Effect of temperature, solvent/coal ratio and beneficiated distribution from direct coal liquefaction

Fuel 172, 153-159 DOI: 10.1016/j.fuel.2015.12.072

Citation Report

#	Article	IF	CITATIONS
1	Microwave assisted pyrolysis of Indian and Indonesian coals and product characterization. Fuel Processing Technology, 2016, 154, 96-103.	3.7	74
2	Determination of the Hydrogen-Donating Ability of Industrial Distillate Narrow Fractions. Energy & Fuels, 2016, 30, 10314-10321.	2.5	13
3	Applications to Fossil Fuel Processes. , 2017, , 273-312.		0
4	Transformation and roles of inherent mineral matter in direct coal liquefaction: A mini-review. Fuel, 2017, 197, 209-216.	3.4	45
5	Chemical transformation of inherent sodium and calcium species during direct liquefaction of two typical lignites rich in alkali and alkaline earth metals. Fuel, 2017, 210, 227-235.	3.4	7
6	Kinetic model for liquid-phase liquefaction of asphaltene by hydrogenation with industrial distillate narrow fraction as hydrogen donor. Fuel, 2017, 209, 54-61.	3.4	13
7	Optimizing the physical parameters to achieve maximum products from co-liquefaction using response surface methodology. Fuel, 2017, 207, 102-108.	3.4	15
8	Co-Liquefaction of Elbistan Lignite with Manure Biomass; Part 3 - Effect of Reaction Time and Temperature. IOP Conference Series: Earth and Environmental Science, 2017, 95, 042075.	0.2	0
9	Co-liquefaction of Elbistan Lignite with Manure Biomass; Part 2 - Effect of Biomass Type, Waste to Lignite Ratio and Solid to Liquid Ratio. IOP Conference Series: Earth and Environmental Science, 2017, 95, 042074.	0.2	0
10	Promoting asphaltene conversion by tetralin for hydrocracking of petroleum pitch. Fuel, 2018, 222, 105-113.	3.4	37
11	Feedstock Characterization for Pyrolysis and Gasification. Energy, Environment, and Sustainability, 2018, , 3-36.	0.6	6
12	Simultaneous disposal and utilization of coal chemical wastewater in coal and petroleum coke slurry preparation: Slurrying performance and mechanism. Fuel, 2018, 215, 312-319.	3.4	24
13	Thermal treatment of FCC slurry oil under hydrogen: Correlation of hydrogen transfer ability with carbonization performance of the fractions. Fuel, 2018, 233, 805-815.	3.4	27
14	Co-processing behavior of Gölbaşı lignite and poplar sawdust by factorial experimental design method. Energy, 2019, 183, 1040-1048.	4.5	5
15	Comprehensive study of structure model, pyrolysis and liquefaction behaviour of Heidaigou lignite and its liquefied oil. Fuel, 2019, 240, 84-91.	3.4	20
16	Fe ₃ O ₄ Nanoparticles Supported on Modified Coal toward Catalytic Hydrogenation of Coal to Oil. ACS Omega, 2020, 5, 16789-16795.	1.6	7
17	Room-Temperature Solid-State Preparation of CoFe2O4@Coal Composites and Their Catalytic Performance in Direct Coal Liquefaction. Catalysts, 2020, 10, 503.	1.6	5
18	Multistep Fractionation of Coal and Application for Graphene Synthesis. ACS Omega, 2021, 6, 16573-16583.	1.6	3

CITATION REPORT

#	Article	IF	CITATIONS
19	In-situ impregnation of β-FeOOH on coal by solid-state reaction toward direct coal liquefaction. Catalysis Communications, 2021, 159, 106345.	1.6	3
20	Exploratory investigation on coking behaviors during preheating/liquefaction of coal-oil slurry. Fuel, 2022, 309, 122353.	3.4	5
21	Rate constant of hydrogen transfer from H-donor solvents to coal radicals. Fuel, 2022, 318, 123621.	3.4	9
22	Improvement of the carbon yield from biomass carbonization through sulfuric acid pre-dehydration at room temperature. Bioresource Technology, 2022, 355, 127251.	4.8	17
23	The mechanism and rate constant of hydrogen transfer from solvent radicals to coal-based model compounds in direct coal liquefaction. Journal of Analytical and Applied Pyrolysis, 2022, 167, 105637.	2.6	4
24	Utilization of coal liquefaction solid residue waste as an effective additive for enhanced catalytic performance. Fuel, 2022, 329, 125454.	3.4	3
25	Regulation of radicals by hydrogen-donor solvent in direct coal liquefaction. Frontiers of Chemical Science and Engineering, 2022, 16, 1689-1699.	2.3	2
26	Synthesis of [C12mim]FeCl4 and study of the swelling effect on coal and the kinetics of pyrolysis. Journal of Molecular Liquids, 2022, 368, 120526.	2.3	1
27	Investigation of the co-processing technology of crude oil and coal and its deployment. Polish Journal of Chemical Technology, 2022, 24, 39-50.	0.3	0