation of furfural to value-added chemicals. AIP Conference Proceedings, 2018, , .	0.3	0
172	From sequential chemoenzymatic synthesis to integrated hybrid catalysis: taking the best of both worlds to open up the scope of possibilities for a sustainable future. Catalysis Science and Technology, 2018, 8, 5708-5734.	2.1	46
173	A comprehensive investigation of the condensation of furanic platform molecules to C ₁₄ –C ₁₅ fuel precursors over sulfonic acid functionalized silica supports. Green Chemistry, 2018, 20, 5133-5146.	4.6	38
174	Kinetics of Hydrothermal Furfural Production from Organosolv Hemicellulose and <scp>d</scp> -Xylose. Industrial & Engineering Chemistry Research, 2018, 57, 14417-14427.	1.8	36
175	In Situ Synthesis of Highly Dispersed Cu–Co Bimetallic Nanoparticles for Tandem Hydrogenation/Rearrangement of Bioderived Furfural in Aqueous-Phase. ACS Sustainable Chemistry and Engineering, 2018, 6, 14919-14925.	3.2	46
176	How Catalysts and Experimental Conditions Determine the Selective Hydroconversion of Furfural and 5-Hydroxymethylfurfural. Chemical Reviews, 2018, 118, 11023-11117.	23.0	585
177	Effect of the Solvent in Enhancing the Selectivity to Furan Derivatives in the Catalytic Hydrogenation of Furfural. ACS Sustainable Chemistry and Engineering, 2018, 6, 16235-16247.	3.2	50
178	Synthesis and Regeneration of Nickel-Based Catalysts for Hydrodeoxygenation of Beech Wood Fast Pyrolysis Bio-Oil. Catalysts, 2018, 8, 449.	1.6	22
179	Catalytic Hydrogen Transfer and Decarbonylation of Aromatic Aldehydes on Ru and Ru Phosphide Model Catalysts. Journal of Physical Chemistry C, 2018, 122, 23600-23609.	1.5	7
180	Solvent Tunes the Selectivity of Hydrogenation Reaction over α-MoC Catalyst. Journal of the American Chemical Society, 2018, 140, 14481-14489.	6.6	167
181	Highly dispersed Co and Ni nanoparticles encapsulated in N-doped carbon nanotubes as efficient catalysts for the reduction of unsaturated oxygen compounds in aqueous phase. Catalysis Science and Technology, 2018, 8, 5506-5514.	2.1	47
182	Unveiling the role of choline chloride in furfural synthesis from highly concentrated feeds of xylose. Green Chemistry, 2018, 20, 5104-5110.	4.6	24

#	ARTICLE	IF	CITATIONS
183	Efficient conversion of furfural into cyclopentanone over high performing and stable Cu/ZrO2 catalysts. Applied Catalysis A: General, 2018, 561, 117-126.	2.2	54
184	Efficient transformation of corn stover to furfural using p-hydroxybenzenesulfonic acid-formaldehyde resin solid acid. Bioresource Technology, 2018, 264, 261-267.	4.8	70
185	Enhanced Furfural Yields from Xylose Dehydration in the γâ€Valerolactone/Water Solvent System at Elevated Temperatures. ChemSusChem, 2018, 11, 2321-2331.	3.6	69
186	Continuous pervaporation-assisted furfural production catalyzed by CrCl ₃ . Green Chemistry, 2018, 20, 2903-2912.	4.6	22
187	Techno-economic analysis of the thermal liquefaction of sugarcane bagasse in ethanol to produce liquid fuels. Applied Energy, 2018, 224, 184-193.	5.1	34
188	Green and efficient production of furfural from corn cob over H-ZSM-5 using Î ³ -valerolactone as solvent. Industrial Crops and Products, 2018, 120, 343-350.	2.5	48
189	Cyclopentanones and 2-cyclopenten-1-ones as major products of hydrous pyrolysis of immature organic-rich shales. Organic Geochemistry, 2018, 122, 126-139.	0.9	5
190	Transfer-hydrogenation of furfural and levulinic acid over supported copper catalyst. Fuel, 2018, 231, 165-171.	3.4	77
191	Anion Exchange Membrane Electrolyzers as Alternative for Upgrading of Biomass-Derived Molecules. ACS Sustainable Chemistry and Engineering, 2018, 6, 8458-8467.	3.2	34
192	Hydrothermal conversions of waste biomass: Assessment of kinetic models using liquid-phase electrical conductivity measurements. Waste Management, 2018, 77, 586-592.	3.7	12
193	Zirconium tripolyphosphate as an efficient catalyst for the hydrogenation of ethyl levulinate to γ-valerolactone with isopropanol as hydrogen donor. Reaction Kinetics, Mechanisms and Catalysis, 2018, 125, 71-84.	0.8	4
194	Sulfonated mesoporous carbon and silica-carbon nanocomposites for biomass conversion. Applied Catalysis B: Environmental, 2018, 236, 518-545.	10.8	100
195	Electrochemical Valorization of Furfural to Maleic Acid. ACS Sustainable Chemistry and Engineering, 2018, 6, 9596-9600.	3.2	69
196	Replication of SMSI via ALD: TiO2 Overcoats Increase Pt-Catalyzed Acrolein Hydrogenation Selectivity. Catalysis Letters, 2018, 148, 2223-2232.	1.4	17
197	Preliminary study of the surface reactivity of 2D αâ€Mo ₂ C crystallites. Canadian Journal of Chemical Engineering, 2018, 96, 2138-2143.	0.9	1
198	Sulfonic polymer catalysts for converting of furfural to high-value chemicals. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2018, 40, 2342-2353.	1.2	5
199	Heterogeneous Bimetallic Catalysts for Upgrading Biomassâ€Derived Furans. Asian Journal of Organic Chemistry, 2018, 7, 1901-1923.	1.3	33
200	Switching Selectivity in the Hydrogen Transfer Reduction of Furfural. ChemistrySelect, 2018, 3, 8344-8348.	0.7	11

#	Article	IF	CITATIONS
201	Catalytic Transfer Hydrogenolysis as an Effective Tool for the Reductive Upgrading of Cellulose, Hemicellulose, Lignin, and Their Derived Molecules. Catalysts, 2018, 8, 313.	1.6	58
202	Selective Conversion of Furfural to Cyclopentanone or Cyclopentanol Using Co-Ni Catalyst in Water. Catalysts, 2018, 8, 193.	1.6	25
203	A Bibliometric Study of Scientific Publications regarding Hemicellulose Valorization during the 2000–2016 Period: Identification of Alternatives and Hot Topics. ChemEngineering, 2018, 2, 7.	1.0	26
204	Hydrogenation of Furfural with Nickel Nanoparticles Stabilized on Nitrogen-Rich Carbon Core–Shell and Its Transformations for the Synthesis of γ-Valerolactone in Aqueous Conditions. ACS Applied Materials & Interfaces, 2018, 10, 24480-24490.	4.0	55
205	An overview of biorefinery-derived platform chemicals from a cellulose and hemicellulose biorefinery. Clean Technologies and Environmental Policy, 2018, 20, 1615-1630.	2.1	336
206	FA Polymerization Disruption by Protic Polar Solvents. Polymers, 2018, 10, 529.	2.0	25
207	Acylation of methylfuran with Brønsted and Lewis acid zeolites. Applied Catalysis A: General, 2018, 564, 90-101.	2.2	35
208	Metal Phosphide:A Highly Efficient Catalyst for the Selective Hydrodeoxygenation of Furfural to 2â€Methylfuran. ChemistrySelect, 2018, 3, 7926-7933.	0.7	16
209	Improving the production of maleic acid from biomass: TS-1 catalysed aqueous phase oxidation of furfural in the presence of Î ³ -valerolactone. Green Chemistry, 2018, 20, 2845-2856.	4.6	58
210	Synthesis of Renewable meta â€Xylylenediamine from Biomassâ€Derived Furfural. Angewandte Chemie, 2018, 130, 10670-10674.	1.6	27
211	Catalytic Transfer Hydrogenation of Furfural for the Production of Ethyl Levulinate: Interplay of Lewis and BrÃ,nsted Acidities. Energy Technology, 2018, 6, 1826-1831.	1.8	24
212	Selective hydrogenolysis of furfuryl alcohol to 1,5- and 1,2-pentanediol over Cu-LaCoO3 catalysts with balanced CuO-CoO sites. Chinese Journal of Catalysis, 2018, 39, 1711-1723.	6.9	42
213	Single-Pot Reductive Rearrangement of Furfural to Cyclopentanone over Silica-Supported Pd Catalysts. ACS Omega, 2018, 3, 9860-9871.	1.6	35
214	Lowâ€Temperature Continuousâ€Flow Dehydration of Xylose Over Waterâ€Tolerant Niobia–Titania Heterogeneous Catalysts. ChemSusChem, 2018, 11, 3649-3660.	3.6	20
215	Making Benzoxazines Greener: Design, Synthesis, and Polymerization of a Biobased Benzoxazine Fulfilling Two Principles of Green Chemistry. ACS Sustainable Chemistry and Engineering, 2018, 6, 13096-13106.	3.2	107
216	Cure behaviors of furfuryl alcohol/epoxy/methyltetrahydrophthalic anhydride and their enhanced mechanical and anti-acid properties of basalt fiber reinforced composites. Composites Part B: Engineering, 2018, 154, 263-271.	5.9	5
217	Cascade Strategy for the Tunable Catalytic Valorization of Levulinic Acid and γ-Valerolactone to 2-Methyltetrahydrofuran and Alcohols. Catalysts, 2018, 8, 277.	1.6	48
218	Catalytic upgrading of biomass-derived vapors on carbon aerogel-supported Ni: Effect of temperature, metal cluster size and catalyst-to-biomass ratio. Fuel Processing Technology, 2018, 178, 251-261.	3.7	19

#	Article	IF	CITATIONS
219	Production of 2-methylfuran from biomass through an integrated biorefinery approach. Fuel Processing Technology, 2018, 178, 336-343.	3.7	32
220	Versatile catalysis of iron: tunable and selective transformation of biomass-derived furfural in aliphatic alcohol. Green Chemistry, 2018, 20, 3092-3100.	4.6	29
221	One-pot hydrogen production and cascade reaction of furfural to bioproducts over bimetallic Pd-Ni TUD-1 type mesoporous catalysts. Applied Catalysis B: Environmental, 2018, 237, 521-537.	10.8	17
222	Palladium–Ruthenium Catalyst for Selective Hydrogenation of Furfural to Cyclopentanol. Kinetics and Catalysis, 2018, 59, 339-346.	0.3	31
223	Rutheniumâ€Catalyzed Câ€H Arylation and Alkenylation of Furfural Imines with Boronates. European Journal of Organic Chemistry, 2018, 2018, 6101-6106.	1.2	21
224	Molecular dynamics simulation and experimental investigation of furfural separation from aqueous solutions via PEBA-2533 membranes. Separation and Purification Technology, 2018, 207, 42-50.	3.9	27
225	Promotion effect of Ce or Zn oxides for improving furfuryl alcohol yield in the furfural hydrogenation using inexpensive Cu-based catalysts. Molecular Catalysis, 2018, 455, 121-131.	1.0	40
226	Ring-Opening Metathesis Polymerization of Tertiary Amide Monomers Derived from a Biobased Oxanorbornene. ACS Sustainable Chemistry and Engineering, 2018, 6, 9744-9752.	3.2	8
227	Recent progress in improving the stability of copper-based catalysts for hydrogenation of carbon–oxygen bonds. Catalysis Science and Technology, 2018, 8, 3428-3449.	2.1	89
228	Defining Pt-compressed CO ₂ synergy for selectivity control of furfural hydrogenation. RSC Advances, 2018, 8, 20190-20201.	1.7	9
229	Cleave and couple: toward fully sustainable catalytic conversion of lignocellulose to value added building blocks and fuels. Chemical Communications, 2018, 54, 7725-7745.	2.2	58
230	Comparative Study of Supported Monometallic Catalysts in the Liquid-Phase Hydrogenation of Furfural: Batch Versus Continuous Flow. ACS Sustainable Chemistry and Engineering, 2018, 6, 9831-9844.	3.2	58
231	Conversion of Lignocellulosic Biomass Into Platform Chemicals for Biobased Polyurethane Application. Advances in Bioenergy, 2018, 3, 161-213.	0.5	51
232	Terephthalic acid from waste PET: An efficient and reusable catalyst for xylose conversion into furfural. Catalysis Today, 2019, 324, 27-32.	2.2	21
233	Potential of lactic acid bacteria to modulate coffee volatiles and effect of glucose supplementation: fermentation of green coffee beans and impact of coffee roasting. Journal of the Science of Food and Agriculture, 2019, 99, 409-420.	1.7	53
234	Catalytic transfer hydrogenation of bio-based furfural by palladium supported on nitrogen-doped porous carbon. Catalysis Today, 2019, 324, 49-58.	2.2	56
235	The production of furfural directly from hemicellulose in lignocellulosic biomass: A review. Catalysis Today, 2019, 319, 14-24.	2.2	281
236	Efficient wholeâ€cell biotransformation ofÂfurfural to furfuryl alcohol by <i>Saccharomyces cerevisiae</i> NL22. Journal of Chemical Technology and Biotechnology, 2019, 94, 3825-3831.	1.6	23

#	Article	IF	CITATIONS
237	Local Overheating Explains the Rate Enhancement of Xylose Dehydration under Microwave Heating. ACS Sustainable Chemistry and Engineering, 2019, 7, 14273-14279.	3.2	16
238	Acid Catalysts Based on Mesoporous Aromatic Frameworks in Aldol Condensation of Furfural with Some Carbonyl Compounds. Russian Journal of Applied Chemistry, 2019, 92, 857-864.	0.1	4
239	Furfural Hydrogenation on Modified Niobia. Applied Sciences (Switzerland), 2019, 9, 2287.	1.3	11
240	Hydrophobilization of Furan-Containing Polyurethanes via Diels–Alder Reaction with Fatty Maleimides. Polymers, 2019, 11, 1274.	2.0	2
241	Synergistic effect between CaCl2 and \hat{I}^3 -Al2O3 for furfural production by dehydration of hemicellulosic carbohydrates. Applied Catalysis A: General, 2019, 585, 117188.	2.2	17
242	Ru/H-beta as an efficient catalyst for the conversion of furfural into 3-acetyl-1-propanol (3-AP) toward one-pot transformation of xylan to 3-AP. Molecular Catalysis, 2019, 476, 110506.	1.0	6
243	Reaction pathways and selectivity in chemo-catalytic conversion of biomass-derived carbohydrates to high-value chemicals: A review. Fuel Processing Technology, 2019, 196, 106162.	3.7	64
244	Catalytic hydrogenation of dihydrolevoglucosenone to levoglucosanol with a hydrotalcite/mixed oxide copper catalyst. Green Chemistry, 2019, 21, 5000-5007.	4.6	18
245	Selective Synthesis of THF-Derived Amines from Biomass-Derived Carbonyl Compounds. ACS Catalysis, 2019, 9, 8893-8902.	5.5	30
246	Global Analysis of Furfural-Induced Genomic Instability Using a Yeast Model. Applied and Environmental Microbiology, 2019, 85, .	1.4	8
247	Reduction of furfural by Mn/2,4,6 oll . HCl/H 2 O: Mechanistic aspects of this reaction. Applied Organometallic Chemistry, 2019, 33, e4948.	1.7	1
248	Porous Zirconium Hydroxyphosphonoacetate: Catalyst for Conversion of Furfural into Furfuryl Alcohol. ChemistrySelect, 2019, 4, 8000-8006.	0.7	14
249	Heterogeneous Catalytic Upgrading of Biofuranic Aldehydes to Alcohols. Frontiers in Chemistry, 2019, 7, 529.	1.8	32
250	Catalytic Transformation of Biomass Derivatives to Valueâ€Added Chemicals and Fuels in Continuous Flow Microreactors. ChemCatChem, 2019, 11, 4671-4708.	1.8	67
251	Multishell Hollow Metal/Nitrogen/Carbon Dodecahedrons with Precisely Controlled Architectures and Synergistically Enhanced Catalytic Properties. ACS Nano, 2019, 13, 7800-7810.	7.3	143
252	Selective hydrodeoxygenation of biomass-derived furfural-acetone to prepare 1-octyl acetate. Green Chemistry, 2019, 21, 4532-4540.	4.6	13
253	Eco-efficient synthesis of 2-quinaldic acids from furfural. Green Chemistry, 2019, 21, 4650-4655.	4.6	23
254	Insights on the Oneâ€Pot Formation of 1,5â€Pentanediol from Furfural with Coâ^'Al Spinelâ€based Nanoparticles as an Alternative to Noble Metal Catalysts. ChemCatChem, 2019, 11, 4944-4953	1.8	33

#	Article	IF	CITATIONS
255	MIL-53-NH2-derived carbon-Al2O3 composites supported Ru catalyst for effective hydrogenation of levulinic acid to Î ³ -valerolactone under ambient conditions. Molecular Catalysis, 2019, 475, 110478.	1.0	24
256	Catalytic Production of Value-Added Chemicals and Liquid Fuels from Lignocellulosic Biomass. CheM, 2019, 5, 2520-2546.	5.8	337
257	2â€Methyltetrahydrofuran (2â€MeTHF): A Green Solvent for Pdâ^'NHCâ€Catalyzed Amide and Ester Suzukiâ€Miyaura Crossâ€Coupling by Nâ^'C/Oâ^'C Cleavage. Advanced Synthesis and Catalysis, 2019, 361, 5654-5660.	2.1	37
258	Effect of the conditions for the aqueous-phase hydrogenation of furfural over Pd/C catalysts on the reaction routes. , 2019, , .		7
259	Selectivity of Chemical Conversions: Do Lightâ€Driven Photoelectrocatalytic Processes Hold Special Promise?. Angewandte Chemie, 2019, 131, 16878-16883.	1.6	5
260	Selectivity of Chemical Conversions: Do Lightâ€Driven Photoelectrocatalytic Processes Hold Special Promise?. Angewandte Chemie - International Edition, 2019, 58, 16724-16729.	7.2	32
261	Selective Hydrogenation of Furfural in a Proton Exchange Membrane Reactor Using Hybrid Pd/Pd Black on Alumina. ChemElectroChem, 2019, 6, 5563-5570.	1.7	15
262	A novel deep eutectic solvent/acetone biphasic system for high-yield furfural production. Bioresource Technology Reports, 2019, 8, 100318.	1.5	16
263	Production of biofuel precursors and value-added chemicals from hydrolysates resulting from hydrothermal processing of biomass: A review. Biomass and Bioenergy, 2019, 130, 105397.	2.9	62
264	Preparing for the future: Solar energy and bioeconomy in the United Arab Emirates. Energy Science and Engineering, 2019, 7, 1451-1457.	1.9	24
265	Lignocellulosic biomass: Hurdles and challenges in its valorization. Applied Microbiology and Biotechnology, 2019, 103, 9305-9320.	1.7	136
266	Catalytic transfer hydrogenation of furfural to furfuryl alcohol over calcined MgFe hydrotalcites. Applied Clay Science, 2019, 183, 105351.	2.6	31
267	Vapor Pressures, Densities, and PC-SAFT Parameters for 11 Bio-compounds. International Journal of Thermophysics, 2019, 40, 1.	1.0	34
268	Tetraethylammonium Fluoride-mediated A Green Hydrogen Transfer Process for Selective Reduction of Biomass-derived Aldehydes. Current Green Chemistry, 2019, 6, 127-134.	0.7	3
269	Effects of a posttonsillectomy management program using a mobile instant messenger on parents' knowledge and anxiety, and their children's compliance, bleeding, and pain. Journal for Specialists in Pediatric Nursing, 2019, 24, e12270.	0.6	8
270	Synthesis of Diesel and Jet Fuel Range Cycloalkanes with Cyclopentanone and Furfural. Catalysts, 2019, 9, 886.	1.6	11
271	Green CO ₂ -Assisted Synthesis of Mono- and Bimetallic Pd/Pt Nanoparticles on Porous Carbon Fabricated from Sorghum for Highly Selective Hydrogenation of Furfural. ACS Sustainable Chemistry and Engineering, 2019, 7, 15339-15345.	3.2	55
272	Selective Hydrogenation of Furfural to Tetrahydrofurfuryl Alcohol Using Supported Nickel–Cobalt Catalysts. Industrial & Engineering Chemistry Research, 2019, 58, 16138-16152.	1.8	45

#	Article	IF	CITATIONS
273	Synergies in the co-location of food manufacturing and biorefining. Food and Bioproducts Processing, 2019, 117, 340-359.	1.8	16
274	Hydrogen peroxide as an oxidant in biomass-to-chemical processes of industrial interest. Green Chemistry, 2019, 21, 5753-5780.	4.6	86
275	Achmatowicz rearrangement enables hydrogenolysis-free gas-phase synthesis of pentane-1,2,5-triol from furfuryl alcohol. Green Chemistry, 2019, 21, 5657-5664.	4.6	8
276	Doping Pd/SiO ₂ with Na ⁺ : changing the reductive etherification of Cî€O to furan ring hydrogenation of furfural in ethanol. RSC Advances, 2019, 9, 25345-25350.	1.7	10
277	Preparation and Single Crystal Structure Determination of the First Biobased Furan-Polydiacetylene Using Topochemical Polymerization. Crystals, 2019, 9, 448.	1.0	9
278	Elucidating Acidic Electro-Oxidation Pathways of Furfural on Platinum. ACS Catalysis, 2019, 9, 10305-10316.	5.5	85
279	Surfactant-assisted synthesis of mesoporous hafnium- imidazoledicarboxylic acid hybrids for highly efficient hydrogen transfer of biomass-derived carboxides. Molecular Catalysis, 2019, 479, 110611.	1.0	10
280	Nitrogenâ€Doped Carbon Nanotube Confined Co–N <i>_x</i> Sites for Selective Hydrogenation of Biomassâ€Derived Compounds. Advanced Materials, 2019, 31, e1808341.	11.1	138
281	High yields of solid carbonaceous materials from biomass. Green Chemistry, 2019, 21, 1128-1140.	4.6	103
282	Reductive Amination of Furanic Aldehydes in Aqueous Solution over Versatile Ni _{<i>y</i>} AlO _{<i>x</i>} Catalysts. ACS Omega, 2019, 4, 2510-2516.	1.6	52
283	A DFT study of direct furfural conversion to 2-methylfuran on the Ru/Co ₃ O ₄ surface. Physical Chemistry Chemical Physics, 2019, 21, 1597-1605.	1.3	17
284	Potential of nanofiltration and reverse osmosis processes for the recovery of highâ€concentrated furfural streams. Journal of Chemical Technology and Biotechnology, 2019, 94, 2899-2907.	1.6	3
285	Spectroscopy Identification of the Bimetallic Surface of Metal–Organic Framework-Confined Pt–Sn Nanoclusters with Enhanced Chemoselectivity in Furfural Hydrogenation. ACS Applied Materials & Interfaces, 2019, 11, 23254-23260.	4.0	41
286	Direct synthesis of furfuryl alcohol from furfural: catalytic performance of monometallic and bimetallic Mo and Ru phosphides. Catalysis Science and Technology, 2019, 9, 3656-3668.	2.1	35
287	Poly(furfuryl alcohol)-Polycaprolactone Blends. Polymers, 2019, 11, 1069.	2.0	23
288	Synergistic bimetallic RuMo catalysts for selective rearrangement of furfural to cyclopentanol in aqueous phase. Catalysis Communications, 2019, 129, 105745.	1.6	19
289	Intramolecular (4 + 3) cycloadditions of nitrogen-tethered epoxy enosilanes for the synthesis of heteropolycycles. Chinese Chemical Letters, 2019, 30, 1523-1526.	4.8	1
290	Recent development of production technology of diesel- and jet-fuel-range hydrocarbons from inedible biomass. Fuel Processing Technology, 2019, 193, 404-422.	3.7	83

#	Article	IF	CITATIONS
291	Selective Conversion of Furfural to Cyclopentanone and Cyclopentanol by Magnetic Cuâ€Fe ₃ O ₄ NPs Catalyst. ChemistrySelect, 2019, 4, 5845-5852.	0.7	15
292	Hierarchical Flower-like Bimetallic NiCu catalysts for Catalytic Transfer Hydrogenation of Ethyl Levulinate into Î ³ -Valerolactone. Industrial & Engineering Chemistry Research, 2019, 58, 10317-10327.	1.8	41
293	A combo Zr-HY and Al-HY zeolite catalysts for the one-pot cascade transformation of biomass-derived furfural to γ-valerolactone. Journal of Catalysis, 2019, 375, 56-67.	3.1	104
294	Fast pyrolysis of mannan-rich ivory nut (Phytelephas aequatorialis) to valuable biorefinery products. Chemical Engineering Journal, 2019, 373, 446-457.	6.6	25
295	Kinetic study of furfural production from Eucalyptus sawdust using H-SAPO-34 as solid BrÃnsted acid and Lewis acid catalysts in biomass-derived solvents. Industrial Crops and Products, 2019, 135, 196-205.	2.5	44
296	First synthesis of poly(furfuryl) alcohol precursor-based porous carbon beads as an efficient adsorbent for volatile organic compounds. Chemical Engineering Journal, 2019, 373, 365-374.	6.6	28
297	Efficient Chemoselective Reduction of <i>N</i> â€Oxides and Sulfoxides Using a Carbonâ€Supported Molybdenumâ€Dioxo Catalyst and Alcohol. ChemCatChem, 2019, 11, 4139-4146.	1.8	17
298	Multi-products co-production improves the economic feasibility of cellulosic ethanol: A case of Formiline pretreatment-based biorefining. Applied Energy, 2019, 250, 229-244.	5.1	39
299	Mechanistic Approaches toward Rational Design of a Heterogeneous Catalyst for Ring-Opening and Deoxygenation of Biomass-Derived Cyclic Compounds. ACS Sustainable Chemistry and Engineering, 2019, 7, 10165-10181.	3.2	30
300	Alternative Recovery and Valorization of Metals from Exhausted Catalytic Converters in a New Smart Polymetallic Catalyst. ChemistrySelect, 2019, 4, 4624-4632.	0.7	0
301	Highly selective hydrogenation of furfural to furan-2-ylmethanol over a Cu/C derived from copper-organic frameworks. Catalysis Communications, 2019, 129, 105679.	1.6	6
302	Density functional theory study of furfural electrochemical oxidation on the Pt (1 1 1) surface. Journal of Catalysis, 2019, 373, 322-335.	3.1	37
303	Selective Catalysis for Room-Temperature Hydrogenation of Biomass-Derived Compounds over Supported NiPd Catalysts in Water. ACS Sustainable Chemistry and Engineering, 2019, 7, 9352-9359.	3.2	10
304	Making Benzoxazine Greener and Stronger: Renewable Resource, Microwave Irradiation, Green Solvent, and Excellent Thermal Properties. ACS Sustainable Chemistry and Engineering, 2019, 7, 8715-8723.	3.2	86
305	Considerations for Producing Bioenergy from Halophyte Feedstocks. , 2019, , 657-668.		6
306	High production of levulinic acid from cellulosic feedstocks being catalyzed by temperature-responsive transition metal substituted heteropolyacids. Renewable Energy, 2019, 141, 802-813.	4.3	35
307	Convergent production of 2,5-furandicarboxylic acid from biomass and CO ₂ . Green Chemistry, 2019, 21, 2923-2927.	4.6	52
308	A robust <i>etb</i> -type metal–organic framework showing polarity-exclusive adsorption of acetone over methanol for their azeotropic mixture. Chemical Communications, 2019, 55, 6495-6498.	2.2	23

#	Article	IF	CITATIONS
309	Biorefinery via Achmatowicz Rearrangement: Synthesis of Pentaneâ€1,2,5â€triol from Furfuryl Alcohol. ChemSusChem, 2019, 12, 2748-2754.	3.6	16
310	Synthesis of functionalized tetrahydrofuran derivatives from 2,5-dimethylfuran through cascade reactions. Green Chemistry, 2019, 21, 2601-2609.	4.6	4
311	Regulating the Catalytic Performance of Single-Atomic-Site Ir Catalyst for Biomass Conversion by Metal–Support Interactions. ACS Catalysis, 2019, 9, 5223-5230.	5.5	87
312	Hf-based metal organic frameworks as bifunctional catalysts for the one-pot conversion of furfural to γ-valerolactone. Molecular Catalysis, 2019, 472, 17-26.	1.0	43
313	Influence of the Incorporation of Basic or Amphoteric Oxides on the Performance of Cu-Based Catalysts Supported on Sepiolite in Furfural Hydrogenation. Catalysts, 2019, 9, 315.	1.6	18
314	Multiscale Modeling of (Hemi)cellulose Hydrolysis and Cascade Hydrotreatment of 5-Hydroxymethylfurfural, Furfural, and Levulinic Acid. Industrial & Engineering Chemistry Research, 2019, 58, 16018-16032.	1.8	72
315	One-pot selective conversion of C5-furan into 1,4-pentanediol over bulk Ni–Sn alloy catalysts in an ethanol/H2O solvent mixture. Green Chemistry, 2019, 21, 2307-2315.	4.6	38
316	DFT study of furfural conversion on a Re/Pt bimetallic surface: synergetic effect on the promotion of hydrodeoxygenation. Physical Chemistry Chemical Physics, 2019, 21, 8384-8393.	1.3	18
317	Selective Production of Furan from Gas-Phase Furfural Decarbonylation on Ni-MgO Catalysts. ACS Sustainable Chemistry and Engineering, 2019, 7, 7676-7685.	3.2	42
318	Reinforcing effect of poly(furfuryl alcohol) in cellulose-based porous materials. Cellulose, 2019, 26, 4431-4444.	2.4	12
319	Selective synthesis of 2-furoic acid and 5-hydroxymethyl-2-furancarboxylic acid from bio-based furans by recombinant Escherichia coli cells. Molecular Catalysis, 2019, 469, 68-74.	1.0	37
320	Post-synthesis Treatment of TS-1 with TPAOH: Effect of Hydrophobicity on the Liquid-Phase Oxidation of Furfural to Maleic Acid. Topics in Catalysis, 2019, 62, 560-569.	1.3	12
321	Novel high performance poly(<i>p</i> -phenylene benzobisimidazole) (PBDI) membranes fabricated by interfacial polymerization for H ₂ separation. Journal of Materials Chemistry A, 2019, 7, 8929-8937.	5.2	31
322	Transfer Hydrogenation of Biomass-Derived Furfural to 2-Methylfuran over CuZnAl Catalysts. Industrial & Engineering Chemistry Research, 2019, 58, 6298-6308.	1.8	60
323	Biomass-Derived Solvents for Sustainable Transition Metal-Catalyzed C–H Activation. ACS Sustainable Chemistry and Engineering, 2019, 7, 8023-8040.	3.2	90
324	Efficient and Selective Ni/Al2O3–C Catalyst Derived from Metal–Organic Frameworks for the Hydrogenation of Furfural to Furfuryl Alcohol. Catalysis Letters, 2019, 149, 2158-2168.	1.4	25
325	Ni supported on sepiolite catalysts for the hydrogenation of furfural to value-added chemicals: influence of the synthesis method on the catalytic performance. Topics in Catalysis, 2019, 62, 535-550.	1.3	16
326	Catalytic transfer hydrogenation of furfural into furfuryl alcohol over Ni–Feâ€layered double hydroxide catalysts. Journal of the Chinese Chemical Society, 2019, 66, 1610-1618.	0.8	11

#	Article	IF	CITATIONS
327	Influence of Structure-modifying Agents in the Synthesis of Zr-doped SBA-15 Silica and Their Use as Catalysts in the Furfural Hydrogenation to Obtain High Value-added Products through the Meerwein-Ponndorf-Verley Reduction. International Journal of Molecular Sciences, 2019, 20, 828.	1.8	25
328	Efficient Synthesis of Furfural from Biomass Using SnCl4 as Catalyst in Ionic Liquid. Molecules, 2019, 24, 594.	1.7	25
329	Synthesis of renewable acetic acid from CO ₂ and lignin over an ionic liquid-based catalytic system. Chemical Communications, 2019, 55, 3069-3072.	2.2	22
330	Zirconium–lignosulfonate polyphenolic polymer for highly efficient hydrogen transfer of biomass-derived oxygenates under mild conditions. Applied Catalysis B: Environmental, 2019, 248, 31-43.	10.8	126
331	Hydroconversion mechanism of biomass-derived Î ³ -valerolactone. Catalysis Today, 2019, 336, 50-62.	2.2	23
332	Efficient Electrocatalytic Reduction of Furfural to Furfuryl Alcohol in a Microchannel Flow Reactor. Organic Process Research and Development, 2019, 23, 403-408.	1.3	65
333	The studies on chemoselective promiscuous activity of hydrolases on acylals transformations. Bioorganic Chemistry, 2019, 93, 102825.	2.0	7
334	Polymers derived from hemicellulosic parts of lignocellulosic biomass. Reviews in Environmental Science and Biotechnology, 2019, 18, 317-334.	3.9	57
335	Synthesis of isopropyl levulinate from furfural: Insights on a cascade production perspective. Applied Catalysis A: General, 2019, 575, 111-119.	2.2	29
336	Advances in porous and nanoscale catalysts for viable biomass conversion. Chemical Society Reviews, 2019, 48, 2366-2421.	18.7	457
337	Recent Advances in the Catalytic Production of Platform Chemicals from Holocellulosic Biomass. ChemCatChem, 2019, 11, 2022-2042.	1.8	92
338	From waste biomass to chemicals and energy <i>via</i> microwave-assisted processes. Green Chemistry, 2019, 21, 1202-1235.	4.6	103
340	Cascade aza-Michael Addition-Cyclizations; Toward Renewable and Multifunctional Carboxylic Acids for Melt-Polycondensation. Frontiers in Chemistry, 2019, 7, 729.	1.8	29
341	Study on catalytic performance of Ni-Co-P amorphous alloy for HDO of vanillin. Journal of Fuel Chemistry and Technology, 2019, 47, 1205-1213.	0.9	9
342	A novel bio-based AB ₂ monomer for preparing hyperbranched polyamides derived from levulinic acid and furfurylamine. Polymer Chemistry, 2019, 10, 6217-6226.	1.9	18
343	Hydro-Oxygenation of Furfural in the Presence of Ruthenium Catalysts Based on Al-HMS Mesoporous Support. Russian Journal of Applied Chemistry, 2019, 92, 1306-1315.	0.1	3
344	A theoretical insight into furfural conversion catalyzed on the Ni(111) surface. Physical Chemistry Chemical Physics, 2019, 21, 23685-23696.	1.3	25
345	Solvent basicity controlled deformylation for the formation of furfural from glucose and fructose. Green Chemistry, 2019, 21, 6146-6153.	4.6	39

		15	<u></u>
#	ARTICLE Selective hydrogenolysis of 2-furancarboxylic acid to 5-hydroxyvaleric acid derivatives over	IF	CITATIONS
346	supported platinum catalysts. Green Chemistry, 2019, 21, 6133-6145.	4.6	26
347	Aqueous Carbonylation of Furfural-Derived 5-Bromofuroic Acid to 2,5-Furandicarboxylic Acid with Supported Palladium Catalyst. Industrial & Engineering Chemistry Research, 2019, 58, 22951-22957.	1.8	10
348	Highly Active CuFeAl-containing Catalysts for Selective Hydrogenation of Furfural to Furfuryl Alcohol. Catalysts, 2019, 9, 816.	1.6	18
349	Glucose to 5-Hydroxymethylfurfural: Origin of Site-Selectivity Resolved by Machine Learning Based Reaction Sampling. Journal of the American Chemical Society, 2019, 141, 20525-20536.	6.6	59
350	Facile Preparation of Pd/UiO-66-v for the Conversion of Furfuryl Alcohol to Tetrahydrofurfuryl Alcohol under Mild Conditions in Water. Nanomaterials, 2019, 9, 1698.	1.9	14
351	Minimalistic Synthesis of α-Zirconium Diammonium Phosphate and Zirconia for Applications in Ion Exchange and Catalysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 895-904.	3.2	12
352	Polymers Based on Cyclic Carbonates as <i>Trait d'Union</i> Between Polymer Chemistry and Sustainable CO ₂ Utilization. ChemSusChem, 2019, 12, 724-754.	3.6	156
353	Gas-phase dehydration of tetrahydrofurfuryl alcohol to dihydropyran over γ-Al2O3. Applied Catalysis B: Environmental, 2019, 245, 62-70.	10.8	18
354	Valorisation of Biomass Derived Furfural and Levulinic Acid by Highly Efficient Pd@ND Catalyst. Energy Technology, 2019, 7, 269-276.	1.8	12
355	Transformation of corncob into furfural by a bifunctional solid acid catalyst. Bioresource Technology, 2019, 276, 60-64.	4.8	62
356	Production of 5-hydroxymethylfurfural and levulinic acid from lignocellulosic biomass and catalytic upgradation. Industrial Crops and Products, 2019, 130, 184-197.	2.5	205
357	Characterization and use of southern cattail for biorefining-based production of furfural. Biomass Conversion and Biorefinery, 2019, 9, 333-339.	2.9	3
358	Mechanistic insights on catalytic conversion fructose to furfural on beta zeolite via selective carbon-carbon bond cleavage. Molecular Catalysis, 2019, 463, 130-139.	1.0	38
359	Liquid phase hydrogenation of furfural under mild conditions over Pd/C catalysts of various acidity. Reaction Kinetics, Mechanisms and Catalysis, 2019, 126, 417-437.	0.8	10
360	Effect of metal salts impregnation and microwave-assisted solvent pretreatment on selectivity of levoglucosenone and levoglucosan from vacuum pyrolysis of ashe juniper waste. Journal of Environmental Chemical Engineering, 2019, 7, 102796.	3.3	14
361	Selective Synthesis of Furfuryl Alcohol from Biomass-Derived Furfural Using Immobilized Yeast Cells. Catalysts, 2019, 9, 70.	1.6	24
362	Molecular-level insights into furfural hydrogenation intermediates over single-atomic Cu catalysts on magnesia and silica nanoclusters. Molecular Simulation, 2019, 45, 154-163.	0.9	30
363	Furfuryl Alcohol a Versatile, Eco-Sustainable Compound in Perspective. Chemistry Africa, 2019, 2, 223-239.	1.2	47

#	Article	IF	CITATIONS
364	Aqueous-phase hydrogenation of furfural over supported palladium catalysts: effect of the support on the reaction routes. Reaction Kinetics, Mechanisms and Catalysis, 2019, 126, 811-827.	0.8	32
365	A comparative study of water-immiscible organic solvents in the production of furfural from xylose and birch hydrolysate. Journal of Industrial and Engineering Chemistry, 2019, 72, 354-363.	2.9	30
366	Condensation of pentose-derived furan compounds to C15 fuel precursors using supported phosphotungstic acid catalysts: Strategy for designing heterogeneous acid catalysts based on the acid strength and pore structures. Applied Catalysis A: General, 2019, 570, 238-244.	2.2	17
367	Radiation stability and thermal behaviour of modified UF resin using biorenewable raw material-furfuryl alcohol. Composites Part B: Engineering, 2019, 167, 161-166.	5.9	10
368	Synthesis and characterization of carbon microspheres from rubber wood by hydrothermal carbonization. Journal of Chemical Technology and Biotechnology, 2019, 94, 1374-1383.	1.6	26
369	Recently developed methods to enhance stability of heterogeneous catalysts for conversion of biomass-derived feedstocks. Korean Journal of Chemical Engineering, 2019, 36, 1-11.	1.2	96
370	Screening of Solvents, Hydrogen Source, and Investigation of Reaction Mechanism for the Hydrocyclisation of Levulinic Acid to γ-Valerolactone Using Ni/SiO2–Al2O3 Catalyst. Catalysis Letters, 2019, 149, 215-227.	1.4	25
371	Effect of extraction on furfural production by solid acid-catalyzed xylose dehydration in water. Journal of Supercritical Fluids, 2019, 144, 14-18.	1.6	22
372	Catalytic Transfer Hydrogenation of Biomassâ€Derived Substrates to Valueâ€Added Chemicals on Dualâ€Function Catalysts: Opportunities and Challenges. ChemSusChem, 2019, 12, 71-92.	3.6	109
373	Nickel-catalysed C O bond reduction of 2,4,6-triaryloxy-1,3,5-triazines in 2-methyltetrahydrofuran. Chinese Chemical Letters, 2019, 30, 409-412.	4.8	9
374	Effect of oxide supports on Pt-Ni bimetallic catalysts for the selective hydrogenation of biomass-derived 2(5H)-furanone. Catalysis Today, 2019, 319, 93-99.	2.2	8
375	A catalytic oxidative valorization of biomass-derived furfural with ethanol by copper/azodicarboxylate system. Catalysis Today, 2019, 319, 100-104.	2.2	17
376	Efficient catalytic transfer hydrogenation of biomass-based furfural to furfuryl alcohol with recycable Hf-phenylphosphonate nanohybrids. Catalysis Today, 2019, 319, 84-92.	2.2	68
377	Conversion of Biomass-Derived Furanics to Fuel-Range Hydrocarbons: Use of Palm Oil Empty Fruit Bunches. Waste and Biomass Valorization, 2020, 11, 565-577.	1.8	4
378	F-containing ionic liquid–catalyzed benign and rapid hydrogenation of bio-based furfural and relevant aldehydes using siloxane as hydrogen source. Biomass Conversion and Biorefinery, 2020, 10, 795-802.	2.9	5
379	Significantly improved oxidation of bio-based furans into furan carboxylic acids using substrate-adapted whole cells. Journal of Energy Chemistry, 2020, 41, 20-26.	7.1	24
380	Approaches to the synthesis of Pd/C catalysts with controllable activity and selectivity in hydrogenation reactions. Catalysis Today, 2020, 357, 152-165.	2.2	30
381	Corrosion behavior of ion-irradiated SiC in FLiNaK molten salt. Corrosion Science, 2020, 163, 108229.	3.0	13

#	Article	IF	CITATIONS
382	Facile assembly of Cu-Cu2O/N-reduced graphene oxide nanocomposites for efficient synthesis of 2-methylfuran. Fuel, 2020, 259, 116267.	3.4	43
383	Process design and techno-economic analysis of gas and aqueous phase maleic anhydride production from biomass-derived furfural. Biomass Conversion and Biorefinery, 2020, 10, 1021-1033.	2.9	23
384	From agriculture residue to upgraded product: The thermochemical conversion of sugarcane bagasse for fuel and chemical products. Fuel Processing Technology, 2020, 197, 106199.	3.7	48
385	Highly Selective Hydrogenation of Furfural to Furan-2-ylmethanol over Zeolitic Imidazolate Frameworks-67-Templated Magnetic Cu–Co/C. Catalysis Letters, 2020, 150, 178-184.	1.4	9
386	Efficient synthesis of 5-hydroxymethyl-2-furancarboxylic acid by Escherichia coli overexpressing aldehyde dehydrogenases. Journal of Biotechnology, 2020, 307, 125-130.	1.9	38
387	Highly Active Mesoporous Cuâ^'Al ₂ O ₃ Catalyst for the Hydrodeoxygenation of Furfural to 2â€methylfuran. ChemCatChem, 2020, 12, 105-111.	1.8	22
388	Hydrogen bonding in chitosan/Antarctic krill protein composite system: Study on construction and enhancement mechanism. International Journal of Biological Macromolecules, 2020, 142, 513-520.	3.6	22
389	Liquid Phase Furfural Oxidation under Uncontrolled pH in Batch and Flow Conditions: The Role of In Situ Formed Base. Catalysts, 2020, 10, 73.	1.6	23
391	Unraveling the effect of ZrO ₂ modifiers on the nature of active sites on AuRu/ZrO ₂ catalysts for furfural hydrogenation. Sustainable Energy and Fuels, 2020, 4, 1469-1480.	2.5	10
393	Synthesis of biomass-based amines: Metal-free catalytic reductive amination of xylose and biomass-derived carbonyl compounds using pyridine-based ionic liquid/triethoxysilane. Fuel, 2020, 264, 116822.	3.4	11
394	Fuels and fuel additives from furfural derivatives via etherification and formation of methylfurans. Fuel Processing Technology, 2020, 200, 106308.	3.7	50
395	Building hierarchical zeolite structure by post-synthesis treatment to promote the conversion of furanic molecules into biofuels. Applied Catalysis A: General, 2020, 590, 117338.	2.2	21
396	Catalytic routes for the conversion of lignocellulosic biomass to aviation fuel range hydrocarbons. Renewable and Sustainable Energy Reviews, 2020, 120, 109612.	8.2	97
397	Catalytic transfer hydrogenation of furfural to furfuryl alcohol over a magnetic Fe ₃ O ₄ @C catalyst. New Journal of Chemistry, 2020, 44, 478-486.	1.4	46
398	Utilizing Furfural-Based Bifuran Diester as Monomer and Comonomer for High-Performance Bioplastics: Properties of Poly(butylene furanoate), Poly(butylene bifuranoate), and Their Copolyesters. Biomacromolecules, 2020, 21, 743-752.	2.6	52
399	Biocatalytic Oxidation of Biobased Furan Aldehydes: Comparison of Toxicity and Inhibition of Furans toward a Whole-Cell Biocatalyst. ACS Sustainable Chemistry and Engineering, 2020, 8, 1437-1444.	3.2	25
400	The Promotion Effect of NaCl on the Conversion of Xylose to Furfural ^{â€} . Chinese Journal of Chemistry, 2020, 38, 178-184.	2.6	21
401	Catalytic Transfer Hydrogenation of Furfural over Co ₃ O ₄ â^Al ₂ O ₃ Hydrotalciteâ€derived Catalyst. ChemCatChem, 2020, 12, 1467-1475.	1.8	31

#	Article	IF	CITATIONS
402	Coffee flavour modification through controlled fermentation of green coffee beans by Lactococcus lactis subsp. cremoris. LWT - Food Science and Technology, 2020, 120, 108930.	2.5	21
403	HMF and furfural: Promising platform molecules in rhodium-catalyzed carbonylation reactions for the synthesis of furfuryl esters and tertiary amides. Journal of Catalysis, 2020, 381, 215-221.	3.1	20
404	Microwave-Assisted Aldol Condensation of Furfural and Acetone over Mg–Al Hydrotalcite-Based Catalysts. Crystals, 2020, 10, 833.	1.0	13
405	Dipolar cycloadditions of HMF-based nitrones: stepwise and multicomponent reactions, stereochemical outcome and structural scope. Green Chemistry, 2020, 22, 7907-7912.	4.6	3
406	High Performance and Sustainable Copper-Modified Hydroxyapatite Catalysts for Catalytic Transfer Hydrogenation of Furfural. Catalysts, 2020, 10, 1045.	1.6	24
407	Layered double hydroxide derived NiAl-oxide hollow nanospheres for selective transfer hydrogenation with improved stability. Journal of Materials Chemistry A, 2020, 8, 23376-23384.	5.2	9
408	Economical process for the co-production of renewable polymers and value-added chemicals from lignocellulosic biomass. Journal of Cleaner Production, 2020, 276, 124237.	4.6	21
409	Bi-Metal-Supported Activated Carbon Monolith Catalysts for Selective Hydrogenation of Furfural. Industrial & Engineering Chemistry Research, 2020, 59, 17748-17761.	1.8	9
410	Thiol-promoted catalytic synthesis of high-performance furan-containing lubricant base oils from biomass derived 2-alkylfurans and ketones. Green Chemistry, 2020, 22, 7896-7906.	4.6	11
411	Selective Biosynthesis of Furoic Acid From Furfural by Pseudomonas Putida and Identification of Molybdate Transporter Involvement in Furfural Oxidation. Frontiers in Chemistry, 2020, 8, 587456.	1.8	15
412	Metal silicotungstate salts as catalysts in furfural oxidation reactions with hydrogen peroxide. Molecular Catalysis, 2020, 493, 111104.	1.0	22
413	Electrohydrodimerization of biomass-derived furfural generates a jet fuel precursor. Green Chemistry, 2020, 22, 5395-5401.	4.6	38
414	Advances in catalytic routes for the production of carboxylic acids from biomass: a step forward for sustainable polymers. Chemical Society Reviews, 2020, 49, 5704-5771.	18.7	134
415	Production of furfural and levoglucosan from typical agricultural wastes via pyrolysis coupled with hydrothermal conversion: Influence of temperature and raw materials. Waste Management, 2020, 114, 43-52.	3.7	20
416	Furfural and 5-(hydroxymethyl)furfural: Two pivotal intermediates for bio-based chemistry. Current Opinion in Green and Sustainable Chemistry, 2020, 26, 100384.	3.2	37
417	Conversion of Furfural Derivatives to 1,4-Pentanediol and Cyclopentanol in Aqueous Medium Catalyzed by <i>trans</i> -[(2,9-Dipyridyl-1,10-phenanthroline)(CH ₃ CN) ₂ Ru](OTf) ₂ . ACS Catalysis, 2020, 10, 2667-2683.	5.5	20
418	Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol under Mild Conditions over Zr-MOFs: Exploring the Role of Metal Node Coordination and Modification. ACS Catalysis, 2020, 10, 3720-3732.	5.5	187
419	Classification, characterization, and properties of edible and non-edible biomass feedstocks. , 2020, , 89-120.		5

#	Article	IF	CITATIONS
420	Efficient one-pot conversion of furfural into 2-methyltetrahydrofuran using non-precious metal catalysts. Molecular Catalysis, 2020, 490, 110951.	1.0	15
421	Challenges and future prospects in heterogeneous catalysis for biorefinery technologies. , 2020, , 225-250.		3
422	Integrated Multiproduct Biorefinery for Furfural Production with Acetic Acid and Lignin Recovery: Design, Scale-Up Evaluation, and Technoeconomic Analysis. ACS Sustainable Chemistry and Engineering, 2020, 8, 17345-17358.	3.2	28
423	Hydrogenation of furfural to furfuryl alcohol over efficient sol-gel nickel-copper/zirconia catalyst. Journal of Chemical Sciences, 2020, 132, 1.	0.7	6
424	Improved conversion of bamboo shoot shells to furfuryl alcohol and furfurylamine by a sequential catalysis with sulfonated graphite and biocatalysts. RSC Advances, 2020, 10, 40365-40372.	1.7	16
425	MOFs Derived Catalysts Prepared by Pyrolysis for Hydrogenation of Bioâ€Based Furfural: A Miniâ€Review. ChemistrySelect, 2020, 5, 13681-13689.	0.7	10
426	Ferromagnetic Lignin-Derived Ordered Mesoporous Carbon for Catalytic Hydrogenation of Furfural to Furfuryl Alcohol. ACS Sustainable Chemistry and Engineering, 2020, 8, 18157-18166.	3.2	30
427	Vapor-Phase Furfural Decarbonylation over a High-Performance Catalyst of 1%Pt/SBA-15. Catalysts, 2020, 10, 1304.	1.6	6
428	Oxidative Condensation of Furfural with Ethanol Using Pd-Based Catalysts: Influence of the Support. Catalysts, 2020, 10, 1309.	1.6	6
429	Application of New Efficient Hoveyda–Grubbs Catalysts Comprising an N→Ru Coordinate Bond in a Six-Membered Ring for the Synthesis of Natural Product-Like Cyclopenta[b]furo[2,3-c]pyrroles. Molecules, 2020, 25, 5379.	1.7	7
430	Production optimization of yellow laccase from Stropharia sp. ITCC 8422 and enzyme-mediated depolymerization and hydrolysis of lignocellulosic biomass for biorefinery application. Biomass Conversion and Biorefinery, 2020, , 1.	2.9	28
431	A hierarchical Ru-bearing alumina/magnetic iron-oxide composite for the magnetically heated hydrogenation of furfural. Green Chemistry, 2020, 22, 5978-5983.	4.6	22
432	Value-Added Bio-Chemicals Commodities from Catalytic Conversion of Biomass Derived Furan-Compounds. Catalysts, 2020, 10, 895.	1.6	17
433	Lignin Precipitation and Fractionation from OrganoCat Pulping to Obtain Lignin with Different Sizes and Chemical Composition. Molecules, 2020, 25, 3330.	1.7	5
434	Mechanism of Pd/C-catalyzed hydrogenation of furfural under hydrothermal conditions. Journal of Catalysis, 2020, 389, 721-734.	3.1	49
435	Hydrochloric acid-catalyzed coproduction of furfural and 5-(chloromethyl)furfural assisted by a phase transfer catalyst. Carbohydrate Research, 2020, 496, 108105.	1.1	7
436	Integrating Biomass into the Organonitrogen Chemical Supply Chain: Production of Pyrrole and <scp>d</scp> â€Proline from Furfural. Angewandte Chemie, 2020, 132, 20018-20022.	1.6	19
437	One-pot aqueous-phase xylose upgrading on Zr-containing BEA zeolites. Applied Catalysis A: General, 2020, 604, 117766.	2.2	8

# 438	ARTICLE Fe/FeOx embedded in LDH catalyzing C-C bond forming reactions of furfural with alcohols in the absence of a homogeneous base. Molecular Catalysis, 2020, 493, 111056.	IF 1.0	CITATIONS
439	Biomass-derived chemical substitutes for bisphenol A: recent advancements in catalytic synthesis. Chemical Society Reviews, 2020, 49, 6329-6363.	18.7	87
440	Tuning the synthesis of polymetallic-doped ZIF derived materials for efficient hydrogenation of furfuryl alcohol. Nanoscale, 2020, 12, 18296-18304.	2.8	40
441	Integrating Biomass into the Organonitrogen Chemical Supply Chain: Production of Pyrrole and <scp>d</scp> â€Proline from Furfural. Angewandte Chemie - International Edition, 2020, 59, 19846-19850.	7.2	75
442	Feâ€Pdâ€Immobilized Alâ€Pillared Laponite Clay as an Efficient Catalyst for the Conversion of Furfural into Tetrahydrofurfuryl Alcohol. ChemistrySelect, 2020, 5, 9314-9322.	0.7	2
443	<i>tert</i> -Butanol intervention enables chemoselective conversion of xylose to furfuryl alcohol over heteropolyacids. Green Chemistry, 2020, 22, 5656-5665.	4.6	18
444	Evaluation of residual biomass produced in Cerrado Tocantinense as potential raw biomass for biorefinery. Biomass Conversion and Biorefinery, 2020, , 1.	2.9	8
445	On demand production of ethers or alcohols from furfural and HMF by selecting the composition of a Zr/Si catalyst. Catalysis Science and Technology, 2020, 10, 7502-7511.	2.1	20
446	Carboxylation Enhances Fragmentation of Furan upon Resonant Electron Attachment. Journal of Physical Chemistry A, 2020, 124, 9427-9435.	1.1	11
447	Structural evolution of ZIF-67-derived catalysts for furfural hydrogenation. Journal of Catalysis, 2020, 392, 302-312.	3.1	25
448	Toward a Circular Economy: Decontamination and Valorization of Postconsumer Waste Wood Using the ionoSolv Process. ACS Sustainable Chemistry and Engineering, 2020, 8, 14441-14461.	3.2	20
449	Palladium nanoparticles supported on nanosheet-like graphitic carbon nitride for catalytic transfer hydrogenation reaction. Catalysis Science and Technology, 2020, 10, 7883-7893.	2.1	12
450	Selectivity Control in Photocatalytic Valorization of Biomass-Derived Platform Compounds by Surface Engineering of Titanium Oxide. CheM, 2020, 6, 3038-3053.	5.8	112
451	Sustainable access to renewable N-containing chemicals from reductive amination of biomass-derived platform compounds. Green Chemistry, 2020, 22, 6714-6747.	4.6	100
452	Design and synthesis of florylpicoxamid, a fungicide derived from renewable raw materials. Green Chemistry, 2020, 22, 6047-6054.	4.6	16
453	Kostenkalkulation im Anlagenbau: Modell zur Bewertung der KonkurrenzfÄ n igkeit im Entwicklungsstadium. Chemie-Ingenieur-Technik, 2020, 92, 1033-1043.	0.4	1
454	New Approach to Dehydration of Xylose to 2-Furfuraldehyde Using a Mesoporous Niobium-Based Catalyst. ACS Omega, 2020, 5, 21392-21400.	1.6	9
455	One Pot Hydrogenation of Furfural to 2â€Methyl Tetrahydrofuran over Supported Mono―and Biâ€metallic Catalysts. ChemistrySelect, 2020, 5, 9590-9600.	0.7	10

ARTICLE IF CITATIONS # 2-Methyloxolane (2-MeOx) as Sustainable Lipophilic Solvent to Substitute Hexane for Green Extraction 456 1.7 26 of Natural Products. Properties, Applications, and Perspectives. Molecules, 2020, 25, 3417. Furfural to 1,4â€Butanediol/Tetrahydrofuran – A Detailed Catalyst and Process Design. ChemSusChem, 3.6 2020, 13, 5329-5337. Potential of Waste Biomass from the Sugar Industry as a Source of Furfural and Its Derivatives for 458 1.6 16 Use as Fuel Additives in Poland. Energies, 2020, 13, 6684. Investigation of the rotamers of 3-furfural by microwave spectroscopy. Journal of Molecular 0.4 Spectroscopy, 2020, 373, 111374. Interface tailoring by a versatile functionalization platform for nanostructured wood 460 4.6 45 biocomposites. Green Chemistry, 2020, 22, 8012-8023. Electro-oxidation of furfural on gold is limited by furoate self-assembly. Journal of Catalysis, 2020, 3.1 391, 327-335. Highly efficient Cu/SiO2 catalyst derived from ethanolamine modification for furfural 462 2.2 26 hydrogenation. Applied Catalysis A: General, 2020, 598, 117598. Chemoselective and efficient catalytic hydrogenation of furfural by iridium and ruthenium 1.4 14 half-sandwich complexes. New Journal of Chemistry, 2020, 44, 9382-9390. Catalytic Production of Oxygenated and Hydrocarbon Chemicals From Cellulose Hydrogenolysis in 464 1.8 14 Aqueous Phase. Frontiers in Chemistry, 2020, 8, 333. Gas-Phase Hydrogenation of Furfural to Furfuryl Alcohol over Cu-ZnO-Al2O3 Catalysts Prepared from 1.6 Layered Double Hydroxides. Catalysts, 2020, 10, 486. Catalytic production of 1,4-pentanediol from furfural in a fixed-bed system under mild conditions. 466 4.6 27 Green Chemistry, 2020, 22, 3532-3538. Metal organic frameworks for biomass conversion. Chemical Society Reviews, 2020, 49, 3638-3687. 18.7 Synthesis of Jet Fuel Range Cycloalkanes with Cyclopentanone and Furfural. Energy & amp; Fuels, 2020, 468 2.5 22 34, 7149-7159. Heterostructured Redoxâ€Active V 2 O 5 /SnO 2 Oxide Nanocatalyst for Aqueousâ€Phase Oxidation of 469 Furfural to Renewable Maleic Acid. ChemistrySelect, 2020, 5, 6255-6267. 470 Furfuryl alcoholâ€"a promising platform chemical., 2020, , 323-353. 6 One-step process to produce furfural from sugarcane bagasse over niobium-based solid acid catalysts 471 in a water medium. Fuel Processing Technology, 2020, 207, 106482. Reduction of sugar derivatives to valuable chemicals: utilization of asymmetric carbons. Catalysis 472 2.1 20 Science and Technology, 2020, 10, 3805-3824. Thermal unimolecular decomposition of ethyl 2â€furoate and its reactivity toward OH radicals: A 473 theoretical study. International Journal of Chemical Kinetics, 2020, 52, 580-588.

ARTICLE IF CITATIONS Reactive Extraction Enhanced by Synergic Microwave Heating: Furfural Yield Boost in Biphasic 3.6 26 474 Systems. ChemSusChem, 2020, 13, 3589-3593. Selective hydrogenation of bio-based furfural over Co-based catalysts derived from zeolitic 1.0 imidazolaté frame materials. Molecular Catalysis, 2020, 492, 111007. A gradient reduction strategy to produce defects-rich nano-twin Cu particles for targeting activation 476 3.112 of carbon-carbon or carbon-oxygen in furfural conversion. Journal of Catalysis, 2020, 389, 78-86. Characterization of the key aroma compounds in aged Zhenjiang aromatic vinegar by gas chromatography-olfactometry-mass spectrometry, quantitative measurements, aroma recombination and omission experiments. Food Research International, 2020, 136, 109434. 39 One-Pot, Tandem Wittig Hydrogenation: Formal C(sp³)â€"C(sp³) Bond Formation 478 2.4 4 with Extensive Scope. Organic Letters, 2020, 22, 5223-5228. Highly efficient catalytic transfer hydrogenation of biomass-derived furfural to furfuryl alcohol using UiO-66 without metal catalysts. Applied Catalysis A: General, 2020, 602, 117719. 479 2.2 Continuous production of furfural from pulp prehydrolysate in a vaporization reactor. Industrial 480 2.5 10 Crops and Products, 2020, 153, 112565. Raman Spectroscopy Applied to Monitor Furfural Liquid-Phase Oxidation Catalyzed by Supported Gold 1.6 Nanoparticles. ACS Ómega, 2020, 5, 14283-14290. Coffee flavour modification through controlled fermentation of green coffee beans by 483 Saccharomyces cerevisiae and Pichia kluyveri: Part II. Mixed cultures with or without lactic acid 2.9 10 bacteria. Food Research International, 2020, 136, 109452. An Efficient Acetalization Method for Biomassâ€Derived Furfural with Ethanol Using 484 γâ€Al₂0₃‣upported Catalysts. ChemistrySel<u>ect, 2020, 5, 3458-3470.</u> Bioprivileged Molecules: Integrating Biological and Chemical Catalysis for Biomass Conversion. 485 3.3 27 Annual Review of Chemical and Biomolecular Engineering, 2020, 11, 63-85. A robust strategy of homogeneously hybridizing silica and Cu3(BTC)2 to in situ synthesize highly dispersed copper catalyst for furfural hydrogenation. Applied Catalysis A: General, 2020, 596, 117518. 486 2.2 Paired electrolysis for simultaneous generation of synthetic fuels and chemicals. New Journal of 487 1.4 52 Chemistry, 2020, 44, 5617-5637. Development of an Innovative and Eco-Friendly UV Radiation Absorber, Based on Furan Moieties. 488 1.5 Cosmetics, 2020, 7, 6. Influence of modification of supported palladium systems by polymers: PVP, AMPS and AcrAMPS on their catalytic properties in the reaction of transformation of biomass into fuel bio-components. 489 3.4 5 Fuel, 2020, 271, 117584. Furan Carboxylic Acids Production with High Productivity by Cofactorâ€engineered Wholeâ€cell 1.8 23 Biocatalysts. ĆhemCatChem, 2020, 12, 3257-3264. Assessment of the chemical stability of furfural derivatives and the mixtures as fuel components. 491 3.4 15 Fuel, 2020, 271, 117594. Influence of acidity on the catalytic performance of Ni2P in liquid-phase hydrodeoxygenation of 492 furfural to 2-methylfuran. Journal of Nanoparticle Research, 2020, 22, 1.

#	Article	IF	CITATIONS
493	Biâ€Functional Magnesium Silicate Catalyzed Glucose and Furfural Transformations to Renewable Chemicals. ChemCatChem, 2020, 12, 4807-4816.	1.8	5
494	Eco-friendly upconversion of limestone into value-added calcium formate. Green Chemistry, 2020, 22, 4995-5001.	4.6	1
495	Selective Activation of C–OH, C–O–C, or C╀ in Furfuryl Alcohol by Engineered Pt Sites Supported on Layered Double Oxides. ACS Catalysis, 2020, 10, 8032-8041.	5.5	73
496	High yield self-nitrogen-oxygen doped hydrochar derived from microalgae carbonization in bio-oil: Properties and potential applications. Bioresource Technology, 2020, 314, 123735.	4.8	25
497	Maximization of furanic compounds formation by dehydration and hydrogenation of xylose in one step over SO3–H functionalized H-β catalyst in alcohol media. Biomass and Bioenergy, 2020, 139, 105646.	2.9	8
498	Minireview on Bio-Oil Upgrading via Electrocatalytic Hydrogenation: Connecting Biofuel Production with Renewable Power. Energy & amp; Fuels, 2020, 34, 7915-7928.	2.5	55
499	A gram scale selective oxidation of 5-hydroxymethylfurfural to diformylfuran in the presence of oxone and catalyzed by 2-iodobenzenesulfonic acid. New Journal of Chemistry, 2020, 44, 11577-11583.	1.4	4
500	Hydrogenolysis of tetrahydrofuran-2-carboxylic acid over tungsten-modified rhodium catalyst. Applied Catalysis A: General, 2020, 602, 117723.	2.2	9
501	UV-Curable Biobased Polyacrylates Based on a Multifunctional Monomer Derived from Furfural. Macromolecules, 2020, 53, 1388-1404.	2.2	19
502	An alloy chemistry strategy to tailoring the d-band center of Ni by Cu for efficient and selective catalytic hydrogenation of furfural. Journal of Catalysis, 2020, 383, 172-180.	3.1	119
503	Controllable chemoselective hydrogenation of furfural by PdAg/C bimetallic catalysts under ambient operating conditions: an interesting Ag switch. Green Chemistry, 2020, 22, 1432-1442.	4.6	38
504	Catalytic transfer hydrogenation of maleic acid with stoichiometric amounts of formic acid in aqueous phase: paving the way for more sustainable succinic acid production. Green Chemistry, 2020, 22, 1859-1872.	4.6	32
505	Synthesis of Furfuryl Alcohol from Furfural: A Comparison between Batch and Continuous Flow Reactors. Energies, 2020, 13, 1002.	1.6	25
506	New Insights on the Dynamic Role of the Protecting Agent on the Reactivity of Supported Gold Nanoparticles. ChemCatChem, 2020, 12, 1653-1663.	1.8	3
507	Selective conversion of hemicellulose into furfural over low-cost metal salts in a γ-valerolactone/water solution. Industrial Crops and Products, 2020, 147, 112248.	2.5	26
508	Sustainable Chemicals: A Brief Survey of the Furans. Chemistry Africa, 2020, 3, 481-496.	1.2	26
509	Highly Selective Reduction of Bio-Based Furfural to Furfuryl Alcohol Catalyzed by Supported KF with Polymethylhydrosiloxane (PMHS). Journal of Chemistry, 2020, 2020, 1-10.	0.9	4
510	Bio-resourced furan resin as a sustainable alternative to petroleum-based phenolic resin for making GFR polymer composites. Iranian Polymer Journal (English Edition), 2020, 29, 287-299.	1.3	14

#	Article	IF	CITATIONS
511	A facile conversion of furfural to novel tetrahydrofurfuryl hemiacetals. Applied Catalysis A: General, 2020, 594, 117471.	2.2	2
512	Conversion of furfural to tetrahydrofuran-derived secondary amines under mild conditions. Green Chemistry, 2020, 22, 1832-1836.	4.6	16
513	Directing the Simultaneous Conversion of Hemicellulose and Cellulose in Raw Biomass to Lactic Acid. ACS Sustainable Chemistry and Engineering, 2020, 8, 4244-4255.	3.2	47
514	Strategies to Control Electrochemical Hydrogenation and Hydrogenolysis of Furfural and Minimize Undesired Side Reactions. ACS Catalysis, 2020, 10, 3212-3221.	5.5	101
515	Hydrodeoxygenation of lignocellulose-derived oxygenates to diesel or jet fuel range alkanes under mild conditions. Catalysis Science and Technology, 2020, 10, 1151-1160.	2.1	11
516	Direct Catalytic Conversion of Furfural to Furanâ€derived Amines in the Presence of Ruâ€based Catalyst. ChemSusChem, 2020, 13, 1699-1704.	3.6	25
517	Green pathway to a new fuel extender: continuous flow catalytic synthesis of butanol/butyl butyrate mixtures. RSC Advances, 2020, 10, 3130-3136.	1.7	2
518	Valorization of humin as a glucose derivative to fabricate a porous carbon catalyst for esterification and hydroxyalkylation/alkylation. Waste Management, 2020, 103, 407-415.	3.7	16
519	Oxidation of biomass-derived furans to maleic acid over nitrogen-doped carbon catalysts under acid-free conditions. Catalysis Science and Technology, 2020, 10, 1498-1506.	2.1	30
520	Selectivity Control in Catalytic Reductive Amination of Furfural to Furfurylamine on Supported Catalysts. ChemCatChem, 2020, 12, 2106-2115.	1.8	38
521	Capping Agent Effect on Pd-Supported Nanoparticles in the Hydrogenation of Furfural. Catalysts, 2020, 10, 11.	1.6	23
522	On the Economics and Process Design of Renewable Butadiene from Biomass-Derived Furfural. ACS Sustainable Chemistry and Engineering, 2020, 8, 3273-3282.	3.2	22
523	Bimetal composites for photocatalytic reduction of CO ₂ to CO in the near-infrared region by the SPR effect. Dalton Transactions, 2020, 49, 5074-5086.	1.6	16
524	Protection Strategies Enable Selective Conversion of Biomass. Angewandte Chemie, 2020, 132, 11800-11812.	1.6	19
525	Bimetallic Pd-Au/SiO2 Catalysts for Reduction of Furfural in Water. Catalysts, 2020, 10, 444.	1.6	19
526	Conversion of waste lignocellulose to furfural using sulfonated carbon microspheres as catalyst. Waste Management, 2020, 108, 119-126.	3.7	51
527	The effect of metal precursor on copper phase dispersion and nanoparticle formation for the catalytic transformations of furfural. Applied Catalysis B: Environmental, 2020, 273, 119062.	10.8	46
528	Furfural Derivatives as Fuel Components. Chemistry and Technology of Fuels and Oils, 2020, 55, 720-725.	0.2	9

		CITATION REPORT		
#	Article		IF	CITATIONS
529	Furfural as a renewable chemical platform for furfuryl alcohol production. , 2020, , 299	-322.		8
530	The role of nitride species in the gas-phase furfural hydrogenation activity of supported catalysts. Molecular Catalysis, 2020, 487, 110889.	d nickel	1.0	9
531	Importance of Magnesium in Cu-Based Catalysts for Selective Conversion of Biomass-I Compounds to Diols. ACS Sustainable Chemistry and Engineering, 2020, 8, 5217-5228		3.2	63
532	Continuous Hydrogenation of Aqueous Furfural Using a Metal-Supported Activated Ca ACS Omega, 2020, 5, 7836-7849.	rbon Monolith.	1.6	15
533	Catalytic hydrodeoxygenation of biomass-derived pyrolysis oil over alloyed bimetallic N nanocatalyst for high-grade biofuel production. Energy Conversion and Management, 3		4.4	47
534	Non-Energy Valorization of Residual Biomasses via HTC: CO2 Capture onto Activated H Applied Sciences (Switzerland), 2020, 10, 1879.	Hydrochars.	1.3	13
535	Ruâ€Catalyzed Carbonylative Murai Reaction: Directed C3â€Acylation of Biomassâ€De Heteroaromatics. Advanced Synthesis and Catalysis, 2020, 362, 2486-2493.	erived 2â€Formyl	2.1	16
536	Iron and chromium MOFs as sustainable catalysts for transfer hydrogenation of carbor and biomass conversions. New Journal of Chemistry, 2020, 44, 8223-8231.	nyl compounds	1.4	20
537	Oxidation of lignocellulosic platform molecules to value-added chemicals using hetero catalytic technologies. Catalysis Science and Technology, 2020, 10, 2721-2757.	geneous	2.1	60
538	Hydroxyalkylation/alkylation of 2-methylfuran and furfural over niobic acid catalysts fo synthesis of high carbon transport fuel precursors. Sustainable Energy and Fuels, 2020	r the), 4, 3018-3028.	2.5	18
539	conversion of furfuryl acetate to 1,4-pentanediol and cyclopentanol in aqueous mediu Journal of Chemistry, 2021, 99, 113-126.	m. Canadian	0.6	3
540	Efficient hydrogenation of furfural to fufuryl alcohol over hierarchical MOF immobilized catalysts. Catalysis Today, 2021, 368, 217-223.	l metal	2.2	15
541	An Insight into the Valorization of Hemicellulose Fraction of Biomass into Furfural: Cat Conversion and Product Separation. Waste and Biomass Valorization, 2021, 12, 531-5		1.8	48
542	Residual Mexican biomasses for bioenergy and fine chemical production: correlation be composition and specific applications. Biomass Conversion and Biorefinery, 2021, 11,		2.9	21
543	Interfacial effect of Pd supported on mesoporous oxide for catalytic furfural hydrogena Catalysis Today, 2021, 365, 291-300.	ation.	2.2	13
544	Effect of Ni Metal Content on Emulsifying Properties of Ni/CNTox Catalysts for Catalyt of Furfural in Pickering Emulsions. ChemCatChem, 2021, 13, 682-694.	ic Conversion	1.8	11
545	Hydroconversion of xylose derived ketals: A key strategy for producing A broad range of green-hydrocarbons suitable as fuels and petrochemicals. Applied Catalysis A: General,	of 2021, 609, 117911.	2.2	5
546	Evaluation of the ZrO2/Al2O3 system as catalysts in the catalytic transfer hydrogenati to obtain furfuryl alcohol. Applied Catalysis A: General, 2021, 609, 117905.	on of furfural	2.2	32

#	Article	IF	CITATIONS
547	A review on solvent systems for furfural production from lignocellulosic biomass. Renewable and Sustainable Energy Reviews, 2021, 137, 110172.	8.2	131
548	Sustainable production of fuels and chemicals from biomass over niobium based catalysts: A review. Catalysis Today, 2021, 374, 61-76.	2.2	30
549	Ultrasound Assisted Conversion of Corncob-Derived Xylan to Furfural Under HSO3-ZSM-5 Zeolite Catalyst. Waste and Biomass Valorization, 2021, 12, 1955-1962.	1.8	7
550	Condensation of furans for the production of diesel precursors: A study on the effects of surface acid sites of sulfonated carbon catalysts. Catalysis Today, 2021, 375, 155-163.	2.2	9
551	Boron doped magnetic catalysts for selective transfer hydrogenation of furfural into furfuryl alcohol. Chemical Engineering Science, 2021, 229, 116075.	1.9	21
552	A Combined Experimental–Theoretical Study on Dielsâ€Alder Reaction with Bioâ€Based Furfural: Towards Renewable Aromatics. ChemSusChem, 2021, 14, 313-323.	3.6	23
553	An Account of the Catalytic Transfer Hydrogenation and Hydrogenolysis of Carbohydrateâ€Derived Renewable Platform Chemicals over Nonâ€Precious Heterogeneous Metal Catalysts. ChemCatChem, 2021, 13, 59-80.	1.8	36
554	Biorefinery roadmap based on catalytic production and upgrading 5-hydroxymethylfurfural. Green Chemistry, 2021, 23, 119-231.	4.6	223
555	Production of liquid fuel intermediates from furfural via aldol condensation over La2O2CO3-ZnO-Al2O3 catalyst. Catalysis Communications, 2021, 149, 106207.	1.6	20
556	Selective synthesis of dioxolane biofuel additive via acetalization of glycerol and furfural enhanced by MCM-41-alanine bifunctional catalyst. Fuel, 2021, 288, 119573.	3.4	20
557	Direct Diels–Alder reactions of furfural derivatives with maleimides. Green Chemistry, 2021, 23, 367-373.	4.6	38
558	Atom efficient PtCu bimetallic catalysts and ultra dilute alloys for the selective hydrogenation of furfural. Applied Catalysis B: Environmental, 2021, 284, 119737.	10.8	49
559	High performance of Au/ZTC based catalysts for the selective oxidation of bio-derivative furfural to 2-furoic acid. Catalysis Communications, 2021, 149, 106234.	1.6	30
560	Indoor heterogeneous photochemistry of furfural drives emissions of nitrous acid. Indoor Air, 2021, 31, 682-692.	2.0	10
561	Recognizing soft templates as stimulators in multivariate modulation of tin phosphate and its application in catalysis for alkyl levulinate synthesis. Catalysis Science and Technology, 2021, 11, 272-282.	2.1	5
562	Different Facets of Lignocellulosic Biomass Including Pectin and Its Perspectives. Waste and Biomass Valorization, 2021, 12, 4805-4823.	1.8	34
563	Transfer hydrogenation of furfural to furfuryl alcohol over modified Zr-based catalysts using primary alcohols as H-donors. Molecular Catalysis, 2021, 499, 111199.	1.0	11
564	A comparison on the efficiency of raw activated carbon, oxidized, and sulfurized adsorbents for furfural adsorption. AEJ - Alexandria Engineering Journal, 2021, 60, 1241-1248.	3.4	8

#	Article	IF	CITATIONS
565	A Divergent Paired Electrochemical Process for the Conversion of Furfural Using a Dividedâ€Cell Flow Microreactor. ChemSusChem, 2021, 14, 590-594.	3.6	24
566	One-Pot Cascade Conversion of Renewable Furfural to Levulinic Acid over a Bifunctional H ₃ PW ₁₂ O ₄₀ /SiO ₂ Catalyst in the Absence of External H ₂ . Energy & Fuels, 2021, 35, 539-545.	2.5	18
567	A one-step electrochemically reduced graphene oxide based sensor for sensitive voltammetric determination of furfural in milk products. Analytical Methods, 2021, 13, 56-63.	1.3	14
568	A Hybrid Catalytic Conversion of Corncob to Furfurylamine in Tandem Reaction with Aluminium-Based Alkaline-Treated Graphite and ω-Transaminase Biocatalyst in γ-Valerolactone–Water. Catalysis Letters, 2021, 151, 1834-1841.	1.4	3
569	Efficient single-atom Ni for catalytic transfer hydrogenation of furfural to furfuryl alcohol. Journal of Materials Chemistry A, 2021, 9, 1110-1118.	5.2	102
570	Highly active organosulfonic aryl-silica nanoparticles as efficient catalysts for biomass derived biodiesel and fuel additives. Biomass and Bioenergy, 2021, 145, 105936.	2.9	16
571	Study of highly furfural-containing refinery wastewater streams using a conventional homogeneous Fenton process. Journal of Environmental Chemical Engineering, 2021, 9, 104894.	3.3	13
572	Recent advances in heterogeneous catalytic transfer hydrogenation/hydrogenolysis for valorization of biomass-derived furanic compounds. Green Chemistry, 2021, 23, 670-688.	4.6	106
573	Surface kinetics and transport phenomena modelling for furfural hydrotreatment over Pd/C in isopropanol and tetrahydrofuran. Applied Surface Science, 2021, 541, 148485.	3.1	13
574	Biobased Aldehydes from Fatty Epoxides through Thermal Cleavage of βâ€Hydroxy Hydroperoxides**. ChemSusChem, 2021, 14, 379-386.	3.6	9
575	Cu2O(100) surface as an active site for catalytic furfural hydrogenation. Applied Catalysis B: Environmental, 2021, 282, 119576.	10.8	43
576	Furfural and Chemical Routes for Its Transformation into Various Products. , 2021, , 705-719.		1
577	Microbial Degradation of Lignocellulosic Biomass to Obtain High Value-Added Products. Environmental and Microbial Biotechnology, 2021, , 283-314.	0.4	0
578	A rigid plant oil-based thermoset with a furfural-derived cyclobutane cross-linker. Green Chemistry, 2021, 23, 8053-8060.	4.6	7
579	Electrocatalytic reduction of furfural with high selectivity to furfuryl alcohol using AgPd alloy nanoparticles. Nanoscale, 2021, 13, 2312-2316.	2.8	17
580	Green strategies for transition metal-catalyzed C–H activation in molecular syntheses. Organic Chemistry Frontiers, 2021, 8, 4886-4913.	2.3	59
581	Nanoglobular carbon and palladium–nanoglobular carbon catalysts for liquid-phase hydrogenation of organic compounds. Russian Chemical Reviews, 2022, 91, .	2.5	10
582	Selective hydrogenation of levulinic acid to γ-valerolactone using bimetallic Pd-Fe catalyst supported on titanium oxide. IOP Conference Series: Materials Science and Engineering, 0, 980, 012013.	0.3	8

#	Article	IF	CITATIONS
583	A plug-and-play chemobiocatalytic route for the one-pot controllable synthesis of biobased C4 chemicals from furfural. Green Chemistry, 2021, 23, 8604-8610.	4.6	12
584	Ruthenium Nanoparticles Intercalated in Montmorillonite (nano-Ru@MMT) Is Highly Efficient Catalyst for the Selective Hydrogenation of 2-Furaldehyde in Benign Aqueous Medium. Catalysts, 2021, 11, 66.	1.6	6
585	Elevated-temperature H ₂ separation using a dense electron and proton mixed conducting polybenzimidazole-based membrane with 2D sulfonated graphene. Green Chemistry, 2021, 23, 3374-3385.	4.6	14
586	Paired electrolysis of 5-(hydroxymethyl)furfural in flow cells with a high-performance oxide-derived silver cathode. Green Chemistry, 2021, 23, 5056-5063.	4.6	41
587	Steps towards sustainable solid phase peptide synthesis: use and recovery of <i>N</i> -octyl pyrrolidone. Green Chemistry, 2021, 23, 4095-4106.	4.6	21
588	Achieving small non-radiative energy loss through synergically non-fullerene electron acceptor selection and side chain engineering in benzo[1,2- <i>b</i> :4,5- <i>b</i> à€²]difuran polymer-based organic solar cells. Journal of Materials Chemistry A, 2021, 9, 15798-15806.	5.2	14
589	Selectivity switch by phase switch – the key to a high-yield furfural process. Green Chemistry, 2021, 23, 8079-8088.	4.6	7
590	Recent advances in the conversion of furfural into bio-chemicals through chemo- and bio-catalysis. RSC Advances, 2021, 11, 27042-27058.	1.7	44
591	Insights into Sustainable Câ \in "H Bond Activation. , 2021, , 253-318.		0
592	Biosolvents as green solvents in the pharmaceutical industry. , 2021, , 105-149.		1
593	Air-Stable and Reusable Cobalt Phosphide Nanoalloy Catalyst for Selective Hydrogenation of Furfural Derivatives. ACS Catalysis, 2021, 11, 750-757.	5.5	60
594	Glucose–Carbon Hybrids as Pt Catalyst Supports for the Continuous Furfural Hydroconversion in Gas Phase. Catalysts, 2021, 11, 49.	1.6	8
595	Metal and solvent-dependent activity of spinel-based catalysts for the selective hydrogenation and rearrangement of furfural. Sustainable Energy and Fuels, 2021, 5, 3191-3204.	2.5	12
596	Completely Solar-Driven Photoelectrochemical Water Splitting Using a Neat Polythiophene Film. Cell Reports Physical Science, 2021, 2, 100306.	2.8	10
597	Electrocatalytic hydrogenation of furfural using non-noble-metal electrocatalysts in alkaline medium. Green Chemistry, 2021, 23, 4201-4212.	4.6	34
598	The processing-module assembly strategy for continuous bio-oxidation of furan chemicals by integrated and coupled biotechnology. Green Chemistry, 2021, 23, 1330-1336.	4.6	13
599	Ru Nanoparticles on a Sulfonated Carbon Layer Coated SBA-15 for Catalytic Hydrogenation of Furfural into 1, 4-pentanediol. Catalysis Letters, 2021, 151, 2513-2526.	1.4	14
600	Kinetic and structural understanding of bulk and supported vanadium-based catalysts for furfural oxidation to maleic anhydride. Catalysis Science and Technology, 2021, 11, 6477-6489.	2.1	1

#	Article	IF	CITATIONS
601	Hydrogenation of Cyclic 1,3-Diones to Their 1,3-Diols Using Heterogeneous Catalysts: Toward a Facile, Robust, Scalable, and Potentially Bio-Based Route. ACS Omega, 2021, 6, 4313-4328.	1.6	4
602	Catalytic Conversion of Alcohols into Value-Added Products. , 2021, , 505-590.		0
603	Sustainable agricultural waste diversity: advances in green energy and materials production. , 2021, , 55-73.		1
604	Development of completely furfural-based renewable polyesters with controllable properties. Green Chemistry, 2021, 23, 2437-2448.	4.6	20
605	Assessing the Economic Viability of Pretreatment Technologies to Make Sugars for Chemical Catalytic Upgrading to Fuels and Chemicals. Sustainable Energy and Fuels, 0, , .	2.5	0
606	Combination of Highly Efficient Electrocatalytic Water Oxidation with Selective Oxygenation of Organic Substrates using Manganese Borophosphates. Advanced Materials, 2021, 33, e2004098.	11.1	52
607	Synthesis of amides and esters containing furan rings under microwave-assisted conditions. Open Chemistry, 2021, 19, 265-280.	1.0	3
608	Converting Co2+-impregnated g-C3N4 into N-doped CNTs-confined Co nanoparticles for efficient hydrogenation rearrangement reactions of furanic aldehydes. Nano Research, 2021, 14, 2846-2852.	5.8	18
610	Selective Hydrogenation of Furfural over the Co-Based Catalyst: A Subtle Synergy with Ni and Zn Dopants. ACS Applied Materials & Interfaces, 2021, 13, 8507-8517.	4.0	49
611	Furfural hydrodeoxygenation (HDO) over silica-supported metal phosphides – The influence of metal–phosphorus stoichiometry on catalytic properties. Journal of Catalysis, 2021, 403, 181-193.	3.1	28
612	Effects of Sugars and Degradation Products Derived from Lignocellulosic Biomass on Maleic Acid Production. Energies, 2021, 14, 918.	1.6	4
613	Toward Value-Added Dicarboxylic Acids from Biomass Derivatives via Thermocatalytic Conversion. ACS Catalysis, 2021, 11, 2524-2560.	5.5	75
614	Biomass-derived <i>rctt</i> -3,4-di-2-furanyl-1,2-cyclobutanedicarboxylic acid: a polytopic ligand for synthesizing green metal-organic materials. Journal of Coordination Chemistry, 2021, 74, 226-240.	0.8	7
615	Improvement on the catalytic performances of butyl levulinate hydrogenation to Î ³ -valerolactone over self-regenerated CuNiCoB/Palygorskite catalyst. Molecular Catalysis, 2021, 504, 111483.	1.0	4
616	One-step complexed preparation of nitrogen and Cu co-doped oxidative active carbon catalysts Cu-N/OAC for furfural selective hydrogenation with high yield. Catalysis Communications, 2021, 151, 106266.	1.6	10
617	Electrochemical Routes for the Valorization of Biomass-Derived Feedstocks: From Chemistry to Application. ACS Energy Letters, 0, , 1205-1270.	8.8	130
618	Electrocatalytic synthesis of heterocycles from biomass-derived furfuryl alcohols. Nature Communications, 2021, 12, 1868.	5.8	28
619	Metal Subâ€nanoclusters Confined within Hierarchical Porous Carbons with High Oxidation Activity. Angewandte Chemie - International Edition, 2021, 60, 10842-10849.	7.2	36

#	Article	IF	CITATIONS
620	Furfural hydrogenation, hydrodeoxygenation and etherification over MoO2 and MoO3: A combined experimental and theoretical study. Applied Surface Science, 2021, 543, 148836.	3.1	17
621	Comparative study on the conversion of Acacia mangium wood sawdust-derived xylose-containing acid hydrolysate to furfural by sulfonated solid catalysts prepared from different lignocellulosic biomass residues. Wood Science and Technology, 2021, 55, 659-679.	1.4	11
622	Tuning the Reaction Selectivity over MgAl Spinel-Supported Pt Catalyst in Furfuryl Alcohol Conversion to Pentanediols. Catalysts, 2021, 11, 415.	1.6	2
623	Base activation of persulfate: an effective pretreatment method to enhance glucose production from lignocellulosic biomass. Cellulose, 2021, 28, 4039-4051.	2.4	6
624	Metal Subâ€nanoclusters Confined within Hierarchical Porous Carbons with High Oxidation Activity. Angewandte Chemie, 2021, 133, 10937-10944.	1.6	0
625	Hydrogen solubility in bio-based furfural and furfuryl alcohol at elevated temperatures and pressures relevant for hydrodeoxygenation. Fuel, 2021, 290, 120021.	3.4	14
626	A critical review of recent advances in the production of furfural and 5-hydroxymethylfurfural from lignocellulosic biomass through homogeneous catalytic hydrothermal conversion. Renewable and Sustainable Energy Reviews, 2021, 139, 110706.	8.2	162
627	Modified activated carbon by air oxidation as a potential adsorbent for furfural removal. AEJ - Alexandria Engineering Journal, 2021, 60, 2325-2333.	3.4	14
628	Batch and Continuousâ€Flow Preparation of Biomassâ€Derived Furfural Acetals over a TiO ₂ Nanoparticleâ€Exfoliated Montmorillonite Composite Catalyst. ChemSusChem, 2021, 14, 2341-2351.	3.6	16
629	Methanol-Driven Oxidative Rearrangement of Biogenic Furans – Enzyme Cascades vs. Photobiocatalysis. Frontiers in Chemistry, 2021, 9, 635883.	1.8	2
630	Improving Hydrothermal Stability of Supported Metal Catalysts for Biomass Conversions: A Review. ACS Catalysis, 2021, 11, 5248-5270.	5.5	86
631	Base-Free Synthesis of Furfurylamines from Biomass Furans Using Ru Pincer Complexes. Catalysts, 2021, 11, 558.	1.6	15
632	Sulfonated foam catalysts for the continuous dehydration of xylose to furfural in biphasic media. Catalysis Today, 2021, 365, 274-281.	2.2	10
633	Hydrogen-free hydrogenation of furfural to furfuryl alcohol and 2-methylfuran over Ni and Co-promoted Cu/l³-Al2O3 catalysts. Fuel Processing Technology, 2021, 214, 106721.	3.7	43
634	On the Role of Protonic Acid Sites in Cu Loaded FAU31 Zeolite as a Catalyst for the Catalytic Transformation of Furfural to Furan. Molecules, 2021, 26, 2015.	1.7	2
635	Insights into Hydrodeoxygenation of Furfural and Guaiacol Mixture: Experimental and Theoretical Studies. Journal of Physical Chemistry C, 2021, 125, 7647-7657.	1.5	6
636	Domino transformation of furfural to γ-valerolactone over SAPO-34 zeolite supported zirconium phosphate catalysts with tunable Lewis and BrÃ,nsted acid sites. Molecular Catalysis, 2021, 506, 111538.	1.0	19
637	Catalytic Conversion of Xylose to Furfural by p-Toluenesulfonic Acid (pTSA) and Chlorides: Process Optimization and Kinetic Modeling. Molecules, 2021, 26, 2208.	1.7	24

#	Article	IF	CITATIONS
638	Perspectives on Multifunctional Catalysts Derived from Layered Double Hydroxides toward Upgrading Reactions of Biomass Resources. ACS Catalysis, 2021, 11, 6440-6454.	5.5	46
639	Rational design of bifunctional hierarchical Pd/SAPO-5 for the synthesis of tetrahydrofuran derivatives from furfural. Journal of Catalysis, 2021, 397, 75-89.	3.1	7
640	Gas-phase etherification of cyclopentanol with methanol to cyclopentyl methyl ether catalyzed by zeolites. Applied Catalysis A: General, 2021, 618, 118122.	2.2	4
641	Novel C@Ni3P Nanoparticles for Highly Selective Hydrogenation of Furfural to Furfuryl Alcohol. Catalysis Letters, 2022, 152, 883-894.	1.4	8
642	From useless humins by-product to Nb@graphite-like carbon catalysts highly efficient in HMF synthesis. Applied Catalysis A: General, 2021, 618, 118130.	2.2	18
643	CaO catalyst for multi-route conversion of oakwood biomass to value-added chemicals and fuel precursors in fast pyrolysis. Applied Catalysis B: Environmental, 2021, 285, 119858.	10.8	56
644	Liquid phase hydrodeoxygenation of furfural over laponite supported NiPMoS nanocatalyst: Effect of phosphorus addition and laponite support. Journal of Solid State Chemistry, 2021, 297, 122050.	1.4	5
647	Advances in catalytic production of value-added biochemicals and biofuels via furfural platform derived lignocellulosic biomass. Biomass and Bioenergy, 2021, 148, 106033.	2.9	69
648	Engineering Promiscuous Alcohol Dehydrogenase Activity of a Reductive Aminase AspRedAm for Selective Reduction of Biobased Furans. Frontiers in Chemistry, 2021, 9, 610091.	1.8	6
649	Biosurfactants produced from corncob: a bibliometric perspective of a renewable and promising substrate. Preparative Biochemistry and Biotechnology, 2022, 52, 123-134.	1.0	5
650	Hydrogenolysis of Furfuryl Alcohol to 1,2â€Pentanediol Over Supported Ruthenium Catalysts. ChemistryOpen, 2021, 10, 731-736.	0.9	6
651	Effect of Pt Particle Size and Phosphorous Addition on Furfural Hydrogenation Over Pt/Al2O3. Catalysis Letters, 2022, 152, 980-990.	1.4	3
652	Pd ₃ Pb Nanosponges for Selective Conversion of Furfural to Furfuryl Alcohol under Mild Condition. Small Methods, 2021, 5, e2100400.	4.6	8
653	Synthesis and Properties of Furan Derivatives for Epoxy Resins. ACS Sustainable Chemistry and Engineering, 2021, 9, 8018-8031.	3.2	44
654	Furan Compound Production from Moso Bamboo (<i>Phyllostachys edulis</i>) in 1-Methylimidazolium Hydrogensulfate with Vacuum Steam Distillation Technique and Reusability of the Reaction Medium. Zairyo/Journal of the Society of Materials Science, Japan, 2021, 70, 554-560.	0.1	0
655	Palladium confined in pure-silica TON zeolite for furfuryl alcohol hydrogenation into tetrahydrofurfuryl alcohol. Microporous and Mesoporous Materials, 2021, 322, 111161.	2.2	14
656	Mini-Review on the Synthesis of Furfural and Levulinic Acid from Lignocellulosic Biomass. Processes, 2021, 9, 1234.	1.3	24
657	Simultaneous production of 1,6-hexanediol, furfural, and high-purity lignin from white birch: Process integration and techno-economic evaluation. Bioresource Technology, 2021, 331, 125009.	4.8	19

#	Article	IF	Citations
658	Nickel-phosphorus-boron amorphous alloy nanotubes improves the selective hydrogenation of furfural to furfuryl alcohol. Materials Express, 2021, 11, 1214-1222.	0.2	2
659	Selective Conversion of Furfural into Diols over Co-Based Catalysts: Importance of the Coordination of Hydrogenation Sites and Basic Sites. Industrial & Engineering Chemistry Research, 2021, 60, 10393-10406.	1.8	21
660	Recyclable Ir Nanoparticles for the Catalytic Hydrogenation of Biomass-Derived Carbonyl Compounds. Catalysts, 2021, 11, 914.	1.6	2
661	PdO Supported on TiO ₂ for the Oxidative Condensation of Furfural with Ethanol: Insights on Reactivity and Product Selectivity. ACS Sustainable Chemistry and Engineering, 2021, 9, 10100-10112.	3.2	7
662	Hydrogenation of Furfural to Furfuryl Alcohol over Nickel Supported Bentonite Catalyst. ChemistrySelect, 2021, 6, 6601-6606.	0.7	12
663	Catalytic Transformation of the Furfural Platform into Bifunctionalized Monomers for Polymer Synthesis. ACS Catalysis, 2021, 11, 10058-10083.	5.5	60
664	Catalytic conversion of GVL to biofuels using Cu and Pt catalysts over microwave-synthesized FAU zeolite. Catalysis Today, 2022, 392-393, 105-115.	2.2	4
665	Sustainable Production of Furfural in Biphasic Reactors Using Terpenoids and Hydrophobic Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2021, 9, 10266-10275.	3.2	21
666	Cell wall hemicellulose for sustainable industrial utilization. Renewable and Sustainable Energy Reviews, 2021, 144, 110996.	8.2	83
667	Efficient synthesis of bioetheric fuel additive by combining the reductive and direct etherification of furfural in one-pot over Pd nanoparticles deposited on zeolites. Green Energy and Environment, 2023, 8, 519-529.	4.7	4
669	Boosted activity of Cu/SiO2 catalyst for furfural hydrogenation by freeze drying. Chinese Chemical Letters, 2022, 33, 912-915.	4.8	10
670	Synthesis of catalysts by pyrolysis of Cu-chitosan complexes and their evaluation in the hydrogenation of furfural to value-added products. Molecular Catalysis, 2021, 512, 111774.	1.0	4
671	Feasible synthesis of bifurfural from renewable furfural derived 5-bromofurfural for polymerization. Molecular Catalysis, 2021, 513, 111814.	1.0	3
672	Selective transfer hydrogenation of biomass derived furanic molecules using cyclohexanol as a hydrogen donor over nanostructured Cu/MgO catalyst. Molecular Catalysis, 2021, 513, 111812.	1.0	8
673	Valorization of furfural using ruthenium (II) complexes containing phosphorus-nitrogen ligands under homogeneous transfer hydrogen condition. Molecular Catalysis, 2021, 513, 111729.	1.0	2
674	Cyclic organic carbonates from furanics: Opportunities and challenges. Current Opinion in Green and Sustainable Chemistry, 2021, 30, 100479.	3.2	11
675	Construction of Dotâ€Matrix Cu 0 â€Cu 1 Ni 3 Alloy Nanoâ€Dispersions on the Surface of Porous Nâ€Autodoped Biochar for Selective Hydrogenation of Furfural. ChemCatChem, 2021, 13, 4164.	1.8	6
676	Liquid phase hydrogenation of furfural to biofuel over robust NiCu/Laponite catalyst: A study on the role of copper loading. Advanced Powder Technology, 2021, 32, 3034-3045.	2.0	7

#	ARTICLE	IF	Citations
677	Catalytic Acetalization and Hydrogenation of Furfural over the Lightâ€Tunable Phosphated TiO ₂ Catalyst. ChemistrySelect, 2021, 6, 8074-8079.	0.7	3
678	RuO2–Ru/Hβ zeolite catalyst for high-yield direct conversion of xylose to tetrahydrofurfuryl alcohol. Applied Catalysis B: Environmental, 2021, 291, 120120.	10.8	30
679	Comparison of pyrolysis and hydrolysis processes for furfural production from sugar beet pulp: A case study in southern Idaho, USA. Journal of Cleaner Production, 2021, 311, 127695.	4.6	18
680	pHâ€Controlled Efficient Conversion of Hemicellulose to Furfural Using Cholineâ€Based Deep Eutectic Solvents as Catalysts. ChemSusChem, 2021, 14, 3953-3958.	3.6	10
681	Highly Dispersed CoNi Alloy Embedded in Nâ€doped Graphitic Carbon for Catalytic Transfer Hydrogenation of Biomassâ€derived Furfural. Chemistry - an Asian Journal, 2021, 16, 3194-3201.	1.7	21
682	Integrated Biorefinery Strategy for Valorization of Pineapple Processing Waste into High-Value Products. Waste and Biomass Valorization, 2022, 13, 631-643.	1.8	15
683	Encapsulation of CuO nanoparticles within silicalite-1 as a regenerative catalyst for transfer hydrogenation of furfural. IScience, 2021, 24, 102884.	1.9	15
684	Recent Advances in the Photocatalytic Conversion of Biomass-Derived Furanic Compounds. ACS Catalysis, 2021, 11, 11336-11359.	5.5	81
685	Transfer hydrogenation of furfural catalyzed by multi-centers collaborative Ni-based catalyst and kinetic research. Applied Catalysis A: General, 2021, 623, 118247.	2.2	10
686	Advances in Understanding the Selective Hydrogenolysis of Biomass Derivatives. ACS Catalysis, 2021, 11, 11193-11232.	5.5	43
687	Biomass-based hierarchical porous carbon with ultrahigh surface area for super-efficient adsorption and separation of acetone and methanol. Separation and Purification Technology, 2021, 269, 118690.	3.9	31
688	Acceptorless Photocatalytic Dehydrogenation of Furfuryl Alcohol (FOL) to Furfural (FAL) and Furoic Acid (FA) over Ti 3 C 2 T x /CdS under Visible Light. Chemistry - an Asian Journal, 2021, 16, 2932-2938.	1.7	6
689	Production of bio-jet fuel range hydrocarbons from catalytic HDO of biobased difurfurilydene acetone over Ni/SiO2-ZrO2 catalysts. Fuel, 2021, 297, 120783.	3.4	19
690	Conversion of lignocellulose to biofuels and chemicals via sugar platform: An updated review on chemistry and mechanisms of acid hydrolysis of lignocellulose. Renewable and Sustainable Energy Reviews, 2021, 146, 111169.	8.2	138
691	2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines. Renewable and Sustainable Energy Reviews, 2021, 148, 111265.	8.2	96
692	Highly Controllable Hydrogenative Ring Rearrangement and Complete Hydrogenation Of Biobased Furfurals over Pd/La ₂ B ₂ O ₇ (B=Ti, Zr, Ce). ChemCatChem, 2021, 13, 4549-4556.	1.8	11
693	Magnetic Fe3O4 nanoparticles and ZrO2-doped mesoporous MCM-41 as a monolithic multifunctional catalyst for Î ³ -valerolactone production directly from furfural. Fuel, 2021, 300, 120996.	3.4	26
694	New Chain Extenders for Self-Healing Polymers. Key Engineering Materials, 0, 899, 628-637.	0.4	1

#	Article	IF	CITATIONS
695	Biorefinery potential of Typha domingensis biomass to produce bioenergy and biochemicals assessed through pyrolysis, thermogravimetry, and TG-FTIR-GCMS-based study. Biomass Conversion and Biorefinery, 2023, 13, 10957-10969.	2.9	9
696	Differences of Short Straight-Chain Monoalcohols in the Value-Added Conversion of Furfural Catalyzed by Zr ₃ Al ₁ -MMO: Effect of Hydroxyl Position and Carbochain Length. ACS Sustainable Chemistry and Engineering, 2021, 9, 13312-13323.	3.2	13
697	Aqueous ozonation of furans: Kinetics and transformation mechanisms leading to the formation of α,β-unsaturated dicarbonyl compounds. Water Research, 2021, 203, 117487.	5.3	13
698	Reactivity of secondary <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>N</mml:mi>-alkyl acrylamides in Morita–Baylis–Hillman reactions. Comptes Rendus Chimie, 2021, 24, 319-330.</mml:math 	0.2	2
699	Toward efficient single-atom catalysts for renewable fuels and chemicals production from biomass and CO2. Applied Catalysis B: Environmental, 2021, 292, 120162.	10.8	114
700	Energy Densification of Biomass-Derived Furfurals to Furanic Biofuels by Catalytic Hydrogenation and Hydrodeoxygenation Reactions. Sustainable Chemistry, 2021, 2, 521-549.	2.2	6
701	Valorization of biomass-derived furfurals: reactivity patterns, synthetic strategies, and applications. Biomass Conversion and Biorefinery, 2023, 13, 10361-10386.	2.9	16
702	Acid–hydrolysed furfural production from rice straw bio-waste: Process synthesis, simulation, and optimisation. South African Journal of Chemical Engineering, 2021, 38, 34-40.	1.2	5
703	Ammonia-assisted hydrothermal carbon material with schiff base structures synthesized from factory waste hemicelluloses for Cr(VI) adsorption. Journal of Environmental Chemical Engineering, 2021, 9, 106187.	3.3	15
704	Pt atomic clusters catalysts with local charge transfer towards selective oxidation of furfural. Applied Catalysis B: Environmental, 2021, 295, 120290.	10.8	52
705	Environmental bio-oxidation of toxic furan by the co-recycling of waste fermented broth and rest cells. Biochemical Engineering Journal, 2021, 176, 108193.	1.8	3
706	Efficient valorization of biomass-derived furfural to fuel bio-additive over aluminum phosphate. Applied Catalysis B: Environmental, 2021, 298, 120575.	10.8	26
707	PdCu single atom alloys supported on alumina for the selective hydrogenation of furfural. Applied Catalysis B: Environmental, 2021, 299, 120652.	10.8	53
708	In-situ oxidation/reduction facilitates one-pot conversion of lignocellulosic biomass to bulk chemicals in alkaline solution. Chemical Engineering Journal, 2022, 429, 132365.	6.6	21
709	Selective hydrogenation of furanic compounds derived from sugars. , 2022, , 101-115.		0
710	Production of \hat{I}^3 -valerolactone and furfuryl alcohol via catalytic transfer hydrogenation. , 2022, , 193-222.		0
711	Furfural. , 2022, , 95-125.		0
712	A review of bio-refining process intensification in catalytic conversion reactions, separations and purifications of hydroxymethylfurfural (HMF) and furfural. Chemical Engineering Journal, 2022, 429, 132325.	6.6	127

#	Article	IF	CITATIONS
713	Solid catalysts for furfuryl alcohol conversion to drop-in chemicals. , 2022, , 291-311.		2
714	Hydrophilic and organophilic pervaporation of industrially important α,β and α,ω-diols. RSC Advances, 2021, 11, 9274-9284.	1.7	8
715	2-MeTHF. , 2021, , 75-98.		2
716	Selective hydrogenolysis of furfural into fuel-additive 2-methylfuran over a rhenium-promoted copper catalyst. Sustainable Energy and Fuels, 2021, 5, 1379-1393.	2.5	13
717	Furan platform chemicals beyond fuels and plastics. Green Chemistry, 2021, 23, 7458-7487.	4.6	43
718	Ligand-coordinated Ir single-atom catalysts stabilized on oxide supports for ethylene hydrogenation and their evolution under a reductive atmosphere. Catalysis Science and Technology, 2021, 11, 2081-2093.	2.1	17
719	Probing electrosynthetic reactions with furfural on copper surfaces. Chemical Communications, 2021, 57, 5127-5130.	2.2	20
720	Chemoselective formation of cyclo-aliphatic and cyclo-olefinic 1,3-diols via pressure hydrogenation of potentially biobased platform molecules using Knölker-type catalysts. Dalton Transactions, 2021, 50, 10102-10112.	1.6	3
721	Infrared spectroscopic measurements of the structure of organic thin films; furfural on Pd(111) and Au(111) surfaces. CrystEngComm, 2021, 23, 4534-4548.	1.3	8
722	Selective oxidation of biomass-derived furfural to 2(5H)-furanone using trifluoroacetic acid as the catalyst and hydrogen peroxide as a green oxidant. Biomass Conversion and Biorefinery, 2023, 13, 1029-1034.	2.9	7
723	Bio-based synthesis of cyclopentane-1,3-diamine and its application in bifunctional monomers for poly-condensation. Green Chemistry, 2021, 23, 7100-7114.	4.6	0
724	Metal-free photocatalytic aerobic oxidation of biomass-based furfural derivatives to prepare γ-butyrolactone. Green Chemistry, 2021, 23, 1758-1765.	4.6	13
725	Complete conversion of lignocellulosic biomass to mixed organic acids and ethylene glycol <i>via</i> cascade steps. Green Chemistry, 2021, 23, 2427-2436.	4.6	23
726	Exploration of benign deep eutectic solvent–water systems for the highly efficient production of furfurylamine from sugarcane bagasse <i>via</i> chemoenzymatic cascade catalysis. Green Chemistry, 2021, 23, 8154-8168.	4.6	50
727	Protection Strategies Enable Selective Conversion of Biomass. Angewandte Chemie - International Edition, 2020, 59, 11704-11716.	7.2	82
728	Biochemical Aspects of Coffee Fermentation. Food Engineering Series, 2021, , 149-208.	0.3	3
729	Production of Diols from Biomass. Biofuels and Biorefineries, 2017, , 343-373.	0.5	4
730	Towards furfural from the reaction of cellulosic biomass in zinc chloride hydrate solvents. Industrial Crops and Products, 2020, 146, 112179.	2.5	12

#	Article		CITATIONS
731	Simultaneous Direct Production of 5-Hydroxymethylfurfural (HMF) and Furfural from Corncob Biomass Using Porous HSO ₃ -ZSM-5 Zeolite Catalyst. Energy & Fuels, 2021, 35, 546-551.	2.5	26
732	Understanding the Role of M/Pt(111) (M = Fe, Co, Ni, Cu) Bimetallic Surfaces for Selective Hydrodeoxygenation of Furfural. ACS Catalysis, 2017, 7, 5758-5765.	5.5	76
733	Renewable Cyclobutane-1,3-dicarboxylic Acid (CBDA) Building Block Synthesized from Furfural via Photocyclization. ACS Sustainable Chemistry and Engineering, 2020, 8, 8909-8917.	3.2	22
734	Catalytic Processes and Catalyst Development in Biorefining. RSC Green Chemistry, 2018, , 25-64.	0.0	8
735	Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural. Chemical Society Reviews, 2020, 49, 4273-4306.	18.7	559
736	Wettability of welded wood-joints investigated by the Wilhelmy method: part 2. Effect of wollastonite additive. Holzforschung, 2021, 75, 79-86.	0.9	4
737	Common Reactions of Furfural to scalable processes of Residual Biomass. Ciencia En Desarrollo, 2020, 11, 63-80.	0.1	11
738	Alcohol-mediated Reduction of Biomass-derived Furanic Aldehydes via Catalytic Hydrogen Transfer. Current Organic Chemistry, 2019, 23, 2168-2179.	0.9	7
739	Experimental and Kinetic Study on the Production of Furfural and HMF from Glucose. Catalysts, 2021, 11, 11.	1.6	29
740	Nanocarbon from Rocket Fuel Waste: The Case of Furfuryl Alcohol-Fuming Nitric Acid Hypergolic Pair. Nanomaterials, 2021, 11, 1.	1.9	113
741	Electrocatalytic hydrogenation of furfural paired with photoelectrochemical oxidation of water and furfural in batch and flow cells. Reaction Chemistry and Engineering, 2021, 6, 2342-2353.	1.9	11
742	An IMDAF approach to annellated 1,4:5,8-diepoxynaphthalenes and their metathesis reaction leading to novel scaffolds displaying an antiproliferative activity toward cancer cells. New Journal of Chemistry, 2021, 45, 19497-19505.	1.4	4
743	Unlocking the potential of biofuels <i>via</i> reaction pathways in van Krevelen diagrams. Green Chemistry, 2021, 23, 8949-8963.	4.6	20
744	Taming the butterfly effect: modulating catalyst nanostructures for better selectivity control of the catalytic hydrogenation of biomass-derived furan platform chemicals. Catalysis Science and Technology, 2021, 11, 7785-7806.	2.1	17
745	Recent applications of photoredox catalysis in <i>O-</i> heterocycles: A short review. Synthetic Communications, 2021, 51, 3033-3058.	1.1	22
746	Recent advances in lignocellulosic biomass for biofuels and value-added bioproducts - A critical review. Bioresource Technology, 2022, 344, 126195.	4.8	222
747	Development of Biobased Materials Derived from Furfural. Journal of the Adhesion Society of Japan, 2017, 53, 276-282.	0.0	1
748	Energy and Material Flows and Carbon Footprint Assessment Concerning the Production of HMF and Furfural from a Cellulosic Biomass. Processes, 2020, 8, 119.	1.3	18

#	Article	IF	CITATIONS
750	Catalytic C-C coupling of furanic platform chemicals to high carbon fuel precursors over supported ionic liquids. Applied Catalysis A: General, 2021, 628, 118421.	2.2	6
751	Reductive Amination, Hydrogenation and Hydrodeoxygenation of 5â€Hydroxymethylfurfural using Silicaâ€supported Cobalt―Nanoparticles. ChemCatChem, 2022, 14, .	1.8	19
752	Tin, molybdenum and tin-molybdenum oxides: Influence of Lewis and Bronsted acid sites on xylose conversion. Catalysis Today, 2022, 394-396, 125-132.	2.2	4
753	Intermolecular Diels-Alder Cycloadditions of Furfural-Based Chemicals from Renewable Resources: A Focus on the Regio- and Diastereoselectivity in the Reaction with Alkenes. International Journal of Molecular Sciences, 2021, 22, 11856.	1.8	18
754	Coordinated markets for furfural and levulinic acid from residual biomass: A case study in Guanajuato, Mexico. Computers and Chemical Engineering, 2022, 156, 107568.	2.0	7
755	Efficiently conversion of raw lignocellulose to levulinic acid and lignin nano-spheres in acidic lithium bromide-water system by two-step process. Bioresource Technology, 2022, 343, 126130.	4.8	7
756	Design of noble metal-free CoTiO3/Zn0.5Cd0.5S heterostructure photocatalyst for selective synthesis of furfuraldehyde combined with H2production. Journal of Colloid and Interface Science, 2022, 608, 1040-1050.	5.0	40
757	Selective hydrogenation of furfural using a membrane reactor. Energy and Environmental Science, 2022, 15, 215-224.	15.6	37
758	Sugar Industry: A Hub of Useful Bio-Based Chemicals. , 2020, , 171-194.		3
759	Homogenous Iridium Catalysts for Biomass Conversion. Topics in Organometallic Chemistry, 2020, , 341-395.	0.7	2
760	A High-T _g Polyamide Derived from Lignocellulose and CO ₂ . Macromolecules, 2021, 54, 9978-9983.	2.2	7
761	Furfural and 5-(hydroxymethyl)furfural valorization using homogeneous Ni(0) and Ni(II) catalysts by transfer hydrogenation. Journal of Organometallic Chemistry, 2022, 957, 122162.	0.8	5
762	Production of furans from C ₅ and C ₆ sugars in the presence of polar organic solvents. Sustainable Energy and Fuels, 2021, 6, 11-28.	2.5	24
763	Reflection absorption infrared spectroscopy of the surface chemistry of furfural on Pd(111). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, .	0.9	3
764	Thermodynamic and Transport Properties of Biomass-Derived Furfural, Furfuryl Alcohol and Their Mixtures. Energies, 2021, 14, 7769.	1.6	9
765	Direct Valorization of Furfural in Primary Alcohols Using Rareâ€Earth Metal Salts. ChemistrySelect, 2021, 6, 12153-12157.	0.7	3
766	Catalytic Transfer Hydrogenation and Acid Reactions of Furfural and 5-(Hydroxymethyl)furfural over Hf-TUD-1 Type Catalysts. Molecules, 2021, 26, 7203.	1.7	7
767	Porous SiO ₂ Nanospheres Modified with ZrO ₂ and Their Use in One-Pot Catalytic Processes to Obtain Value-Added Chemicals from Furfural. Industrial & Engineering Chemistry Research, 2021, 60, 18791-18805.	1.8	10

#	Article		CITATIONS
768	Construction of Cu-M-O <i>_x</i> (M = Zn or Al) Interface in Cu Catalysts for Hydrogenation Rearrangement of Furfural. Industrial & Engineering Chemistry Research, 2021, 60, 16939-16950.	1.8	12
769	Lignocellulosic Biomass Refining: A Review Promoting a Method to Produce Sustainable Hydrogen, Fuels, and Products. Waste and Biomass Valorization, 2022, 13, 2477-2491.	1.8	6
770	Catalysts based on Mg(Li)Al-Layered double hydroxides for the reaction of aldol condensation of furfural with acetone. AIP Conference Proceedings, 2021, , .	0.3	0
771	Nature of polymeric condensates during furfural rearrangement to cyclopentanone and cyclopentanol over Cu-based catalysts. New Journal of Chemistry, 2021, 45, 22767-22777.	1.4	6
773	Highly efficient non-microwave instant heating synthesis of hexyl levulinate fuel additive enhanced by sulfated nanosilica catalyst. Microporous and Mesoporous Materials, 2022, 331, 111645.	2.2	6
774	A hybrid strategy for efficient valorization of bulrush into furoic acid in water–ChCl-based deep eutectic solvent. Industrial Crops and Products, 2022, 177, 114434.	2.5	15
775	Sustainable energy generation from textile biowaste and its challenges: A comprehensive review. Renewable and Sustainable Energy Reviews, 2022, 157, 112051.	8.2	64
776	On the effect of zeolite acid property and reaction pathway in Pd–catalyzed hydrogenation of furfural to cyclopentanone. Fuel, 2022, 314, 123074.	3.4	23
777	Electrochemical hydrogenation of biomass-based furfural in aqueous media by Cu catalyst supported on N-doped hierarchically porous carbon. Applied Catalysis B: Environmental, 2022, 305, 121062.	10.8	38
778	How the Cobalt Position in the Keggin Anion Impacts the Activity of Tungstate Catalysts in the Furfural Acetalization with Alkyl Alcohols. ChemistrySelect, 2022, 7, .	0.7	3
779	Biorefinery approach for production of some high-value chemicals. , 2022, , 409-429.		2
780	Efficient conversion of xylan and rice husk to furfural over immobilized imidazolium acidic ionic liquids. Reaction Kinetics, Mechanisms and Catalysis, 2022, 135, 795-810.	0.8	7
781	Transforming Electrocatalytic Biomass Upgrading and Hydrogen Production from Electricity Input to Electricity Output. Angewandte Chemie, 2022, 134, .	1.6	17
782	Bimetallic Cu-Ni/MCM-41 catalyst for efficiently selective transfer hydrogenation of furfural into furfural alcohol. Molecular Catalysis, 2022, 517, 112065.	1.0	12
783	High Efficiency Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol Over Metallic Oxide Catalyst. Catalysis Letters, 2022, 152, 3537-3547.	1.4	5
784	Efficient and selective oxidation of furfural into highâ€value chemicals by cobalt and nitrogen coâ€doped carbon. Canadian Journal of Chemical Engineering, 2023, 101, 354-367.	0.9	4
785	Furfural – a versatile, biomass-derived platform chemical for the production of renewable chemicals. Green Chemistry, 2022, 24, 510-551.	4.6	104
786	Single-step synthesis of 2-pentanone from furfural over Cu–Ni @SBA-15. Biomass and Bioenergy, 2022, 156, 106321.	2.9	9

#	Article		CITATIONS
787	5â€Hydroxymethylfurfural and Furfural Chemistry Toward Biobased Surfactants. ChemSusChem, 2022, 15, .	3.6	10
788	Recent advances in the catalytic transfer hydrogenation of furfural to furfuryl alcohol over heterogeneous catalysts. Green Chemistry, 2022, 24, 1780-1808.	4.6	94
789	Polyoxometalate-Driven Ease Conversion of Valuable Furfural to <i>trans</i> - <i>N</i> , <i>N</i> -4,5-Diaminocyclopenten-2-ones. Journal of Organic Chemistry, 2022, 87, 2601-2615.	1.7	8
790	Transforming Electrocatalytic Biomass Upgrading and Hydrogen Production from Electricity Input to Electricity Output. Angewandte Chemie - International Edition, 2022, 61, e202115636.	7.2	50
791	Selective catalysis for the reductive amination of furfural toward furfurylamine by graphene-co-shelled cobalt nanoparticles. Green Chemistry, 2022, 24, 271-284.	4.6	36
792	Efficient synthesis of furfural from xylose over <scp>HCl</scp> catalyst in slug flow microreactors promoted by <scp>NaCl</scp> addition. AICHE Journal, 2022, 68, .	1.8	11
793	Aldol condensation: green perspectives. Journal of the Iranian Chemical Society, 0, , 1.	1.2	1
794	Photocatalytic Performance of Carbon-Containing CuMo-Based Catalysts under Sunlight Illumination. Catalysts, 2022, 12, 46.	1.6	8
795	Cobaltâ€Catalysed Reductive Etherification Using Phosphine Oxide Promoters under Hydroformylation Conditions. Chemistry - A European Journal, 2022, 28, .	1.7	1
796	Diverse Mechanistic Pathways in Single-Site Heterogeneous Catalysis: Alcohol Conversions Mediated by a High-Valent Carbon-Supported Molybdenum-Dioxo Catalyst. ACS Catalysis, 2022, 12, 1247-1257.	5.5	8
797	The sustainable materials roadmap. JPhys Materials, 2022, 5, 032001.	1.8	24
798	Rationally Designed Ag@polymer@2-D LDH Nanoflakes for Bifunctional Efficient Electrochemical Sensing of 4-Nitrophenol and Water Oxidation Reaction. ACS Applied Materials & Interfaces, 2022, 14, 6518-6527.	4.0	20
799	Renewable bio-based routes to Î ³ -valerolactone in the presence of hafnium nanocrystalline or hierarchical microcrystalline zeotype catalysts. Journal of Catalysis, 2022, 406, 56-71.	3.1	11
800	An integrated strategy to fabricate bio-based dual-cure and toughened epoxy thermosets with photothermal conversion property. Chemical Engineering Journal, 2022, 433, 134582.	6.6	25
801	Recent advances in production of bioenergy carrying molecules, microbial fuels, and fuel design - A review. Fuel, 2022, 316, 123330.	3.4	7
802	Catalytic transformation of biomass-based feedstocks in green solvents. , 2022, , 673-720.		1
803	Role of noble metal catalysts for transformation of bio-based platform molecules. , 2022, , 641-672.		0
804	Furfural hydrogenation over Cu, Ni, Pd, Pt, Re, Rh and Ru catalysts: Ab initio modelling of adsorption, desorption and reaction micro-kinetics. Chemical Engineering Journal, 2022, 436, 135070.	6.6	32

#	ARTICLE	IF	CITATIONS
805	Micro-/mesopores confined ultrasmall Cu nanoparticles in SBA-15 as a highly efficient and robust catalyst for furfural hydrogenation to furfuryl alcohol. Applied Catalysis A: General, 2022, 633, 118527.	2.2	14
806	Design and Properties of a Novel Family of Nonionic Biobased Furanic Hydroxyester and Amide Surfactants. ACS Sustainable Chemistry and Engineering, 2021, 9, 16977-16988.	3.2	6
807	Spinel-based catalysts for the biomass valorisation of platform molecules <i>via</i> oxidative and reductive transformations. Green Chemistry, 2022, 24, 3574-3604.	4.6	14
808	Solvent effect on the rate and direction of furfural transformations during hydrogenation over the Pd/C catalyst. Russian Chemical Bulletin, 2022, 71, 64-69.	0.4	1
809	Application of sugar-containing biomass: one-step synthesis of 2-furylglyoxylic acid and its derivatives from a vitamin C precursor. Green Chemistry, 2022, 24, 2000-2009.	4.6	2
810	Effects of TiO2 Support and Cobalt Addition of Ni/TiO2 Catalyst in Selective Hydrogenation of Furfural to Furfuryl Alcohol. Journal of Renewable Materials, 2022, 10, 2055-2072.	1.1	0
811	Sustainable biomass hydrodeoxygenation in biphasic systems. Green Chemistry, 2022, 24, 1930-1950.	4.6	24
812	Microwave-Induced Synthesis of Highly Dispersed Zirconia@Cnts as an Efficient Catalyst for the Production of 5-Hydroxymethylfurfural (5-Hmf). SSRN Electronic Journal, 0, , .	0.4	0
813	Ni-Cu/Al2O3 from Layered Double Hydroxides Hydrogenates Furfural to Alcohols. Catalysts, 2022, 12, 390.	1.6	6
814	Preparation of Highly Active Cu/SiO2 Catalysts for Furfural to 2-Methylfuran by Ammonia Evaporation Method. Catalysts, 2022, 12, 276.	1.6	11
815	Synergic Effects of Boronate Diester Formation and High-Ionic Strength Biphasic Operation on Xylose-to-Furfural Selectivity. ACS Sustainable Chemistry and Engineering, 2022, 10, 3595-3603.	3.2	4
816	Renewable Furfural-Based Polyesters Bearing Sulfur-Bridged Difuran Moieties with High Oxygen Barrier Properties. Biomacromolecules, 2022, 23, 1803-1811.	2.6	10
817	Liquid-Phase Selective Hydrogenation of Furfural to Furfuryl Alcohol over Ferromagnetic Element (Fe, Co, Ni, Nd)-Promoted Pt Catalysts Supported on Activated Carbon. Catalysts, 2022, 12, 393.	1.6	1
818	Synthesis of Porous Clay Heterostructures Modified with SiO ₂ –ZrO ₂ Nanoparticles for the Valorization of Furfural in Oneâ€Pot Process. Advanced Sustainable Systems, 2022, 6, .	2.7	6
819	Efficient Synthesis of Biobased Furoic Acid from Corncob via Chemoenzymatic Approach. Processes, 2022, 10, 677.	1.3	2
820	Advances in the Catalytic Reductive Amination of Furfural to Furfural Amine: The Momentous Role of Active Metal Sites. ChemSusChem, 2022, 15, .	3.6	22
821	Effect of Rhenium on the Catalytic Activity of Activated Carbon-Supported Nickel Applied in the Hydrogenation of Furfural and Levulinic Acid. Topics in Catalysis, 0, , .	1.3	3
822	Processes for the synthesis of \hat{I}^3 -acetopropyl alcohol. Kataliz V Promyshlennosti, 2022, 22, 5-17.	0.2	0

		CITATION R	EPORT	
#	Article		IF	CITATIONS
823	Selective Hydrogenation of Furfural: Pure Silica Supported Metal Catalysts. ChemistrySele	ct, 2022, 7, .	0.7	5
824	Advances in Catalytic Routes for the Homogeneous Green Conversion of the Bioâ€Based I 5â€Hydroxymethylfurfural. ChemSusChem, 2022, 15, .	Platform	3.6	10
825	Highly selective hydrogenative ring-rearrangement of furfural to cyclopentanone over a bi Ni3P/l³-Al2O3 catalyst. Molecular Catalysis, 2022, 522, 112239.	functional	1.0	5
826	Hydrogenation of biomass derived furfural using Ru-Ni-Mg–Al-hydrotalcite material. Bior Conversion and Biorefinery, 2024, 14, 4325-4340.	nass	2.9	6
827	Designing Endâ€ofâ€Life Recyclable Polymers via Diels–Alder Chemistry: A Review on th Reversible Reactions. Macromolecular Rapid Communications, 2022, 43, e2200023.	e Kinetics of	2.0	8
828	Active metal oxide-nitrogen-doped carbon hybrid catalysts towards selective catalytic tran hydrogenation of furfural to furfuryl alcohol. Applied Catalysis A: General, 2022, 636, 118	sfer 574.	2.2	3
829	Effect of poly(N-vinylpyrrolidone) ligand on catalytic activities of Au nanoparticles support Nb2O5 for CO oxidation and furfural oxidation. Catalysis Today, 2023, 410, 143-149.	ed on	2.2	2
830	Heterogeneously-catalyzed aerobic oxidation of furfural to furancarboxylic acid with CuO- MnO2. Green Energy and Environment, 2023, 8, 1683-1692.	Promoted	4.7	1
831	Solvent-free oxidative esterification of furfural to 2-methyl furoate using novel copper-excl tungstophosphoric acid supported on montmorillonite K-10 catalyst. Molecular Catalysis, 112256.	hanged 2022, 524,	1.0	2
832	Catalytic fast pyrolysis of soybean hulls: Focus on the products. Journal of Analytical and A Pyrolysis, 2022, 163, 105492.	splied	2.6	6
833	Catalytic transfer hydrogenation of furfural to furfuryl alcohol and 2-methylfuran over CuF catalysts: Ex situ observation of simultaneous structural phase transformation. Fuel Proce Technology, 2022, 231, 107256.		3.7	12
834	Insight into the catalytic mechanism of core–shell structured Ni/Ni-N/CN catalyst toward oxidation of furfural to furancarboxylic acid. Fuel, 2022, 317, 123579.	ls the	3.4	11
835	Investigation into Lewis and BrÃ,nsted acid interactions between metal chloride and aqueo chloride-oxalic acid for enhanced furfural production from lignocellulosic biomass. Science Total Environment, 2022, 827, 154049.		3.9	25
836	Tailoring the selectivity of Cu-based catalysts in the furfural hydrogenation reaction: Influe the morphology of the silica support. Fuel, 2022, 319, 123827.	nce of	3.4	16
837	Selective hydrogenation of furfural to furfuryl alcohol in water under mild conditions over hydrotalcite-derived Pt-based catalyst. Applied Catalysis B: Environmental, 2022, 309, 121		10.8	49
838	The use of plant materials for the synthesis of superplasticizer. Journal of Physics: Confere 2021, 2124, 012028.	nce Series,	0.3	0
839	Advances on the catalytic hydrogenation of biomass-derived furfural and 5-hydroxymethyl Journal of Fuel Chemistry and Technology, 2021, 49, 1752-1766.	furfural.	0.9	13
840	Catalytic Transformation of Biomass-Derived Furfurals to Cyclopentanones and Their Deriv Review. ACS Omega, 2021, 6, 35145-35172.	vatives: A	1.6	23

#	Article		CITATIONS
841	Diels–Alder Cycloadditions of Bio-Derived Furans with Maleimides as a Sustainable «Click» Approach towards Molecular, Macromolecular and Hybrid Systems. Processes, 2022, 10, 30.	1.3	8
842	Electrodeposited 3D hierarchical NiFe microflowers assembled from nanosheets robust for the selective electrooxidation of furfuryl alcohol. Green Energy and Environment, 2023, 8, 874-882.	4.7	12
843	Biomass waste valorization assisted by microwaves: a feasible approach for the co-production of value-added products. Biomass Conversion and Biorefinery, 0, , 1.	2.9	0
844	Copper(I)-Catalyzed Aerobic Oxidative Condensation of Biomass-Based Platform Compound Furfurals with Straight-Chain Alcohols. Chinese Journal of Organic Chemistry, 2022, 42, 905.	0.6	0
845	Cu nanoparticles supported on core–shell MgO-La2O3 catalyzed hydrogenolysis of furfuryl alcohol to pentanediol. Journal of Catalysis, 2022, 410, 42-53.	3.1	22
846	ATR-SEIRAS Investigation of the Electro-oxidation Mechanism of Biomass-Derived C ₅ Furanics on Platinum Electrodes. Journal of Physical Chemistry C, 2022, 126, 7054-7065.	1.5	13
847	Crossâ€Linking of Biobased Monofunctional Furan Epoxy Monomer by Two Steps Process, UV Irradiation and Thermal Treatment. Macromolecular Chemistry and Physics, 2023, 224, .	1.1	7
848	Crystal Structures of Lignocellulosic Furfuryl Biobased Polydiacetylenes with Hydrogen-Bond Networks: Influencing the Direction of Solid-State Polymerization through Modification of the Spacer Length. Crystal Growth and Design, 2022, 22, 2812-2823.	1.4	3
849	Efficient Electrooxidation of 5â€Hydroxymethylfurfural Using Coâ€Doped Ni ₃ S ₂ Catalyst: Promising for H ₂ Production under Industrialâ€Level Current Density. Advanced Science, 2022, 9, e2200957.	5.6	82
850	An overview and analysis of the thermodynamic and kinetic models used in the production of 5-hydroxymethylfurfural and furfural. Chemical Engineering Journal, 2022, 442, 136313.	6.6	14
853	Fire Retardancy and Leaching Resistance of Furfurylated Pine Wood (Pinus sylvestris L.) Treated with Guanyl-Urea Phosphate. Polymers, 2022, 14, 1829.	2.0	6
854	From C ₅ to C _{7–11} : Selective Carbon-Chain Increasing via Copper-Mediated Aerobic Oxidative Condensation of Biomass-Derived Furfural and Straight-Chain Alcohols. ACS Catalysis, 2022, 12, 6029-6035.	5.5	6
855	Natural lignocellulose welded Zr–Al bimetallic hybrids for the sustainable conversion of xylose to alkyl levulinate. Renewable Energy, 2022, 193, 357-366.	4.3	5
856	Microwave-assisted synthesis of highly dispersed ZrO2 on CNTs as an efficient catalyst for producing 5-hydroxymethylfurfural (5-HMF). Fuel Processing Technology, 2022, 233, 107292.	3.7	13
857	Review on development of ionic liquids in lignocellulosic biomass refining. Journal of Molecular Liquids, 2022, 359, 119326.	2.3	20
858	Recent advances in heterogeneous catalysts for the synthesis of alkyl levulinate biofuel additives from renewable levulinic acid: A comprehensive review. Fuel, 2022, 323, 124362.	3.4	14
859	Evaluation of the Recovery of Furfural from Wood Scraps. , 2021, 8, .		0
860	Prandtl–Tomlinson-Type Models for Coupled Molecular Sliding Friction: Chain-Length Dependence of Friction of Self-assembled Monolayers. Tribology Letters, 2022, 70, 1.	1.2	8

#	Article	IF	CITATIONS
861	Furfural production from biomass residues: Current technologies, challenges and future prospects. Biomass and Bioenergy, 2022, 161, 106458.	2.9	52
862	Functional property optimization of sodium caseinate-based films incorporating functional compounds from date seed co-products using response surface methodology. RSC Advances, 2022, 12, 15822-15833.	1.7	2
863	Direct Synthesis and Delamination of Swollen Layered Ferrierite for the Reductive Etherification of Furfural. ChemCatChem, 2022, 14, .	1.8	3
864	Selective hydrogenation of furfural to tetrahydrofurfuryl alcohol in 2-butanol over an equimolar Ni-Cu-Al catalyst prepared by the co-precipitation method. Energy Conversion and Management, 2022, 265, 115736.	4.4	26
865	Selective synthesis of furfuryl acetate over solid acid catalysts and active site exploration using density functional theory. Catalysis Science and Technology, 0, , .	2.1	1
866	Near quantitative conversion of xylose into bisfuran. Green Chemistry, 2022, 24, 5052-5057.	4.6	4
867	Surface-modified nanomaterial-based catalytic materials for the production of liquid fuels. , 2022, , 131-169.		0
868	Conditions to Control Furan Ring Opening during Furfuryl Alcohol Polymerization. Molecules, 2022, 27, 3212.	1.7	8
869	C3–H Silylation of Furfural Derivatives: Direct Access to a Versatile Synthetic Platform Derived from Biomass. Asian Journal of Organic Chemistry, 0, , .	1.3	3
870	Tandem Reactions for the Synthesis of High-Density Polycyclic Biofuels with a Double/Triple Hexane Ring. ACS Omega, 0, , .	1.6	0
871	Catalytic Transfer Hydrogenation of Biomass-Derived Furfural into Furfuryl Alcohol Over Zirconium Doped Nanofiber. SSRN Electronic Journal, 0, , .	0.4	0
872	Niosomes based drug delivery in targeting brain tumors. , 2022, , 329-345.		0
873	Catalytic interplay of metal ions (Cu ²⁺ , Ni ²⁺ , and Fe ²⁺) in MFe ₂ O ₄ inverse spinel catalysts for enhancing the activity and selectivity during selective transfer hydrogenation of furfural into 2-methylfuran. Catalysis Science and Technology, 2022, 12, 4857-4870.	2.1	14
874	Methods for the Synthesis of Î ³ -Acetopropyl Alcohol. Catalysis in Industry, 2022, 14, 195-207.	0.3	0
875	Bifunctional hybrid organosiliceous catalysts for aldol condensation – hydrogenation tandem reactions of furfural in continuous-flow reactor. Applied Catalysis A: General, 2022, 643, 118710.	2.2	4
876	Dealuminated $H\hat{l}^2$ zeolite for selective conversion of fructose to furfural and formic acid. Green Energy and Environment, 2024, 9, 311-320.	4.7	5
877	Selective Aerobic Oxidation of Furfural into Furoic Acid over a Highly Recyclable MnO ₂ @CeO ₂ Core–Shell Oxide: The Role of the Morphology of the Catalyst. ACS Sustainable Chemistry and Engineering, 2022, 10, 8615-8623.	3.2	8
878	Bifunctional Acidâ€Base Zirconium Phosphonate for Catalytic Transfer Hydrogenation of Levulinic Acid and Cascade Transformation of Furfural to Biofuel Molecules. ChemCatChem, 2022, 14, .	1.8	9

#	Article	IF	Citations
879	Oxidative condensation/esterification of furfural with ethanol using preformed Au colloidal nanoparticles. Impact of stabilizer and heat treatment protocols on catalytic activity and stability. Molecular Catalysis, 2022, 528, 112438.	1.0	3
880	Aqueous-phase Selective Hydrogenation of Furfural to Furfuryl Alcohol over Ordered-mesoporous Carbon Supported Pt Catalysts Prepared by One-step Modified Soft-template Self-assembly Method. Journal of Oleo Science, 2022, , .	0.6	0
881	A new reduction method based on simultaneous Ti ₃ AlC ₂ support etching and metal deposition to prepare Pt catalysts for aqueous-phase selective hydrogenation of furfural to furfuryl alcohol. New Journal of Chemistry, 2022, 46, 14958-14966.	1.4	3
882	Catalytic Hydrogenation of Biomassâ€Derived Furoic Acid to Tetrahydrofuroic Acid Derivatives over Pd/CoO _x Catalyst in Water. ChemCatChem, 2022, 14, .	1.8	1
883	Highly Efficient NiCu/SiO2 Catalyst Induced by Ni(Cu)-Silica Interaction for Aqueous-Phase Furfural Hydrogenation. Catalysis Letters, 2023, 153, 1543-1555.	1.4	7
884	Cu/ <scp>CuO_x</scp> @C for efficient selective transfer hydrogenation of furfural to furfuryl alcohol with formic acid. Journal of Chemical Technology and Biotechnology, 2022, 97, 3172-3182.	1.6	3
885	The Effect of Sibunit Carbon Surface Modification with Diazonium Tosylate Salts of Pd and Pd-Au Catalysts on Furfural Hydrogenation. Materials, 2022, 15, 4695.	1.3	5
886	Electroplating sludge-derived magnetic copper-containing catalysts for selective hydrogenation of bio-based furfural. Biomass Conversion and Biorefinery, 0, , .	2.9	2
887	Highly selective PDMS-PVDF composite membrane with hydrophobic crosslinking series for isopropanol-1,5 pentanediol pervaporation. Journal of Industrial and Engineering Chemistry, 2022, 114, 151-160.	2.9	7
888	Chromium-catalyzed transfer hydrogenation of aromatic aldehydes facilitated by a simple metal carbonyl complex. Journal of Catalysis, 2022, 413, 478-486.	3.1	4
889	Recent advances in continuous reduction of furfural to added value chemicals. Current Opinion in Green and Sustainable Chemistry, 2022, , 100655.	3.2	6
890	A novel and highly efficient Zr-containing catalyst supported by biomass-derived sodium carboxymethyl cellulose for hydrogenation of furfural. Frontiers in Chemistry, 0, 10, .	1.8	1
891	Towards efficient and greener processes for furfural production from biomass: A review of the recent trends. Science of the Total Environment, 2022, 847, 157599.	3.9	24
892	Synthesis of PtSn ₄ Intermetallic Nanodisks through a Galvanic Replacement Mechanism. Chemistry of Materials, 2022, 34, 6968-6976.	3.2	7
893	Highly Efficient Transfer Hydrogenation of Biomass-Derived Furfural to Furfuryl Alcohol over Mesoporous Zr-Containing Hybrids with 5-Sulfosalicylic Acid as a Ligand. International Journal of Environmental Research and Public Health, 2022, 19, 9221.	1.2	2
894	Advances in catalytic valorization of cellulose into value-added chemicals and fuels over heterogeneous catalysts. Catalysis Today, 2023, 408, 92-110.	2.2	13
895	(Chemo)biocatalytic Upgrading of Biobased Furanic Platforms to Chemicals, Fuels, and Materials: A Comprehensive Review. ACS Catalysis, 2022, 12, 10080-10114.	5.5	50
896	Biomass-based production of food preservatives. Chem Catalysis, 2022, 2, 2302-2311.	2.9	6

#	Article	IF	CITATIONS
897	Câ^'H Activation Based Functionalization of Furfural Derivatives. European Journal of Organic Chemistry, 2022, 2022, .	1.2	8
898	Greening the Synthesis of Biorenewable Fuels and Chemicals by Stoichiometric Reagentless Organic Transformations. Industrial & Engineering Chemistry Research, 2022, 61, 12884-12904.	1.8	6
899	Achmatowicz Rearrangement-Inspired Development of Green Chemistry, Organic Methodology, and Total Synthesis of Natural Products. Accounts of Chemical Research, 2022, 55, 2326-2340.	7.6	30
900	Theoretical Study on the BrÃ,nsted Acidity of Al Doped SBA-15 for Methanol Dehydration as a Reaction Analog for the Transformation of Pectin to Furfural. Topics in Catalysis, 0, , .	1.3	1
901	Modeling Competing Kinetics between Electrochemical Reduction of Furfural on Copper and Homogeneous Side Reactions in Acid. Energy & amp; Fuels, 2022, 36, 11001-11011.	2.5	5
902	Structure Evolution of Ni–Cu Bimetallic Catalysts Derived from Layered Double Hydroxides for Selective Hydrogenation of Furfural to Tetrahydrofurfuryl Alcohol. Industrial & Engineering Chemistry Research, 2022, 61, 12953-12965.	1.8	13
903	Kinetic and mechanistic aspects of furfural degradation in biorefineries. Canadian Journal of Chemical Engineering, 2023, 101, 2033-2049.	0.9	6
904	A sustainable and environmental benign catalytic process for the production of valuable flavors and fragrances from lignin platform chemicals. Industrial Crops and Products, 2022, 187, 115460.	2.5	0
905	Solvent-mediated selectivity control of furfural hydrogenation over a N-doped carbon-nanotube-supported Co/CoOx catalyst. Applied Catalysis B: Environmental, 2022, 318, 121838.	10.8	22
906	Insight into the noble-metal-free NiCoAl catalyst boosting the reductive esterification of furancarboxylic acid to methyl 2-tetrahydrofuroate. Fuel, 2022, 329, 125462.	3.4	1
907	Hydrogenation and hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran via synergistic catalysis of Ni2In and acid-base sites. Applied Surface Science, 2022, 604, 154579.	3.1	12
908	Levoglucosenone, furfural and levomannosan from mannan-rich feedstock: A proof-of-principle with ivory nut. Chemical Engineering Journal, 2023, 451, 138486.	6.6	3
909	Modular synthesis of 2-furyl carbinols from 3-benzyldimethylsilylfurfural platforms relying on oxygen-assisted C–Si bond functionalization. Beilstein Journal of Organic Chemistry, 0, 18, 1256-1263.	1.3	1
910	The catalytic hydrogenation of furfural to 2-methylfuran over the Mg-Al oxides supported Co-Ni bimetallic catalysts. Molecular Catalysis, 2022, 531, 112651.	1.0	2
911	Selectively converting fructose to furfural over H-beta zeolite: Elucidating the roles of framework aluminum. Fuel, 2023, 332, 125915.	3.4	2
912	Selectivity catalytic transfer hydrogenation of biomass-based furfural to cyclopentanone. Fuel, 2023, 332, 126057.	3.4	15
913	Catalytic transfer hydrogenation of biomass-derived furfural into furfuryl alcohol over zirconium doped nanofiber. Fuel, 2023, 331, 125792.	3.4	8
914	Efficient catalytic transfer hydrogenation of furfural to furfuryl alcohol over Zr-doped ordered mesoporous carbon synthesized by Zr-arbutin coordinated self-assembly. Fuel, 2023, 331, 125834.	3.4	9

#	Article	IF	CITATIONS
915	Bringing the promises of microreactors and gold catalysis to lignocellulosic biomass valorization: A study on oxidative transformation of furfural. Chemical Engineering Journal, 2023, 452, 138903.	6.6	5
916	Direct conversion of furfural to 1,5-pentanediol over a nickel–cobalt oxide–alumina trimetallic catalyst. Applied Catalysis B: Environmental, 2023, 320, 121971.	10.8	24
917	Ring-opening of furfuryl alcohol to pentanediol with extremely high selectivity over Cu/MFI catalysts with balanced Cu ⁰ –Cu ⁺ and BrÃ,nsted acid sites. Catalysis Science and Technology, 2022, 12, 5879-5890.	2.1	9
918	Reductive etherification of furfural <i>via</i> hydrogenolysis with Pd-modified aluminum phosphate and formic acid. Green Chemistry, 2022, 24, 7346-7349.	4.6	2
919	Continuous hydrothermal furfural production from xylose in a microreactor with dual-acid catalysts. RSC Advances, 2022, 12, 23366-23378.	1.7	4
920	Ultra-low voltage bipolar hydrogen production from biomass-derived aldehydes and water in membrane-less electrolyzers. Energy and Environmental Science, 2022, 15, 4175-4189.	15.6	28
921	Copperâ€Decorated Iron Carbide Nanoparticles Heated by Magnetic Induction as Adaptive Multifunctional Catalysts for the Selective Hydrodeoxygenation of Aldehydes. Advanced Energy Materials, 0, , 2201783.	10.2	5
922	A Review of Rigid Polymeric Cellular Foams and Their Greener Tannin-Based Alternatives. Polymers, 2022, 14, 3974.	2.0	7
923	The Structural Phase Effect of MoS ₂ in Controlling the Reaction Selectivity between Electrocatalytic Hydrogenation and Dimerization of Furfural. ACS Catalysis, 2022, 12, 11340-11354.	5.5	20
924	Synthesis, biological evaluation and molecular modeling studies of novel 1,2,3-triazole-linked menadione-furan derivatives as P2X7 inhibitors. Journal of Bioenergetics and Biomembranes, 2022, 54, 227-239.	1.0	7
925	Efficient Synthesis of Furfuryl Alcohol from Corncob in a Deep Eutectic Solvent System. Processes, 2022, 10, 1873.	1.3	8
926	Nickel Nanoparticles Immobilized on Pristine Halloysite: An Outstanding Catalyst for Hydrogenation Processes. ChemCatChem, 2022, 14, .	1.8	3
927	Ni-nanoparticles decorated CePO4 for the selective hydrogenation of furfural to tetrahydrofurfuryl alcohol. Molecular Catalysis, 2022, 531, 112712.	1.0	5
928	Integrated chemo―and biocatalytic processes: a new fashion toward renewable chemicals production from lignocellulosic biomass. Journal of Chemical Technology and Biotechnology, 2023, 98, 331-345.	1.6	7
929	Formation of 5-methylfurfural and 2-acetylfuran from lignocellulosic biomass and by Cr3+-catalyzed dehydration of 6-deoxyhexoses. Carbohydrate Research, 2022, 522, 108672.	1.1	2
930	Metal Oxide Catalysts for the Valorization of Biomass-Derived Sugars. , 2022, , 325-347.		0
931	Continuous conversion of furfural to furfuryl alcohol by transfer hydrogenation catalyzed by copper deposited in a monolith reactor. Reaction Chemistry and Engineering, 2023, 8, 377-388.	1.9	2
932	Aqueous phase hydrogenation of maleic acid to succinic acid mediated by formic acid: the robustness of the Pd/C catalytic system. Sustainable Energy and Fuels, 2022, 6, 5160-5176.	2.5	3

#	Article	IF	CITATIONS
933	Influence of Pore Size in Benzoin Condensation of Furfural Using Heterogenized Benzimidazole Organocatalysts. Chemistry - A European Journal, 2022, 28, .	1.7	1
934	A Flexible Hydrogenâ€Bonded Organic Framework Constructed from a Tetrabenzaldehyde with a Carbazole Nâ^'H Binding Site for the Highly Selective Recognition and Separation of Acetone. Angewandte Chemie, 2022, 134, .	1.6	2
935	A Flexible Hydrogenâ€Bonded Organic Framework Constructed from a Tetrabenzaldehyde with a Carbazole Nâ''H Binding Site for the Highly Selective Recognition and Separation of Acetone. Angewandte Chemie - International Edition, 2022, 61, .	7.2	35
936	Understanding Hβ Zeolite in 1,4-Dioxane Efficiently Converts Hemicellulose-Related Sugars to Furfural. ACS Catalysis, 2022, 12, 12833-12844.	5.5	13
937	Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers. Chemical Reviews, 2023, 123, 2609-2734.	23.0	53
938	Promoting the electrochemical hydrogenation of furfural by synergistic Cu0â^'Cu+ active sites. Science China Chemistry, 2022, 65, 2588-2595.	4.2	18
939	Understanding Activity Trends in Furfural Hydrogenation on Transition Metal Surfaces. ACS Catalysis, 2022, 12, 12902-12910.	5.5	21
940	Promoting and controlling electron transfer of furfural oxidation efficiently harvest electricity, furoic acid, hydrogen gas and hydrogen peroxide. Journal of Energy Chemistry, 2023, 79, 135-147.	7.1	9
941	The role and performance of isolated zirconia sites on mesoporous silica for aldol condensation of furfural with acetone. Applied Catalysis A: General, 2022, 648, 118901.	2.2	6
942	Engineering oxygen vacancy and crystal surfaces for TiO2-based photocatalysts for enhanced photocatalytic hydrogenation of bio-based carbonyls to biofuels. Journal of Environmental Chemical Engineering, 2022, 10, 108837.	3.3	8
943	Kinetic model for the dehydration of xylose to furfural from a boronate diester precursor. RSC Advances, 2022, 12, 31818-31829.	1.7	1
944	Effect of oxygen on thermal behaviors and kinetic characteristics of biomass during slow and flash pyrolysis processes. Combustion and Flame, 2023, 247, 112481.	2.8	8
945	Facile selective hydrogenation of bio-based furfural to furfuryl alcohol via a ZIF-67-derived Co-based catalyst. Fuel Processing Technology, 2023, 239, 107507.	3.7	4
946	Catalytic production of long-chain hydrocarbons suitable for aviation turbine fuel from biomass-derived levulinic acid and furfural. Fuel, 2023, 334, 126665.	3.4	8
947	Two carriages for efficient furfural production from biomass: Rational design of porous biochar catalyst and clever utilization of butyrolactone-water medium. Fuel, 2023, 333, 126389.	3.4	5
948	Homogenous palladium(II) pyrazolyl complexes and corresponding Pd-SILP material as catalysts for the selective hydrogenation of furfural. Biomass Conversion and Biorefinery, 0, , .	2.9	1
949	Methods to convert lignocellulosic waste into biohydrogen, biogas, bioethanol, biodiesel and value-added chemicals: a review. Environmental Chemistry Letters, 2023, 21, 803-820.	8.3	18
950	Influence of Caffeic and Caftaric Acid, Fructose, and Storage Temperature on Furan Derivatives in Base Wine. Molecules, 2022, 27, 7891.	1.7	1

#	Article	IF	CITATIONS
951	Glucose/Furfural Substrate Mixtures in Nonâ€Engineered Yeast: Potential for Massive Rerouting of Fermentation to C Bond Formation on Furfural. ChemCatChem, 0, , .	1.8	2
952	Insight into the α-MnO2 boosts concentrated furfural or xylose conversion to furoic acid over 1,4-dioxane-H2O mixed solvent. Biomass and Bioenergy, 2022, 167, 106642.	2.9	1
953	Electroâ \in Synthesis of Organic Compounds with Heterogeneous Catalysis. Advanced Science, 2023, 10, .	5.6	25
954	Selective furfural hydrogenolysis towards 2-methylfuran by controlled poisoning of Cu–Co catalysts with chlorine. Reaction Chemistry and Engineering, 2023, 8, 687-698.	1.9	4
955	The weak interaction between polar aprotic solvent and saline water enables efficient production of furans from lignocellulosic biomass. Green Chemistry, 0, , .	4.6	5
956	One-Pot direct reductive amination of furfural over Pd@CNTs. Molecular Catalysis, 2023, 535, 112877.	1.0	1
957	An efficient and sustainable furfurylamine production from biomass-derived furfural by a robust mutant ω-transaminase biocatalyst. Bioresource Technology, 2023, 369, 128425.	4.8	21
958	A comprehensive analysis of biphasic reaction system for economical biodiesel production process. Renewable and Sustainable Energy Reviews, 2023, 173, 113122.	8.2	3
959	Stabilizing the interfacial Cu0-Cu+ dual sites toward furfural hydrodeoxygenation to 2-methylfuran via fabricating nest-like copper phyllosilicate precursor. Fuel, 2023, 337, 127212.	3.4	7
960	Activation of nickel foam through in-liquid plasma-induced phosphorus incorporation for efficient quasi-industrial water oxidation and selective oxygenation of organics. Applied Catalysis B: Environmental, 2023, 324, 122249.	10.8	10
961	Single pot selective conversion of furfural into 2-methylfuran over a Co-CoOx/AC bifunctional catalyst. Applied Surface Science, 2023, 612, 155871.	3.1	5
962	Recent Progress of Hydrogenation and Hydrogenolysis Catalysts Derived from Layered Double Hydroxides. Catalysts, 2022, 12, 1484.	1.6	2
963	Electrochemical conversion of biomass-derived aldehydes into fine chemicals and hydrogen: A review. Environmental Chemistry Letters, 2023, 21, 1555-1583.	8.3	15
964	Continuous flow synthesis of HMF from glucose using gadolinium (III) trifluoromethanesulfonate in BrÃ,nsted acidic ionic liquid as a catalytic system. Journal of Flow Chemistry, 2023, 13, 121-132.	1.2	3
965	Soil pH and Soluble Organic Matter Shifts Exerted by Heating Affect Microbial Response. International Journal of Environmental Research and Public Health, 2022, 19, 15751.	1.2	2
966	Progress and Outlook of Solar-Powered Biomass for Biorefineries: A Minireview. Energy & Fuels, 2022, 36, 14573-14583.	2.5	8
967	Where Chemocatalysis Meets Biocatalysis: In Water. Chemical Reviews, 2023, 123, 5262-5296.	23.0	42
968	Mechanistic exploration of furfural hydrogenation on copper surface in aqueous phase by DFT and AIMD simulations. Journal of Catalysis, 2023, 418, 1-12.	3.1	7

#	Article	IF	CITATIONS
969	Hybrid Lamellar Superlattices with Monoatomic Platinum Layers and Programmable Organic Ligands. Journal of the American Chemical Society, 2023, 145, 717-724.	6.6	6
970	Coding Synthetic Chemistry Strategies for Furan Valorization into Bacterial Designer Cells**. ChemSusChem, 0, , .	3.6	4
971	Novel process for the upgrading of model torrefaction bio-oils using ammonia. Frontiers in Energy Research, 0, 10, .	1.2	1
972	Electrocatalytic Biomass Upgrading of Furfural using Transitionâ€Metal Borides via Density Functional Theory Investigation. Small, 2023, 19, .	5.2	8
973	A first novel and waste valorization route for the preparation of biologically significant quinoxalines using pomegranate peel ash extract. International Journal of Environmental Science and Technology, 0, , .	1.8	1
974	Lignin-First Biorefinery for Converting Lignocellulosic Biomass into Fuels and Chemicals. Energies, 2023, 16, 125.	1.6	10
975	Chemical-free production of multiple high-value bioproducts from metabolically engineered transgenic sugarcane â€`oilcane' bagasse and their recovery using nanofiltration. Bioresource Technology, 2023, 371, 128630.	4.8	3
976	Comparison of bio-oils derived from crop digestate treated through conventional and microwave pyrolysis as an alternative route for further waste valorization. Biomass Conversion and Biorefinery, 0, , .	2.9	0
977	Linear diketones as next-generation biomass-derived platform molecules: from heterogeneous catalytic synthesis to supply of high-end chemicals. Green Chemistry, 2023, 25, 833-848.	4.6	1
978	Combining Electro-, Photo-, and Biocatalysis for One-Pot Selective Conversion of Furfural into Value-Added C4 Chemicals. ACS Catalysis, 2023, 13, 1371-1380.	5.5	11
979	Recent Progress in Electrochemical Upgrading of Bio-Oil Model Compounds and Bio-Oils to Renewable Fuels and Platform Chemicals. Materials, 2023, 16, 394.	1.3	7
980	A Detailed Review on <i>C</i> â€Fused Furan/3,4â€Fused Furan Analog and its Potential Applications. ChemistrySelect, 2023, 8, .	0.7	7
981	Electrochemical Hydrodimerization of Furfural in Organic Media as an Efficient Route to Jet Fuel Precursor. ChemElectroChem, 2023, 10, .	1.7	2
982	Experimental, equilibrium modelling, and column design for the reactive separation of biomassâ€derived 2â€furoic acid. Canadian Journal of Chemical Engineering, 2023, 101, 3167-3179.	0.9	3
983	Mixed Oxides Derived from Hydrotalcites Mg/Al Active in the Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol. Catalysts, 2023, 13, 45.	1.6	3
984	Chemical routes for the conversion of cellulosic platform molecules into high-energy-density biofuels. , 2023, , 361-397.		1
985	Metal-Organic Frameworks and Their Derived Structures for Biomass Upgrading. , 2023, , 184-255.		0
986	The Role of Copper in the Hydrogenation of Furfural and Levulinic Acid. International Journal of Molecular Sciences, 2023, 24, 2443.	1.8	2

#	Article	IF	CITATIONS
987	Ni(1â^'x)Pdx Alloyed Nanostructures for Electrocatalytic Conversion of Furfural into Fuels. Catalysts, 2023, 13, 260.	1.6	1
988	Comparative Production and Optimisation of Furfural and Furfuryl Alcohol from Agricultural Wastes. Chemistry Africa, 2023, 6, 2401-2417.	1.2	2
989	Sustainable Synthesis of Drop-In Chemicals from Biomass via Chemical Catalysis: Scopes, Challenges, and the Way Forward. Energy & Fuels, 2023, 37, 2648-2666.	2.5	4
990	Conversion of agricultural crop waste into valuable chemicals. , 2023, , 57-86.		0
991	Green solvents toward green enviroment. AIP Conference Proceedings, 2023, , .	0.3	0
992	Fully Bio-based Transparent Wood. Springer Series in Materials Science, 2023, , 23-33.	0.4	0
993	Ru-Catalyzed Isomerization of Achmatowicz Derivatives: A Sustainable Route to Biorenewables and Bioactive Lactones. ACS Catalysis, 2023, 13, 1916-1925.	5.5	2
994	Conversion of cellulose into valuable chemicals using sulfonated amorphous carbon in 1-ethyl-3-methylimidazolium chloride. RSC Advances, 2023, 13, 7257-7266.	1.7	1
995	Bioderived furanic compounds as replacements for BTX in chemical intermediate applications. , 2023, 1, 698-745.		1
996	Unique alcohol dehydrogenases involved in algal sugar utilization by marine bacteria. Applied Microbiology and Biotechnology, 2023, 107, 2363-2384.	1.7	1
997	Furfural conversion over calcined Ti and Fe metal-organic frameworks under continuous flow conditions. Catalysis Communications, 2023, 177, 106649.	1.6	0
998	Production of Alkyl Levulinates from Carbohydrate-Derived Chemical Intermediates Using Phosphotungstic Acid Supported on Humin-Derived Activated Carbon (PTA/HAC) as a Recyclable Heterogeneous Acid Catalyst. Chemistry, 2023, 5, 800-812.	0.9	0
999	Recent progress in pervaporation membranes for furfural recovery: A mini review. Journal of Cleaner Production, 2023, 396, 136481.	4.6	5
1000	Furfural hydrogenation into tetrahydrofurfuryl alcohol under ambient conditions: Role of Ni-supported catalysts and hydrogen source. Industrial Crops and Products, 2023, 195, 116390.	2.5	2
1001	Understanding hydrogen pressure control of furfural hydrogenation selectivity on a Pd(1 1 1) model catalyst. Journal of Catalysis, 2023, 421, 55-64.	3.1	6
1002	Hydrogenation of biomass derivate catalysed by ruthenium (II) complexes containing phosphorus-nitrogen ligands under mild conditions. Molecular Catalysis, 2023, 542, 113075.	1.0	0
1003	Production of 2-methyl furan, a promising 2nd generation biofuel, by the vapor phase hydrodeoxygenation of biomass-derived furfural over TiO2 supported Cu Ni bimetallic catalysts. Fuel Processing Technology, 2023, 245, 107726.	3.7	2
1004	Nitrogen-doped biochar-supported metal catalysts: High efficiency in both catalytic transfer hydrogenation of furfural and electrocatalytic oxygen reactions. Catalysis Today, 2023, 418, 114080.	2.2	5

#	Article	IF	Citations
1005	Internal electric field engineering of bifunctional 2D/2D heterojunction photocatalyst for cooperative H2 production and alcohol conversion. Applied Catalysis B: Environmental, 2023, 331, 122725.	10.8	21
1006	From expired metformin drug to nanoporous N-doped-g-C3N4: Durable sunlight-responsive photocatalyst for oxidation of furfural to maleic acid. Journal of Environmental Chemical Engineering, 2023, 11, 109347.	3.3	5
1007	Construction of a sol–gel derived ternary CuZn/FeO _{<i>x</i>} nanostructure for catalytic transfer hydrogenation of furfural. Sustainable Energy and Fuels, 2023, 7, 1187-1195.	2.5	1
1008	Glucose-derived zirconium-containing mesoporous composite for efficient catalytic transfer hydrogenation of furfural to furfuryl alcohol. Biomass and Bioenergy, 2023, 170, 106723.	2.9	1
1009	Whole $\hat{a} \in cell$ Mediated Carboxylation of $2\hat{a} \in F$ uroic Acid Towards the Production of Renewable Platform Chemicals and Biomaterials. ChemCatChem, 2023, 15, .	1.8	3
1010	Synergistic Effect of Fe and Zn Doping on Multimetallic Catalysts for the Catalytic Hydrogenation of Furfural to Furfuryl Alcohol. ChemistrySelect, 2023, 8, .	0.7	1
1011	Efficient Conversion of Biomassâ€Derived Furfural to Tetrahydrofurfuryl Alcohol over Co ₃ O ₄ â^C Nanocomposite Catalyst at Mild Conditions. ChemistrySelect, 2023, 8,	0.7	1
1012	Revealed pathways of furan ring opening and surface crosslinking in biobased polyfurfuryl alcohol. European Polymer Journal, 2023, 187, 111869.	2.6	4
1013	Furfural from pyrolysis of agroforestry waste: Critical factors for utilisation of C5 and C6 sugars. Renewable and Sustainable Energy Reviews, 2023, 176, 113194.	8.2	9
1014	Highly dispersed PdCu supported on MCM-41 for efficiently selective transfer hydrogenation of furfural into furfuryl alcohol. Applied Surface Science, 2023, 619, 156716.	3.1	2
1015	CaO as a cheap, eco-friendly material for the continuous-flow, gas-phase, catalytic transfer hydrogenation of furfural with methanol. Catalysis Today, 2023, 420, 114036.	2.2	4
1016	Photopolymerization of furan-based monomers: Exploiting UV-light for a new age of green polymers. Reactive and Functional Polymers, 2023, 185, 105540.	2.0	8
1017	Zr supported on non-acidic sepiolite for the efficient one-pot transformation of furfural into Î ³ -valerolactone. Biomass and Bioenergy, 2023, 170, 106730.	2.9	3
1018	Progress of Reactions between Furfural and Aliphatic Alcohols via Catalytic Oxidation Processes: Reaction Routes, Catalysts, and Perspectives. Processes, 2023, 11, 640.	1.3	0
1019	Preparation, Quantification, and Reaction of Pd Hydrides on Pd/Al ₂ O ₃ in Liquid Environment. ACS Catalysis, 2023, 13, 3323-3332.	5.5	4
1020	Hybrid Nanocomposite Comprising Mg–Al Hydrotalcite Nanocrystals on ZSM-5 Zeolite for Production of Renewable Fuel Additives from Furfural. ACS Applied Nano Materials, 2023, 6, 3580-3589.	2.4	1
1021	Gold(III) Chloride-Mediated Transformation of Furfural to the trans-N,N-4,5-Diaminocyclopent-2-enones in the Presence of Anilines. Chemistry, 2023, 5, 393-405.	0.9	0
1022	Recent Advances on Transitionâ€Metalâ€Based Layered Double Hydroxides Nanosheets for Electrocatalytic Energy Conversion. Advanced Science, 2023, 10, .	5.6	30

#	Article	IF	CITATIONS
1023	Time and Potentialâ€Resolved Comparison of Copper Disc and Copper Nanoparticles for Electrocatalytic Hydrogenation of Furfural. Energy Technology, 2023, 11, .	1.8	1
1024	Recent Advances in the Efficient Synthesis of Useful Amines from Biomass-Based Furan Compounds and Their Derivatives over Heterogeneous Catalysts. Catalysts, 2023, 13, 528.	1.6	1
1025	Process Design for the Sustainable Production of Butyric Acid Using Techno-Economic Analysis and Life Cycle Assessment. ACS Sustainable Chemistry and Engineering, 2023, 11, 4430-4440.	3.2	9
1026	Spinel-Derived Formation and Amorphization of Bimetallic Oxyhydroxides for Efficient Electrocatalytic Biomass Oxidation. Journal of Physical Chemistry Letters, 2023, 14, 2674-2683.	2.1	1
1027	Biofuel production, hydrogen production and water remediation by photocatalysis, biocatalysis and electrocatalysis. Environmental Chemistry Letters, 2023, 21, 1315-1379.	8.3	27
1028	Ni-Mg/Al Mixed Oxides Prepared from Layered Double Hydroxides as Catalysts for the Conversion of Furfural to Tetrahydrofurfuryl Alcohol. Chemistry, 2023, 5, 571-588.	0.9	1
1029	Ti/Zr/O Mixed Oxides for the Catalytic Transfer Hydrogenation of Furfural to GVL in a Liquid-Phase Continuous-Flow Reactor. ChemEngineering, 2023, 7, 23.	1.0	1
1030	High production of furfural by flash pyrolysis of C6 sugars and lignocellulose by Pd-PdO/ZnSO4 catalyst. Nature Communications, 2023, 14, .	5.8	4
1031	Process Development for a 1 <i>H</i> -Indazole Synthesis Using an Intramolecular Ullmann-Type Reaction. Journal of Organic Chemistry, 2023, 88, 4209-4223.	1.7	1
1032	Highly active Cu-MFI catalyst for conversion of furfuryl alcohol to pentanediols. E3S Web of Conferences, 2023, 375, 03007.	0.2	0
1033	Effect of MnO2 Crystal Type on the Oxidation of Furfural to Furoic Acid. Catalysts, 2023, 13, 663.	1.6	5
1034	Efficient and continuous furfural hydrogenation to furfuryl alcohol in a micropacked bed reactor. Reaction Chemistry and Engineering, 2023, 8, 1719-1728.	1.9	1
1035	Green Synthesis of Size-Controllable Polyfurfuryl Alcohol Nanospheres as Novel Bio-adsorbents. ACS Sustainable Chemistry and Engineering, 2023, 11, 6032-6042.	3.2	2
1036	Recent Advances in the Processing of Agri-food By-products by Subcritical Water. Food and Bioprocess Technology, 2023, 16, 2705-2724.	2.6	8
1037	Insights into the reaction network and kinetics of xylose conversion over combined Lewis/BrØnsted acid catalysts in a flow microreactor. Green Chemistry, 0, , .	4.6	2
1038	High-Loaded Copper-Containing Sol–Gel Catalysts for Furfural Hydroconversion. International Journal of Molecular Sciences, 2023, 24, 7547.	1.8	1
1040	Structure and Formation Mechanism of Furfural-Derived Humins. , 2023, , 23-31.		0
1042	Bio-based polymers synthesized from furan derivatives. , 2023, , 295-345.		0

#	Article	IF	CITATIONS
1045	Biomass as a Source of Energy, Fuels and Chemicals. , 2021, , 589-741.		0
1052	Editorial: Chemical reactions and catalysis for a sustainable future. Frontiers in Chemistry, 0, 11, .	1.8	4
1081	Utilization of zeolite catalysts in biomass exploitation: a minireview. Monatshefte Für Chemie, 2023, 154, 815-835.	0.9	1
1086	The key role of pretreatment for the one-step and multi-step conversions of European lignocellulosic materials into furan compounds. RSC Advances, 2023, 13, 21395-21420.	1.7	2
1092	Advances in Catalytic Hydroconversion of Typical Heavy Carbon Resources under Mild Conditions. Energy & Fuels, 2023, 37, 12570-12588.	2.5	7
1111	Producing N-Containing Chemicals from Biomass for High Performance Thermosets. Biofuels and Biorefineries, 2023, , 271-303.	0.5	0
1115	Lignocellulosic biomass production: biodiversity benefits and threats. , 2024, , 425-443.		0
1116	From biomass to C4 chemicals: selective transformation of bio-based furans to succinic anhydride in the presence of oxygen. Catalysis Science and Technology, 2023, 13, 6132-6136.	2.1	1
1121	Sustainable Production of Nitriles from Biomass. Biofuels and Biorefineries, 2023, , 143-162.	0.5	0
1124	Efficient electrochemical upgradation strategies for the biomass derivative furfural. Journal of Materials Chemistry A, 2023, 11, 23133-23147.	5.2	3
1127	Ordered and Disordered Metal Oxide for Biomass Conversion. The Materials Research Society Series, 2024, , 433-451.	0.2	0
1129	The catalysis advances on the production of furan derivatives and their conversion to biofuels. , 2024, , 85-102.		0
1135	Major Advances in Syntheses of Biomass Based Amines and Pyrrolidone Products by Reductive Amination Process of Major Bio-derived Platform Molecules. Biofuels and Biorefineries, 2023, , 21-71.	0.5	0
1146	Hydrothermal pretreatment of woody biomass and potential non-fuel applications of the solubilized constituents. , 2024, , 215-262.		0
1197	Use of cellulose, hemicellulose and generated sugars and lignin. , 2024, , 173-202.		0

Use of cellulose, hemicellulose and generated sugars and lignin. , 2024, , 173-202. 1197