Immunometabolism governs dendritic cell and macrop

Journal of Experimental Medicine 213, 15-23

DOI: 10.1084/jem.20151570

Citation Report

#	Article	IF	CITATIONS
1	Metabolic Factors that Contribute to Lupus Pathogenesis. Critical Reviews in Immunology, 2016, 36, 75-98.	1.0	29
2	Metabolic Regulation of Natural Killer Cell IFN-γ Production. Critical Reviews in Immunology, 2016, 36, 131-147.	1.0	101
3	Local Treatment with Lactate Prevents Intestinal Inflammation in the TNBS-Induced Colitis Model. Frontiers in Immunology, 2016, 7, 651.	2,2	63
4	Metabolomics in nutrition research–a powerful window into nutritional metabolism. Essays in Biochemistry, 2016, 60, 451-458.	2.1	22
5	Hypoxia attenuates antiâ€ <i>Aspergillus fumigatus</i> immune responses initiated by human dendritic cells. Mycoses, 2016, 59, 503-508.	1.8	29
6	Macrophage heterogeneity in the context of rheumatoid arthritis. Nature Reviews Rheumatology, 2016, 12, 472-485.	3.5	493
7	Coordinated Regulation of Signaling Pathways during Macrophage Activation. Microbiology Spectrum, $2016,4,.$	1.2	1
8	Myeloid Cell Phenotypes in Susceptibility and Resistance to Helminth Parasite Infections. Microbiology Spectrum, 2016, 4, .	1.2	8
9	Fungal Chitin Induces Trained Immunity in Human Monocytes during Cross-talk of the Host with Saccharomyces cerevisiae. Journal of Biological Chemistry, 2016, 291, 7961-7972.	1.6	90
10	Liver immunology and its role in inflammation and homeostasis. Cellular and Molecular Immunology, 2016, 13, 267-276.	4.8	693
11	Macrophage fatty acid oxidation and its roles in macrophage polarization and fatty acid-induced inflammation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1796-1807.	1.2	106
12	Mitochondrial Dysfunction Prevents Repolarization of Inflammatory Macrophages. Cell Reports, 2016, 17, 684-696.	2.9	595
13	Immune Cell Metabolism in Systemic Lupus Erythematosus. Current Rheumatology Reports, 2016, 18, 66.	2.1	30
14	Natural genetic variation profoundly regulates gene expression in immune cells and dictates susceptibility to CNS autoimmunity. Genes and Immunity, 2016, 17, 386-395.	2.2	16
15	C13orf31 (FAMIN) is a central regulator of immunometabolic function. Nature Immunology, 2016, 17, 1046-1056.	7.0	123
16	GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis. Journal of Experimental Medicine, 2016, 213, 1655-1662.	4.2	337
17	When Hexokinase Gets that NAG-ing Feeling…. Cell Metabolism, 2016, 24, 198-200.	7.2	3
18	Immune polarization by hookworms: taking cues from <scp>T</scp> helper type 2, type 2 innate lymphoid cells and alternatively activated macrophages. Immunology, 2016, 148, 115-124.	2.0	37

#	Article	IF	Citations
19	Immunometabolism: Is it under the eye of the clock?. Seminars in Immunology, 2016, 28, 478-490.	2.7	40
20	Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages. Cell, 2016, 167, 457-470.e13.	13.5	1,396
21	A novel "complement–metabolism–inflammasome axis―as a key regulator of immune cell effector function. European Journal of Immunology, 2016, 46, 1563-1573.	1.6	107
22	The transcriptional coregulator GRIP1 controls macrophage polarization and metabolic homeostasis. Nature Communications, 2016, 7, 12254.	5.8	37
23	Dendritic Cells and Cancer Immunity. Trends in Immunology, 2016, 37, 855-865.	2.9	624
24	Integrating immunometabolism and macrophage diversity. Seminars in Immunology, 2016, 28, 417-424.	2.7	137
25	Metabolic reprogramming & Definition among the host response to pathogens. Seminars in Immunology, 2016, 28, 450-468.	2.7	53
26	Opposing regulation of the late phase TNF response by mTORC1-IL-10 signaling and hypoxia in human macrophages. Scientific Reports, 2016, 6, 31959.	1.6	26
27	Adipose tissue at the nexus of systemic and cellular immunometabolism. Seminars in Immunology, 2016, 28, 431-440.	2.7	55
28	Metabolism and acetylation in innate immune cell function and fate. Seminars in Immunology, 2016, 28, 408-416.	2.7	39
29	Metabolic Reprogramming Mediated by the mTORC2-IRF4 Signaling Axis Is Essential for Macrophage Alternative Activation. Immunity, 2016, 45, 817-830.	6.6	453
30	Myeloid Cell–Derived HIF-1α Promotes Control of <i>Leishmania major</i> . Journal of Immunology, 2016, 197, 4034-4041.	0.4	45
31	AMPK-independent inhibition of human macrophage ER stress response by AICAR. Scientific Reports, 2016, 6, 32111.	1.6	27
32	Fatty acid metabolism in macrophages: a target in cardio-metabolic diseases. Current Opinion in Lipidology, 2017, 28, 19-26.	1.2	30
33	Genetic Coding Variant in GPR65 Alters Lysosomal pH and Links Lysosomal Dysfunction with Colitis Risk. Immunity, 2016, 44, 1392-1405.	6.6	106
34	Type 1 Interferons Induce Changes in Core Metabolism that Are Critical for Immune Function. Immunity, 2016, 44, 1325-1336.	6.6	248
35	Mitochondrial respiratory-chain adaptations in macrophages contribute to antibacterial host defense. Nature Immunology, 2016, 17, 1037-1045.	7.0	259
36	Metabolic reprogramming through fatty acid transport protein 1 (FATP1) regulates macrophage inflammatory potential and adipose inflammation. Molecular Metabolism, 2016, 5, 506-526.	3.0	107

#	Article	IF	Citations
37	Regulatory principles in metabolism–then and now. Biochemical Journal, 2016, 473, 1845-1857.	1.7	66
38	Glucose Metabolism in T Cells and Monocytes: New Perspectives in HIV Pathogenesis. EBioMedicine, 2016, 6, 31-41.	2.7	96
39	Phagocytosis: An Immunobiologic Process. Immunity, 2016, 44, 463-475.	6.6	610
40	Cellular metabolism of myeloid cells in sepsis. Journal of Leukocyte Biology, 2017, 101, 151-164.	1.5	85
41	Succinate in the cancer–immune cycle. Cancer Letters, 2017, 390, 45-47.	3.2	74
42	TLR4 antagonist FP7 inhibits LPS-induced cytokine production and glycolytic reprogramming in dendritic cells, and protects mice from lethal influenza infection. Scientific Reports, 2017, 7, 40791.	1.6	105
43	Macrophage-Mediated Clofazimine Sequestration Is Accompanied by a Shift in Host Energy Metabolism. Journal of Pharmaceutical Sciences, 2017, 106, 1162-1174.	1.6	20
44	Inflammasome Priming in Sterile Inflammatory Disease. Trends in Molecular Medicine, 2017, 23, 165-180.	3.5	193
45	Targeting Metabolism as a Novel Therapeutic Approach to Autoimmunity, Inflammation, and Transplantation. Journal of Immunology, 2017, 198, 999-1005.	0.4	82
46	mTORC2 signalling regulates M2 macrophage differentiation in response to helminth infection and adaptive thermogenesis. Nature Communications, 2017, 8, 14208.	5.8	106
47	The effect of oxidized phospholipids on phenotypic polarization and function of macrophages. Free Radical Biology and Medicine, 2017, 111, 156-168.	1.3	48
48	Metabolic origins of spatial organization in the tumor microenvironment. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2934-2939.	3.3	259
49	Carnitine acetyltransferase (CRAT) expression in macrophages is dispensable for nutrient stress sensing and inflammation. Molecular Metabolism, 2017, 6, 219-225.	3.0	7
50	Metabolic Alterations Contribute to Enhanced Inflammatory Cytokine Production in Irgm1-deficient Macrophages. Journal of Biological Chemistry, 2017, 292, 4651-4662.	1.6	22
51	Physiological roles of macrophages. Pflugers Archiv European Journal of Physiology, 2017, 469, 365-374.	1.3	147
52	Inflammasomes: Key Mediators of Lung Immunity. Annual Review of Physiology, 2017, 79, 471-494.	5.6	52
53	Type-I-interferons in infection and cancer: Unanticipated dynamics with therapeutic implications. Oncolmmunology, 2017, 6, e1314424.	2.1	106
54	The bioenergetics of inflammation: insights into obesity and type 2 diabetes. European Journal of Clinical Nutrition, 2017, 71, 904-912.	1.3	40

#	Article	IF	Citations
55	Roles of M1 and M2 Macrophages in Herpes Simplex Virus 1 Infectivity. Journal of Virology, 2017, 91, .	1.5	42
56	Biochemical Underpinnings of Immune Cell Metabolic Phenotypes. Immunity, 2017, 46, 703-713.	6.6	107
57	Metabolic and Epigenetic Coordination of T Cell and Macrophage Immunity. Immunity, 2017, 46, 714-729.	6.6	234
58	Programmed mitophagy is essential for the glycolytic switch during cell differentiation. EMBO Journal, 2017, 36, 1688-1706.	3.5	245
59	Metabolic Instruction of Immunity. Cell, 2017, 169, 570-586.	13.5	871
60	Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science, 2017, 356, 513-519.	6.0	886
61	Metabolic Reprogramming Commits Differentiation of Human CD27+lgD+ B Cells to Plasmablasts or CD27â^'lgDâ'' Cells. Journal of Immunology, 2017, 199, 425-434.	0.4	72
62	Innate Immune Receptors as Competitive Determinants of Cell Fate. Molecular Cell, 2017, 66, 750-760.	4.5	47
63	REG3 \hat{l}^2 modifies cell tumor function by impairing extracellular vesicle uptake. Scientific Reports, 2017, 7, 3143.	1.6	24
64	MenTORing Immunity: mTOR Signaling in the Development and Function of Tissue-Resident Immune Cells. Immunity, 2017, 46, 730-742.	6.6	179
65	Metabolic Inflammatory Complex in Sepsis: Septic Cachexia as a Novel Potential Therapeutic Target. Shock, 2017, 48, 600-609.	1.0	18
66	Energy metabolic pathways control the fate and function of myeloid immune cells. Journal of Leukocyte Biology, 2017, 102, 369-380.	1.5	49
67	Sirtuin 3 deficiency does not alter host defenses against bacterial and fungal infections. Scientific Reports, 2017, 7, 3853.	1.6	31
68	Endothelial cell metabolism in health and disease: impact of hypoxia. EMBO Journal, 2017, 36, 2187-2203.	3.5	186
69	A past and present overview of macrophage metabolism and functional outcomes. Clinical Science, 2017, 131, 1329-1342.	1.8	87
70	Inflammation and metabolism in tissue repair and regeneration. Science, 2017, 356, 1026-1030.	6.0	808
71	Cancer cell and macrophage cross-talk in the tumor microenvironment. Current Opinion in Pharmacology, 2017, 35, 12-19.	1.7	188
72	How do viruses interfere with Toll-like receptor 4?. Future Virology, 2017, 12, 243-246.	0.9	0

#	Article	IF	Citations
73	Differential expression of novel metabolic and immunological biomarkers in oysters challenged with a virulent strain of OsHV-1. Developmental and Comparative Immunology, 2017, 73, 229-245.	1.0	50
74	Reprogramming Innate Immune Signaling in Cardiometabolic Disease. Hypertension, 2017, 69, 747-760.	1.3	23
75	A novel multi-network approach reveals tissue-specific cellular modulators of fibrosis in systemic sclerosis. Genome Medicine, 2017, 9, 27.	3.6	92
76	Fine tuning of immunometabolism for the treatment of rheumatic diseases. Nature Reviews Rheumatology, 2017, 13, 313-320.	3.5	58
77	Enhanced Glycolytic Metabolism Contributes to Cardiac Dysfunction in Polymicrobial Sepsis. Journal of Infectious Diseases, 2017, 215, 1396-1406.	1.9	110
78	Immunometabolism in systemic lupus erythematosus. Nature Reviews Rheumatology, 2017, 13, 280-290.	3.5	190
79	Loss of macrophage fatty acid oxidation does not potentiate systemic metabolic dysfunction. American Journal of Physiology - Endocrinology and Metabolism, 2017, 312, E381-E393.	1.8	28
80	Metabolic Stress Drives Keratinocyte Defenses against Staphylococcus aureus Infection. Cell Reports, 2017, 18, 2742-2751.	2.9	70
81	Metabolites: deciphering the molecular language between DCs and their environment. Seminars in Immunopathology, 2017, 39, 177-198.	2.8	10
83	Metabolic regulation of macrophage phenotype and function. Immunological Reviews, 2017, 280, 102-111.	2.8	164
84	Lack of myeloid Fatp1 increases atherosclerotic lesion size in Ldlr \hat{a} mice. Atherosclerosis, 2017, 266, 182-189.	0.4	14
85	Metabolic Reprogramming and Redox Signaling in Pulmonary Hypertension. Advances in Experimental Medicine and Biology, 2017, 967, 241-260.	0.8	13
86	Macrophages and Mitochondria. Advances in Immunology, 2017, 133, 1-36.	1.1	45
87	Transfusion-related immunomodulation: a reappraisal. Current Opinion in Hematology, 2017, 24, 551-557.	1.2	79
88	Macrophages in Nonalcoholic Fatty Liver Disease: A Role Model of Pathogenic Immunometabolism. Seminars in Liver Disease, 2017, 37, 189-197.	1.8	48
89	Legionella pneumophila Modulates Mitochondrial Dynamics to Trigger Metabolic Repurposing of Infected Macrophages. Cell Host and Microbe, 2017, 22, 302-316.e7.	5.1	187
90	Proteomic Signature Reveals Modulation of Human Macrophage Polarization and Functions Under Differing Environmental Oxygen Conditions. Molecular and Cellular Proteomics, 2017, 16, 2153-2168.	2.5	30
91	Role of cellular metabolism in regulating type I interferon responses: Implications for tumour immunology and treatment. Cancer Letters, 2017, 409, 20-29.	3.2	17

#	Article	IF	Citations
93	The lipid-sensor TREM2 aggravates disease in a model of LCMV-induced hepatitis. Scientific Reports, 2017, 7, 11289.	1.6	12
94	Innate Lymphoid Cell Immunometabolism. Journal of Molecular Biology, 2017, 429, 3577-3586.	2.0	16
95	Innate and Adaptive Immune Cell Metabolism in Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2017, 1011, 211-223.	0.8	22
96	Exploring Metabolic Configurations of Single Cells within Complex Tissue Microenvironments. Cell Metabolism, 2017, 26, 788-800.e6.	7.2	81
97	Modulation of dendritic cell and T cell cross-talk during aging: The potential role of checkpoint inhibitory molecules. Ageing Research Reviews, 2017, 38, 40-51.	5.0	27
99	$\hat{l}\pm$ -ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nature Immunology, 2017, 18, 985-994.	7.0	715
100	Cytosolic Pellino-1-Mediated K63-Linked Ubiquitination of IRF5 in M1 Macrophages Regulates Glucose Intolerance in Obesity. Cell Reports, 2017, 20, 832-845.	2.9	36
101	Mitochondrial dysfunction as a trigger of innate immune responses and inflammation. Toxicology, 2017, 391, 54-63.	2.0	135
102	Cellular metabolism of tumorâ€associated macrophages – functional impact and consequences. FEBS Letters, 2017, 591, 3022-3041.	1.3	51
103	Critical roles of mTORC1 signaling and metabolic reprogramming for M-CSF–mediated myelopoiesis. Journal of Experimental Medicine, 2017, 214, 2629-2647.	4.2	42
104	TREM2 Maintains Microglial Metabolic Fitness in Alzheimer's Disease. Cell, 2017, 170, 649-663.e13.	13.5	741
105	Pharmacologic or Genetic Targeting of Glutamine Synthetase Skews Macrophages toward an M1-like Phenotype and Inhibits Tumor Metastasis. Cell Reports, 2017, 20, 1654-1666.	2.9	258
106	Metabolic characterization and RNA profiling reveal glycolytic dependence of profibrotic phenotype of alveolar macrophages in lung fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L834-L844.	1.3	54
107	Macrophage metabolism in atherosclerosis. FEBS Letters, 2017, 591, 3042-3060.	1.3	103
108	Metabolic abnormalities and oxidative stress in lupus. Current Opinion in Rheumatology, 2017, 29, 442-449.	2.0	67
109	BCAT1 controls metabolic reprogramming in activated human macrophages and is associated with inflammatory diseases. Nature Communications, 2017, 8, 16040.	5.8	156
110	Similarities and Distinctions of Cancer and Immune Metabolism in Inflammation and Tumors. Cell Metabolism, 2017, 26, 49-70.	7.2	268
111	Metabolic Regulation of T Cell Longevity and Function in Tumor Immunotherapy. Cell Metabolism, 2017, 26, 94-109.	7.2	374

#	Article	IF	CITATIONS
112	Specific and Complex Reprogramming of Cellular Metabolism in Myeloid Cells during Innate Immune Responses. Cell Metabolism, 2017, 26, 142-156.	7.2	144
113	Insights into innate immune signalling in controlling cardiac remodelling. Cardiovascular Research, 2017, 113, 1538-1550.	1.8	46
114	An update: Epstein-Barr virus and immune evasion via microRNA regulation. Virologica Sinica, 2017, 32, 175-187.	1.2	50
115	Immunotherapy for Type 1 Diabetes: Why Do Current Protocols Not Halt the Underlying Disease Process?. Cell Metabolism, 2017, 25, 233-241.	7.2	37
116	Metabolic changes during B cell differentiation for the production of intestinal IgA antibody. Cellular and Molecular Life Sciences, 2017, 74, 1503-1509.	2.4	34
117	CCL2 and CCR2 regulate pain-related behaviour and early gene expression in post-traumatic murine osteoarthritis but contribute little to chondropathy. Osteoarthritis and Cartilage, 2017, 25, 406-412.	0.6	95
118	Developmental origins of NAFLD: a womb with a clue. Nature Reviews Gastroenterology and Hepatology, 2017, 14, 81-96.	8.2	162
119	Macrophage Polarization. Annual Review of Physiology, 2017, 79, 541-566.	5.6	1,934
120	The PD-1/PD-L1 axis contributes to immune metabolic dysfunctions of monocytes in chronic lymphocytic leukemia. Leukemia, 2017, 31, 470-478.	3.3	78
121	Tissue Immunometabolism: Development, Physiology, and Pathobiology. Cell Metabolism, 2017, 25, 11-26.	7.2	96
122	Sarcopenic obesity or obese sarcopenia: A cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis. Ageing Research Reviews, 2017, 35, 200-221.	5.0	483
124	Metabolic Reprogramming in Resting and Activated Immune Cells. Metabolomics: Open Access, 2017, 07, .	0.1	3
125	Myeloid Cell Phenotypes in Susceptibility and Resistance to Helminth Parasite Infections. , 2017, , 759-769.		0
126	Coordinated Regulation of Signaling Pathways during Macrophage Activation., 2017,, 543-552.		0
127	Mitochondrial Dysfunction and Immune Cell Metabolism in Sepsis. Infection and Chemotherapy, 2017, 49, 10.	1.0	40
128	To Eat and to Be Eaten: Mutual Metabolic Adaptations of Immune Cells and Intracellular Bacterial Pathogens upon Infection. Frontiers in Cellular and Infection Microbiology, 2017, 7, 316.	1.8	45
129	Metabolic Remodeling, Inflammasome Activation, and Pyroptosis in Macrophages Stimulated by Porphyromonas gingivalis and Its Outer Membrane Vesicles. Frontiers in Cellular and Infection Microbiology, 2017, 7, 351.	1.8	138
130	Metabolism Supports Macrophage Activation. Frontiers in Immunology, 2017, 8, 61.	2.2	137

#	Article	IF	CITATIONS
131	Metabolic Hallmarks of Tumor and Immune Cells in the Tumor Microenvironment. Frontiers in Immunology, 2017, 8, 248.	2.2	274
132	Macrophage Metabolism As Therapeutic Target for Cancer, Atherosclerosis, and Obesity. Frontiers in Immunology, 2017, 8, 289.	2.2	225
133	Innate Immune Function of Mitochondrial Metabolism. Frontiers in Immunology, 2017, 8, 527.	2.2	40
134	Similarities in the Metabolic Reprogramming of Immune System and Endothelium. Frontiers in Immunology, 2017, 8, 837.	2.2	45
135	Metabolic Plasticity of Stem Cells and Macrophages in Cancer. Frontiers in Immunology, 2017, 8, 939.	2.2	23
136	Control of Phagocytosis by Microbial Pathogens. Frontiers in Immunology, 2017, 8, 1368.	2.2	201
137	Mevalonate Metabolism in Immuno-Oncology. Frontiers in Immunology, 2017, 8, 1714.	2.2	44
138	HIF1 <i>\hat{l}±</i> li>-Induced Glycolysis Metabolism Is Essential to the Activation of Inflammatory Macrophages. Mediators of Inflammation, 2017, 2017, 1-10.	1.4	228
139	Hypoxic Modulation of HLA-G Expression through the Metabolic Sensor HIF-1 in Human Cancer Cells. Journal of Immunology Research, 2017, 2017, 1-13.	0.9	39
140	Metabolic Plasticity in Dendritic Cell Responses: Implications in Allergic Asthma. Journal of Immunology Research, 2017, 2017, 1-12.	0.9	17
141	Rewiring monocyte glucose metabolism via C-type lectin signaling protects against disseminated candidiasis. PLoS Pathogens, 2017, 13, e1006632.	2.1	73
142	Modeling Infectious Diseases in the Context of a Developing Immune System. Current Topics in Developmental Biology, 2017, 124, 277-329.	1.0	55
143	Para-hydroxyphenylpyruvate inhibits the pro-inflammatory stimulation of macrophage preventing LPS-mediated nitro-oxidative unbalance and immunometabolic shift. PLoS ONE, 2017, 12, e0188683.	1.1	12
144	Detection of RACK1 and CTNNBL1-induced activation of mouse splenocytes using an immunoprecipitation-based technique. Molecular Medicine Reports, 2017, 16, 7056-7063.	1.1	0
145	Role of the Hypoxia-Inducible Factor in Periodontal Inflammation. , 2017, , .		4
146	Modulation of innate and adaptive immune responses by arabinoxylans. Journal of Food Biochemistry, 2018, 42, e12473.	1.2	13
147	Macrophage-Derived Extracellular Succinate Licenses Neural Stem Cells to Suppress Chronic Neuroinflammation. Cell Stem Cell, 2018, 22, 355-368.e13.	5 . 2	216
148	Intestinal microbiota and the immune system in metabolic diseases. Journal of Microbiology, 2018, 56, 154-162.	1.3	80

#	Article	IF	CITATIONS
149	An M2 Rather than a T H 2 Response Contributes to Better Protection against Latency Reactivation following Ocular Infection of Naive Mice with a Recombinant Herpes Simplex Virus 1 Expressing Murine Interleukin-4. Journal of Virology, 2018, 92, .	1.5	8
150	Biochemistry of proinflammatory macrophage activation. Cellular and Molecular Life Sciences, 2018, 75, 2093-2109.	2.4	82
151	Cocoa procyanidins modulate transcriptional pathways linked to inflammation and metabolism in human dendritic cells. Food and Function, 2018, 9, 2883-2890.	2.1	35
152	Metabolic reprogramming of host cells upon bacterial infection: Why shift to a <i>Warburgâ€ike</i> metabolism?. FEBS Journal, 2018, 285, 2146-2160.	2.2	110
153	Targeting macrophage immunometabolism: Dawn in the darkness of sepsis. International Immunopharmacology, 2018, 58, 173-185.	1.7	98
154	Metabolic Regulation of Innate Immunity to Fungal Infection. Experientia Supplementum (2012), 2018, 109, 403-420.	0.5	0
155	Metabolic regulation of leukocyte motility and migration. Journal of Leukocyte Biology, 2018, 104, 285-293.	1.5	30
156	B-Cell Metabolic Remodeling and Cancer. Trends in Cancer, 2018, 4, 138-150.	3.8	50
157	Blockade of Host \hat{I}^2 2-Adrenergic Receptor Enhances Graft-versus-Tumor Effect through Modulating APCs. Journal of Immunology, 2018, 200, 2479-2488.	0.4	17
158	Dynamic and diverse changes in the functional properties of vascular smooth muscle cells in pulmonary hypertension. Cardiovascular Research, 2018, 114, 551-564.	1.8	96
159	Unique metabolic activation of adipose tissue macrophages in obesity promotes inflammatory responses. Diabetologia, 2018, 61, 942-953.	2.9	149
160	Paracrine Wnt5a-β-Catenin Signaling Triggers a Metabolic Program that Drives Dendritic Cell Tolerization. Immunity, 2018, 48, 147-160.e7.	6.6	185
161	The NLRP3 inflammasome: Role in metabolic disorders and regulation by metabolic pathways. Cancer Letters, 2018, 419, 8-19.	3.2	68
162	Oxidized Carbon Black: Preparation, Characterization and Application in Antibody Delivery across Cell Membrane. Scientific Reports, 2018, 8, 2489.	1.6	23
163	Human MAIT cells show metabolic quiescence with rapid glucoseâ€dependent upregulation of granzyme B upon stimulation. Immunology and Cell Biology, 2018, 96, 666-674.	1.0	34
164	Cancer, obesity and immunometabolism – Connecting the dots. Cancer Letters, 2018, 417, 11-20.	3.2	36
165	Connections Between Metabolism and Epigenetics in Programming Cellular Differentiation. Annual Review of Immunology, 2018, 36, 221-246.	9.5	93
166	SIRT1 and HIF1α signaling in metabolism and immune responses. Cancer Letters, 2018, 418, 20-26.	3.2	107

#	Article	IF	CITATIONS
167	A multi-omics analysis reveals metabolic reprogramming in THP-1 cells upon treatment with the contact allergen DNCB. Toxicology and Applied Pharmacology, 2018, 340, 21-29.	1.3	9
168	Ascaris Suum Infection Downregulates Inflammatory Pathways in the Pig Intestine In Vivo and in Human Dendritic Cells In Vitro. Journal of Infectious Diseases, 2018, 217, 310-319.	1.9	32
169	Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss. Nature Communications, 2018, 9, 55.	5.8	393
170	Lessons learned from the blockade of immune checkpoints in cancer immunotherapy. Journal of Hematology and Oncology, 2018, 11, 31.	6.9	256
171	Atherogenic dyslipidemia promotes autoimmune follicular helper T cell responses via IL-27. Nature Immunology, 2018, 19, 583-593.	7.0	60
172	Disrupting metabolism to treat autoimmunity. Science, 2018, 360, 377-378.	6.0	8
173	Intercellular mitochondria trafficking highlighting the dual role of mesenchymal stem cells as both sensors and rescuers of tissue injury. Cell Cycle, 2018, 17, 712-721.	1.3	76
174	The cellular metabolic landscape in the tumor milieu regulates the activity of myeloid infiltrates. Cellular and Molecular Immunology, 2018, 15, 421-427.	4.8	26
175	Lysine Deacetylases and Regulated Glycolysis in Macrophages. Trends in Immunology, 2018, 39, 473-488.	2.9	61
176	Growth of <i>Mycobacterium tuberculosis</i> in vivo segregates with host macrophage metabolism and ontogeny. Journal of Experimental Medicine, 2018, 215, 1135-1152.	4.2	421
177	Hallmarks of Pulmonary Hypertension: Mesenchymal and Inflammatory Cell Metabolic Reprogramming. Antioxidants and Redox Signaling, 2018, 28, 230-250.	2.5	71
178	In Vitro Modeling of Tumor–Immune System Interaction. ACS Biomaterials Science and Engineering, 2018, 4, 314-323.	2.6	21
179	Mitochondrial Dynamics at the Interface of Immune Cell Metabolism and Function. Trends in Immunology, 2018, 39, 6-18.	2.9	248
180	Spatiotemporal Control of Acetyl-CoA Metabolism in Chromatin Regulation. Trends in Biochemical Sciences, 2018, 43, 61-74.	3.7	246
181	Emerging Concepts in Innate Immunity. Methods in Molecular Biology, 2018, 1714, 1-18.	0.4	12
182	Prohibitin: A new player in immunometabolism and in linking obesity and inflammation with cancer. Cancer Letters, 2018, 415, 208-216.	3.2	16
183	Driving immunity: all roads lead to metabolism. Nature Reviews Immunology, 2018, 18, 81-82.	10.6	71
184	Metabolic Control of CD8+ T Cell Fate Decisions and Antitumor Immunity. Trends in Molecular Medicine, 2018, 24, 30-48.	3.5	158

#	Article	IF	CITATIONS
185	Febrile temperature reprograms by redox-mediated signaling the mitochondrial metabolic phenotype in monocyte-derived dendritic cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 685-699.	1.8	5
186	Excessive interferon-α signaling in autoimmunity alters glycosphingolipid processing in B cells. Journal of Autoimmunity, 2018, 89, 53-62.	3.0	4
187	NOD1 and NOD2: Molecular targets in prevention and treatment of infectious diseases. International Immunopharmacology, 2018, 54, 385-400.	1.7	23
188	Hexokinase 2â€dependent hyperglycolysis driving microglial activation contributes to ischemic brain injury. Journal of Neurochemistry, 2018, 144, 186-200.	2.1	80
189	Exploiting Metabolic Vulnerabilities of Cancer with Precision and Accuracy. Trends in Cell Biology, 2018, 28, 201-212.	3.6	94
190	AMPK regulates immunometabolism in sepsis. Brain, Behavior, and Immunity, 2018, 72, 89-100.	2.0	33
191	The role of nitric oxide in metabolic regulation of Dendritic cell immune function. Cancer Letters, 2018, 412, 236-242.	3.2	77
192	Mitochondria: A master regulator in macrophage and T cell immunity. Mitochondrion, 2018, 41, 45-50.	1.6	45
193	How host metabolism impacts on virus pathogenesis. Current Opinion in Virology, 2018, 28, 37-42.	2.6	15
194	The Role of Metabolite-Sensing G Protein-Coupled Receptors in Inflammation and Metabolic Disease. Antioxidants and Redox Signaling, 2018, 29, 237-256.	2.5	13
195	Glycolytic Response to Inflammation Over Time: Role of Myeloid HIF-1alpha. Frontiers in Physiology, 2018, 9, 1624.	1.3	11
196	Pyruvate dehydrogenase complex stimulation promotes immunometabolic homeostasis and sepsis survival. JCI Insight, 2018, 3, .	2.3	48
197	Regulatory Networks Involving STATs, IRFs, and NFκB in Inflammation. Frontiers in Immunology, 2018, 9, 2542.	2.2	153
198	Hypoxia potentiates monocyte-derived dendritic cells for release of tumor necrosis factor \hat{l}_{\pm} via MAP3K8. Bioscience Reports, 2018, 38, .	1.1	31
199	The E3 ligase VHL controls alveolar macrophage function via metabolic–epigenetic regulation. Journal of Experimental Medicine, 2018, 215, 3180-3193.	4.2	28
200	Mitochondrial p32/C1qbp Is a Critical Regulator of Dendritic Cell Metabolism and Maturation. Cell Reports, 2018, 25, 1800-1815.e4.	2.9	46
201	Metabolism Plays a Key Role during Macrophage Activation. Mediators of Inflammation, 2018, 2018, 1-10.	1.4	57
202	Modulating T Cell Responses via Autophagy: The Intrinsic Influence Controlling the Function of Both Antigen-Presenting Cells and T Cells. Frontiers in Immunology, 2018, 9, 2914.	2.2	42

#	Article	IF	Citations
203	Ovarian Cancer-Intrinsic Fatty Acid Synthase Prevents Anti-tumor Immunity by Disrupting Tumor-Infiltrating Dendritic Cells. Frontiers in Immunology, 2018, 9, 2927.	2.2	102
204	Human Plasmacytoid and Monocyte-Derived Dendritic Cells Display Distinct Metabolic Profile Upon RIG-I Activation. Frontiers in Immunology, 2018, 9, 3070.	2.2	28
205	Gut Microbiome Dysbiosis and Immunometabolism: New Frontiers for Treatment of Metabolic Diseases. Mediators of Inflammation, 2018, 2018, 1-12.	1.4	199
206	Mitochondrial Membrane Potential Regulates Nuclear Gene Expression in Macrophages Exposed to Prostaglandin E2. Immunity, 2018, 49, 1021-1033.e6.	6.6	75
207	Sparks Fly in PGE2-Modulated Macrophage Polarization. Immunity, 2018, 49, 987-989.	6.6	4
208	O-GlcNAc Transferase Links Glucose Metabolism to MAVS-Mediated Antiviral Innate Immunity. Cell Host and Microbe, 2018, 24, 791-803.e6.	5.1	81
209	Development and Application of FASA, a Model for Quantifying Fatty Acid Metabolism Using Stable Isotope Labeling. Cell Reports, 2018, 25, 2919-2934.e8.	2.9	13
210	Emerging Roles of Cellular Metabolism in Regulating Dendritic Cell Subsets and Function. Frontiers in Cell and Developmental Biology, 2018, 6, 152.	1.8	39
211	The Isoform Selective Roles of PI3Ks in Dendritic Cell Biology and Function. Frontiers in Immunology, 2018, 9, 2574.	2.2	29
212	Metabolism of innate immune cells. Current Opinion in Lipidology, 2018, 29, 359-367.	1.2	22
213	The gut microbiota in infants of obese mothers increases inflammation and susceptibility to NAFLD. Nature Communications, 2018, 9, 4462.	5.8	205
214	Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients, 2018, 10, 1564.	1.7	616
215	Tumour microenvironment and metabolic plasticity in cancer and cancer stem cells: Perspectives on metabolic and immune regulatory signatures in chemoresistant ovarian cancer stem cells. Seminars in Cancer Biology, 2018, 53, 265-281.	4.3	127
216	Mycobacterium tuberculosis carrying a rifampicin drug resistance mutation reprograms macrophage metabolism through cell wall lipid changes. Nature Microbiology, 2018, 3, 1099-1108.	5.9	90
217	Properties and functions of adipose tissue macrophages in obesity. Immunology, 2018, 155, 407-417.	2.0	421
218	Energy Demands of Early Life Drive a Disease Tolerant Phenotype and Dictate Outcome in Neonatal Bacterial Sepsis. Frontiers in Immunology, 2018, 9, 1918.	2.2	36
219	Regulation of fatty acid synthesis in immune cells. Scandinavian Journal of Immunology, 2018, 88, e12713.	1.3	37
220	Glucose metabolism and metabolic flexibility in blood platelets. Journal of Thrombosis and Haemostasis, 2018, 16, 2300-2314.	1.9	71

#	ARTICLE	IF	CITATIONS
221	TLR-activated repression of Fe-S cluster biogenesis drives a metabolic shift and alters histone and tubulin acetylation. Blood Advances, 2018, 2, 1146-1156.	2.5	32
222	Systematic fractionation and immunoenhancement of water-soluble polysaccharides isolated from fruit of Morus alba L International Journal of Biological Macromolecules, 2018, 116, 1056-1063.	3.6	17
223	The Bicarbonate Transporter SLC4A7 Plays a Key Role in Macrophage Phagosome Acidification. Cell Host and Microbe, 2018, 23, 766-774.e5.	5.1	65
224	Legionella pneumophila Is Directly Sensitive to 2-Deoxyglucose-Phosphate via Its UhpC Transporter but Is Indifferent to Shifts in Host Cell Glycolytic Metabolism. Journal of Bacteriology, 2018, 200, .	1.0	10
225	Clinical isolates of the modern Mycobacterium tuberculosis lineage 4 evade host defense in human macrophages through eluding IL- $1\hat{1}^2$ -induced autophagy. Cell Death and Disease, 2018, 9, 624.	2.7	37
226	Hippo/Mst signalling couples metabolic state and immune function of CD8 $\hat{l}\pm +$ dendritic cells. Nature, 2018, 558, 141-145.	13.7	152
227	Temporal Manipulation of Mitochondrial Function by Virulent Francisella tularensis To Limit Inflammation and Control Cell Death. Infection and Immunity, 2018, 86, .	1.0	13
228	Conventional DCs from Male and Female Lupus-Prone B6.NZM Sle1/Sle2/Sle3 Mice Express an IFN Signature and Have a Higher Immunometabolism That Are Enhanced by Estrogen. Journal of Immunology Research, 2018, 2018, 1-21.	0.9	8
229	Integrated pathogen load and dual transcriptome analysis of systemic host-pathogen interactions in severe malaria. Science Translational Medicine, $2018,10,10$	5.8	98
230	Metabolic adaptation of pigs to a Mycoplasma hyopneumoniae and Lawsonia intracellularis dual challenge1. Journal of Animal Science, 2018, 96, 3196-3207.	0.2	7
231	Emerging roles of microRNAs in the metabolic control of immune cells. Cancer Letters, 2018, 433, 10-17.	3.2	12
232	Lipid and Non-lipid Factors Affecting Macrophage Dysfunction and Inflammation in Atherosclerosis. Frontiers in Physiology, 2018, 9, 654.	1.3	65
233	Toll-like Receptor 4–Induced Glycolytic Burst in Human Monocyte-Derived Dendritic Cells Results from p38-Dependent Stabilization of HIF-1α and Increased Hexokinase II Expression. Journal of Immunology, 2018, 201, 1510-1521.	0.4	55
234	Human Plasmablast Migration Toward CXCL12 Requires Glucose Oxidation by Enhanced Pyruvate Dehydrogenase Activity via AKT. Frontiers in Immunology, 2018, 9, 1742.	2.2	7
235	Interactions between Macrophages and Cyst-Lining Epithelial Cells Promote Kidney Cyst Growth in Pkd1-Deficient Mice. Journal of the American Society of Nephrology: JASN, 2018, 29, 2310-2325.	3.0	51
236	Origin and Consequences of Necroinflammation. Physiological Reviews, 2018, 98, 727-780.	13.1	147
237	Sustained high glucose exposure sensitizes macrophage responses to cytokine stimuli but reduces their phagocytic activity. BMC Immunology, 2018, 19, 24.	0.9	126
238	The impact of metabolic reprogramming on dendritic cell function. International Immunopharmacology, 2018, 63, 84-93.	1.7	14

#	Article	IF	CITATIONS
239	Transcriptional Profiling Suggests Extensive Metabolic Rewiring of Human and Mouse Macrophages during Early Interferon Alpha Responses. Mediators of Inflammation, 2018, 2018, 1-15.	1.4	11
240	Inhibitors of Apoptosis Protein Antagonists (Smac Mimetic Compounds) Control Polarization of Macrophages during Microbial Challenge and Sterile Inflammatory Responses. Frontiers in Immunology, 2017, 8, 1792.	2.2	14
241	Loss of Rictor in Monocyte/Macrophages Suppresses Their Proliferation and Viability Reducing Atherosclerosis in LDLR Null Mice. Frontiers in Immunology, 2018, 9, 215.	2.2	19
242	Nanoparticles for the Induction of Antigen-Specific Immunological Tolerance. Frontiers in Immunology, 2018, 9, 230.	2.2	130
243	Extracellular Purine Metabolism Is the Switchboard of Immunosuppressive Macrophages and a Novel Target to Treat Diseases With Macrophage Imbalances. Frontiers in Immunology, 2018, 9, 852.	2.2	39
244	PPARÎ 2 /δ: A Key Therapeutic Target in Metabolic Disorders. International Journal of Molecular Sciences, 2018, 19, 913.	1.8	66
245	Hypoxia, Metabolism and Immune Cell Function. Biomedicines, 2018, 6, 56.	1.4	126
246	Metabolomics reveals immunomodulation as a possible mechanism for the antibiotic effect of Persicaria capitata (BuchHam. ex D. Don) H.Gross. Metabolomics, 2018, 14, 91.	1.4	6
247	Dendritic cells in sepsis: Potential immunoregulatory cells with therapeutic potential. Molecular Immunology, 2018, 101, 615-626.	1.0	33
248	Sirtuin1 Targeting Reverses Innate and Adaptive Immune Tolerance in Septic Mice. Journal of Immunology Research, 2018, 2018, 1-13.	0.9	16
249	The metabolic axis of macrophage and immune cell polarization. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	46
250	How Mitochondrial Metabolism Contributes to Macrophage Phenotype and Functions. Journal of Molecular Biology, 2018, 430, 3906-3921.	2.0	41
251	Metabolic Symbiosis and Immunomodulation: How Tumor Cell-Derived Lactate May Disturb Innate and Adaptive Immune Responses. Frontiers in Oncology, 2018, 8, 81.	1.3	86
252	Macrophage Heterogeneity in the Immunopathogenesis of Tuberculosis. Frontiers in Microbiology, 2018, 9, 1028.	1.5	59
253	Metabolic pathways and immunometabolism in rare kidney diseases. Annals of the Rheumatic Diseases, 2018, 77, annrheumdis-2017-212935.	0.5	101
254	Targeting T Cell Metabolism for Improvement of Cancer Immunotherapy. Frontiers in Oncology, 2018, 8, 237.	1.3	123
255	Myeloid apolipoprotein E controls dendritic cell antigen presentation and T cell activation. Nature Communications, 2018, 9, 3083.	5.8	95
256	Targeting Mitochondrial Metabolism in Neuroinflammation: Towards a Therapy for Progressive Multiple Sclerosis. Trends in Molecular Medicine, 2018, 24, 838-855.	3.5	59

#	Article	IF	CITATIONS
257	From fever to immunity: A new role for IGFBPâ€6?. Journal of Cellular and Molecular Medicine, 2018, 22, 4588-4596.	1.6	25
258	Mapping macrophage polarization over the myocardial infarction time continuum. Basic Research in Cardiology, 2018, 113, 26.	2.5	189
259	Innate Immunity in Inflammation. , 2018, , 179-190.		1
260	Innate Immunity and Inflammation: The Molecular Mechanisms Governing the Cross-Talk Between Innate Immune and Endothelial Cells. , 2018, , 33-56.		O
261	Macrophage phenotype and bioenergetics are controlled by oxidized phospholipids identified in lean and obese adipose tissue. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6254-E6263.	3.3	102
262	Acutely malnourished weanling mice administered Flt3 ligand can support a cell-mediated inflammatory response. Cytokine, 2019, 113, 39-49.	1.4	2
263	Ataxin-3 Links NOD2 and TLR2 Mediated Innate Immune Sensing and Metabolism in Myeloid Cells. Frontiers in Immunology, 2019, 10, 1495.	2.2	11
264	Immunosuppressive Immature Myeloid Cell Generation Is Controlled by Glutamine Metabolism in Human Cancer. Cancer Immunology Research, 2019, 7, 1605-1618.	1.6	38
265	One-Carbon Metabolism Supports S-Adenosylmethionine and Histone Methylation to Drive Inflammatory Macrophages. Molecular Cell, 2019, 75, 1147-1160.e5.	4.5	186
266	NAD-Biosynthetic and Consuming Enzymes as Central Players of Metabolic Regulation of Innate and Adaptive Immune Responses in Cancer. Frontiers in Immunology, 2019, 10, 1720.	2.2	52
267	TSC1/mTOR-controlled metabolic–epigenetic cross talk underpins DC control of CD8+ T-cell homeostasis. PLoS Biology, 2019, 17, e3000420.	2.6	25
268	Immunometabolism: an overview and therapeutic prospects in autoimmune diseases. Immunotherapy, 2019, 11, 813-829.	1.0	53
269	Targeting metabolism to regulate immune responses in autoimmunity and cancer. Nature Reviews Drug Discovery, 2019, 18, 669-688.	21.5	176
270	Central metabolic interactions of immune cells and microbes: prospects for defeating infections. EMBO Reports, 2019, 20, e47995.	2.0	47
271	Glycerol phosphate shuttle enzyme GPD2 regulates macrophage inflammatory responses. Nature Immunology, 2019, 20, 1186-1195.	7.0	126
272	Measuring phenotypic flexibility by transcriptome timeâ€course analyses during challenge tests before and after energy restriction. FASEB Journal, 2019, 33, 10280-10290.	0.2	9
273	Dendritic Cell Metabolism and Function in Tumors. Trends in Immunology, 2019, 40, 699-718.	2.9	131
274	Macrophages Down-Regulate Gene Expression of Intervertebral Disc Degenerative Markers Under a Pro-inflammatory Microenvironment. Frontiers in Immunology, 2019, 10, 1508.	2.2	50

#	Article	IF	CITATIONS
275	Metabolism, Obesity, and Diabetes Mellitus. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, e166-e174.	1.1	15
276	Heterogeneity of Macrophages in Atherosclerosis. Thrombosis and Haemostasis, 2019, 119, 1237-1246.	1.8	9
277	Induction of memory-like dendritic cell responses in vivo. Nature Communications, 2019, 10, 2955.	5.8	113
278	Macrophage fatty acid metabolism and atherosclerosis: The rise of PUFAs. Atherosclerosis, 2019, 291, 52-61.	0.4	37
279	Polymerase III transcription is necessary for T cell priming by dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22721-22729.	3.3	15
280	Energy Trade-offs in Host Defense: Immunology Meets Physiology. Trends in Endocrinology and Metabolism, 2019, 30, 875-878.	3.1	18
281	4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to exert anti-inflammatory effects. Nature Communications, 2019, 10, 5091.	5.8	217
282	Metabolic Regulation of Macrophage Polarization in Cancer. Trends in Cancer, 2019, 5, 822-834.	3.8	273
283	Osteoimmunology: entwined regulation of integrated systems. Seminars in Immunopathology, 2019, 41, 547-549.	2.8	1
284	Immunometabolism of Phagocytes During Mycobacterium tuberculosis Infection. Frontiers in Molecular Biosciences, 2019, 6, 105.	1.6	65
285	Quantitative 1H NMR Metabolomics Reveal Distinct Metabolic Adaptations in Human Macrophages Following Differential Activation. Metabolites, 2019, 9, 248.	1.3	33
286	The Human G Protein-Coupled ATP Receptor P2Y11 Is Associated With IL-10 Driven Macrophage Differentiation. Frontiers in Immunology, 2019, 10, 1870.	2.2	19
287	Glycolysis dependent lactate formation in neutrophils: A metabolic link between NOX-dependent and independent NETosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 165542.	1.8	68
288	Impact of the Dual Deletion of the Mitochondrial Sirtuins SIRT3 and SIRT5 on Anti-microbial Host Defenses. Frontiers in Immunology, 2019, 10, 2341.	2.2	21
289	Multi-Omics Studies Demonstrate Toxoplasma gondii-Induced Metabolic Reprogramming of Murine Dendritic Cells. Frontiers in Cellular and Infection Microbiology, 2019, 9, 309.	1.8	25
290	Intracellular Sensors and Cellular Metabolism in Allogeneic Hematopoietic Stem Cell Transplantation. , 2019, , 349-374.		0
291	Regulation of Dendritic Cell Immune Function and Metabolism by Cellular Nutrient Sensor Mammalian Target of Rapamycin (mTOR). Frontiers in Immunology, 2018, 9, 3145.	2.2	42
292	Itaconate: the poster child of metabolic reprogramming in macrophage function. Nature Reviews Immunology, 2019, 19, 273-281.	10.6	359

#	Article	IF	CITATIONS
293	The Schistosomiasis SpleenOME: Unveiling the Proteomic Landscape of Splenomegaly Using Label-Free Mass Spectrometry. Frontiers in Immunology, 2018, 9, 3137.	2.2	8
294	Myeloid <i>Slc2a1</i> -Deficient Murine Model Revealed Macrophage Activation and Metabolic Phenotype Are Fueled by GLUT1. Journal of Immunology, 2019, 202, 1265-1286.	0.4	104
295	Specific sequences of infectious challenge lead to secondary hemophagocytic lymphohistiocytosis-like disease in mice. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2200-2209.	3.3	40
296	Immunometabolism at the interface between macrophages and pathogens. Nature Reviews Immunology, 2019, 19, 291-304.	10.6	285
297	CD8 T Cell Exhaustion During Chronic Viral Infection and Cancer. Annual Review of Immunology, 2019, 37, 457-495.	9.5	1,143
298	Murine experimental leprosy: Evaluation of immune response by analysis of peritoneal lavage cells and footpad histopathology. International Journal of Experimental Pathology, 2019, 100, 161-174.	0.6	5
299	Tumour-associated macrophages in hepatocellular carcinoma: Pressing the metabolic switch to prevent T cell responses. Journal of Hepatology, 2019, 71, 243-245.	1.8	4
300	Metabolic adaptations of tissue-resident immune cells. Nature Immunology, 2019, 20, 793-801.	7.0	115
301	Comparing the Metabolic Capabilities of Bacteria in the Mycobacterium tuberculosis Complex. Microorganisms, 2019, 7, 177.	1.6	27
302	Inhibition of fatty acid metabolism by etomoxir or TOFA suppresses murine dendritic cell activation without affecting viability. Immunopharmacology and Immunotoxicology, 2019, 41, 361-369.	1.1	13
303	Metallothionein 3 Controls the Phenotype and Metabolic Programming of Alternatively Activated Macrophages. Cell Reports, 2019, 27, 3873-3886.e7.	2.9	29
304	A readily 160-/180-isotopically-paired chiral derivatization approach for the quantification of 2-HG metabolic panel by liquid chromatography-Tandem mass spectrometry. Analytica Chimica Acta, 2019, 1077, 174-182.	2.6	15
305	Immunometabolism around the Clock. Trends in Molecular Medicine, 2019, 25, 612-625.	3.5	47
306	Analysis of macrophages and neutrophils infiltrating murine mammary carcinoma sites within hours of tumor delivery. Cellular Immunology, 2019, 346, 103929.	1.4	2
307	Akt Signaling in Macrophage Polarization, Survival, and Atherosclerosis. International Journal of Molecular Sciences, 2019, 20, 2703.	1.8	150
308	Role of Myeloid-Epithelial-Reproductive Tyrosine Kinase and Macrophage Polarization in the Progression of Atherosclerotic Lesions Associated With Nonalcoholic Fatty Liver Disease. Frontiers in Pharmacology, 2019, 10, 604.	1.6	16
309	Virus Control of Cell Metabolism for Replication and Evasion of Host Immune Responses. Frontiers in Cellular and Infection Microbiology, 2019, 9, 95.	1.8	87
310	Mitochondria Are a Subset of Extracellular Vesicles Released by Activated Monocytes and Induce Type I IFN and TNF Responses in Endothelial Cells. Circulation Research, 2019, 125, 43-52.	2.0	177

#	Article	IF	Citations
311	Glycolytic activation of peritumoral monocytes fosters immune privilege via the PFKFB3-PD-L1 axis in human hepatocellular carcinoma. Journal of Hepatology, 2019, 71, 333-343.	1.8	106
312	Competition for nutrients and its role in controlling immune responses. Nature Communications, 2019, 10, 2123.	5.8	174
313	Nanostructural Surfaces with Different Elastic Moduli Regulate the Immune Response by Stretching Macrophages. Nano Letters, 2019, 19, 3480-3489.	4.5	49
314	Inflammation research sails through the sea of immunology to reach immunometabolism. International Immunopharmacology, 2019, 73, 128-145.	1.7	27
315	Immunogenicity of Tumor Initiating Stem Cells: Potential Applications in Novel Anticancer Therapy. Frontiers in Oncology, 2019, 9, 315.	1.3	9
316	Metabolic and Innate Immune Cues Merge into a Specific Inflammatory Response via the UPR. Cell, 2019, 177, 1201-1216.e19.	13.5	100
317	Immunometabolism: A new target for improving cancer immunotherapy. Advances in Cancer Research, 2019, 143, 195-253.	1.9	30
318	Macrophages as Key Players during Adipose Tissue–Liver Crosstalk in Nonalcoholic Fatty Liver Disease. Seminars in Liver Disease, 2019, 39, 291-300.	1.8	18
319	Transcriptional control of macrophage polarisation in type 2 diabetes. Seminars in Immunopathology, 2019, 41, 515-529.	2.8	22
320	The Ins and Outs of Cerebral Malaria Pathogenesis: Immunopathology, Extracellular Vesicles, Immunometabolism, and Trained Immunity. Frontiers in Immunology, 2019, 10, 830.	2.2	44
321	Synthesis of novel andrographolide beckmann rearrangement derivatives and evaluation of their HK2-related anti-inflammatory activities. European Journal of Medicinal Chemistry, 2019, 173, 282-293.	2.6	22
322	IL-10 Family Cytokines IL-10 and IL-22: from Basic Science to Clinical Translation. Immunity, 2019, 50, 871-891.	6.6	603
323	STING pathway stimulation results in a differentially activated innate immune phenotype associated with low nitric oxide and enhanced antibody titers in young and aged mice. Vaccine, 2019, 37, 2721-2730.	1.7	19
324	Fatty acid transport proteinÂ2 reprograms neutrophils in cancer. Nature, 2019, 569, 73-78.	13.7	440
325	Metabolic Control of Dendritic Cell Functions: Digesting Information. Frontiers in Immunology, 2019, 10, 775.	2.2	151
326	Adoptive transfer of Trichinella spiralis-activated macrophages can ameliorate both Th1- and Th2-activated inflammation in murine models. Scientific Reports, 2019, 9, 6547.	1.6	39
327	LKB1 restrains dendritic cell function. Cell Research, 2019, 29, 429-431.	5.7	5
328	PPARα and PPARγ activation attenuates total free fatty acid and triglyceride accumulation in macrophages via the inhibition of Fatp1 expression. Cell Death and Disease, 2019, 10, 39.	2.7	42

#	Article	IF	Citations
329	Metabolic Targets for Improvement of Allogeneic Hematopoietic Stem Cell Transplantation and Graft-vsHost Disease. Frontiers in Immunology, 2019, 10, 295.	2.2	20
330	A Pathogen and a Non-pathogen Spotted Fever Group Rickettsia Trigger Differential Proteome Signatures in Macrophages. Frontiers in Cellular and Infection Microbiology, 2019, 9, 43.	1.8	23
331	The many facets of macrophages in rheumatoid arthritis. Biochemical Pharmacology, 2019, 165, 152-169.	2.0	144
332	LKB1 orchestrates dendritic cell metabolic quiescence and anti-tumor immunity. Cell Research, 2019, 29, 391-405.	5.7	45
333	Metabolic Regulation of Dendritic Cell Differentiation. Frontiers in Immunology, 2019, 10, 410.	2.2	42
334	Metabolism and inflammation: implications for traumatic brain injury therapeutics. Expert Review of Neurotherapeutics, 2019, 19, 227-242.	1.4	25
335	Peroxisome proliferator-activated receptor A/G reprogrammes metabolism associated with lipid accumulation in macrophages. Metabolomics, $2019,15,36.$	1.4	6
336	Macrophage Origin, Metabolic Reprogramming and IL-1 Signaling: Promises and Pitfalls in Lung Cancer. Cancers, 2019, 11, 298.	1.7	10
337	Energetic Trade-Offs and Hypometabolic States Promote Disease Tolerance. Cell, 2019, 177, 399-413.e12.	13.5	177
338	Pathobiological mechanisms underlying metabolic syndrome (MetS) in chronic obstructive pulmonary disease (COPD): clinical significance and therapeutic strategies. , 2019, 198, 160-188.		81
339	Chemokine (C-C motif) ligand 2 gene ablation protects low-density lipoprotein and paraoxonase-1 double deficient mice from liver injury, oxidative stress and inflammation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1555-1566.	1.8	13
340	Inflammatory macrophage dependence on NAD+ salvage is a consequence of reactive oxygen species–mediated DNA damage. Nature Immunology, 2019, 20, 420-432.	7.0	169
341	Glycolysis Is an Intrinsic Factor for Optimal Replication of a Norovirus. MBio, 2019, 10, .	1.8	58
342	Hypoxia-induced tumor exosomes promote M2-like macrophage polarization of infiltrating myeloid cells and microRNA-mediated metabolic shift. Oncogene, 2019, 38, 5158-5173.	2.6	212
343	Distinct metabolic patterns during microglial remodeling by oleate and palmitate. Bioscience Reports, 2019, 39, .	1.1	30
344	Impaired cellular energy metabolism in cord blood macrophages contributes to abortive response toward inflammatory threats. Nature Communications, 2019, 10, 1685.	5.8	41
345	Microglia immunometabolism: From metabolic disorders to single cell metabolism. Seminars in Cell and Developmental Biology, 2019, 94, 129-137.	2.3	29
346	The lung environment controls alveolar macrophage metabolism and responsiveness in type 2 inflammation. Nature Immunology, 2019, 20, 571-580.	7.0	140

#	ARTICLE	IF	CITATIONS
347	AMPK-Targeted Effector Networks in Mycobacterial Infection. Frontiers in Microbiology, 2019, 10, 520.	1.5	20
348	IGF-2 Preprograms Maturing Macrophages to Acquire Oxidative Phosphorylation-Dependent Anti-inflammatory Properties. Cell Metabolism, 2019, 29, 1363-1375.e8.	7.2	98
349	Tricarboxylic acid cycle metabolites in the control of macrophage activation and effector phenotypes. Journal of Leukocyte Biology, 2019, 106, 359-367.	1.5	39
350	Pentablock Copolymer Micelle Nanoadjuvants Enhance Cytosolic Delivery of Antigen and Improve Vaccine Efficacy while Inducing Low Inflammation. ACS Biomaterials Science and Engineering, 2019, 5, 1332-1342.	2.6	13
351	Metabolic Adaptation in Methicillin-Resistant <i>Staphylococcus aureus</i> Pneumonia. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 185-197.	1.4	34
352	The innate immune response to allotransplants: mechanisms and therapeutic potentials. Cellular and Molecular Immunology, 2019, 16, 350-356.	4.8	65
353	Metabolic interventions in the immune response to cancer. Nature Reviews Immunology, 2019, 19, 324-335.	10.6	190
354	Macrophage metabolism: a woundâ€healing perspective. Immunology and Cell Biology, 2019, 97, 268-278.	1.0	27
355	Serine Metabolism Supports Macrophage IL-1Î ² Production. Cell Metabolism, 2019, 29, 1003-1011.e4.	7.2	192
356	The Role of Iron Regulation in Immunometabolism and Immune-Related Disease. Frontiers in Molecular Biosciences, 2019, 6, 116.	1.6	178
357	Dual Deletion of the Sirtuins SIRT2 and SIRT3 Impacts on Metabolism and Inflammatory Responses of Macrophages and Protects From Endotoxemia. Frontiers in Immunology, 2019, 10, 2713.	2.2	17
358	Targeting macrophage immunometabolism to prevent atherosclerosis. Nature Metabolism, 2019, 1, 1173-1174.	5.1	3
359	Accumulation of damaged mitochondria in alveolar macrophages with reduced OXPHOS related gene expression in IPF. Respiratory Research, 2019, 20, 264.	1.4	33
360	Type I Interferon Signaling Disrupts the Hepatic Urea Cycle and Alters Systemic Metabolism to Suppress T Cell Function. Immunity, 2019, 51, 1074-1087.e9.	6.6	72
361	Monocytes and macrophages in atherogenesis. Current Opinion in Lipidology, 2019, 30, 401-408.	1.2	27
362	Differential remodeling of the electron transport chain is required to support TLR3 and TLR4 signaling and cytokine production in macrophages. Scientific Reports, 2019, 9, 18801.	1.6	18
363	Sepsis Immunometabolism: From Defining Sepsis to Understanding How Energy Production Affects Immune Response., 2019, 1, e0061.		25
364	Immuno-metabolic profile of human macrophages after Leishmania and Trypanosoma cruzi infection. PLoS ONE, 2019, 14, e0225588.	1.1	22

#	ARTICLE	IF	CITATIONS
365	Induction of innate immune memory: the role of cellular metabolism. Current Opinion in Immunology, 2019, 56, 10-16.	2.4	109
366	Inhibition of glutamine synthetase in monocytes from patients with acute-on-chronic liver failure resuscitates their antibacterial and inflammatory capacity. Gut, 2019, 68, 1872-1883.	6.1	60
367	Metabolism as a guiding force for immunity. Nature Cell Biology, 2019, 21, 85-93.	4.6	214
368	GPR35 promotes glycolysis, proliferation, and oncogenic signaling by engaging with the sodium potassium pump. Science Signaling, 2019, 12, .	1.6	58
369	Microglia metabolism in health and disease. Neurochemistry International, 2019, 130, 104331.	1.9	56
370	GLUT6 is a lysosomal transporter that is regulated by inflammatory stimuli and modulates glycolysis in macrophages. FEBS Letters, 2019, 593, 195-208.	1.3	44
371	Role of arginine deiminase in thymic atrophy during experimental <i>Streptococcus pyogenes</i> infection. Scandinavian Journal of Immunology, 2019, 89, e12734.	1.3	9
372	Immunometabolism features of metabolic deregulation andÂcancer. Journal of Cellular and Molecular Medicine, 2019, 23, 694-701.	1.6	17
373	Single-Cell RNA Sequencing of Microglia throughout the Mouse Lifespan and in the Injured Brain Reveals Complex Cell-State Changes. Immunity, 2019, 50, 253-271.e6.	6.6	1,351
374	An evolutionary perspective on immunometabolism. Science, 2019, 363, .	6.0	263
375	Immunometabolism: A Multi-Omics Approach to Interpreting the Influence of Exercise and Diet on the Immune System. Annual Review of Food Science and Technology, 2019, 10, 341-363.	5.1	57
376	Immunometabolism and innate immunity in the context of immunological maturation and respiratory pathogens in young children. Journal of Leukocyte Biology, 2019, 106, 301-308.	1.5	8
377	Frontline Science: Monocytes sequentially rewire metabolism and bioenergetics during an acute inflammatory response. Journal of Leukocyte Biology, 2019, 105, 215-228.	1.5	42
378	Monocytes exposed to plasma from patients with Alzheimer's disease undergo metabolic reprogramming. Neuroscience Research, 2019, 148, 54-60.	1.0	4
379	Biofilm-Leukocyte Cross-Talk: Impact on Immune Polarization and Immunometabolism. Journal of Innate Immunity, 2019, 11, 280-288.	1.8	61
380	Glycolipid iGb3 feedback amplifies innate immune responses via CD1d reverse signaling. Cell Research, 2019, 29, 42-53.	5.7	30
381	Immunometabolic Crosstalk: An Ancestral Principle of Trained Immunity?. Trends in Immunology, 2019, 40, 1-11.	2.9	92
382	The inflammatory function of human IgA. Cellular and Molecular Life Sciences, 2019, 76, 1041-1055.	2.4	99

#	Article	IF	Citations
383	The ERK and JNK pathways in the regulation of metabolic reprogramming. Oncogene, 2019, 38, 2223-2240.	2.6	244
384	The role of the PD-1/PD-L1 axis in macrophage differentiation and function during pregnancy. Human Reproduction, 2019, 34, 25-36.	0.4	97
385	Immunometabolism: Another Road to Sepsis and Its Therapeutic Targeting. Inflammation, 2019, 42, 765-788.	1.7	40
386	Diversity and environmental adaptation of phagocytic cell metabolism. Journal of Leukocyte Biology, 2018, 105, 37-48.	1.5	42
387	Reprogramming of mitochondrial metabolism by innate immunity. Current Opinion in Immunology, 2019, 56, 17-23.	2.4	26
388	Molecular regulation of dendritic cell development and function in homeostasis, inflammation, and cancer. Molecular Immunology, 2019, 110, 24-39.	1.0	38
389	Cytokines 2017 in Kanazawa: Looking beyond the horizon of integrated cytokine research from the sea of Japan. Cytokine and Growth Factor Reviews, 2019, 50, 75-82.	3.2	1
390	Targeting metabolic reprogramming in metastatic melanoma: The key role of nicotinamide phosphoribosyltransferase (NAMPT). Seminars in Cell and Developmental Biology, 2020, 98, 192-201.	2.3	30
391	Biology and therapeutic potential of interleukin-10. Journal of Experimental Medicine, 2020, 217, .	4.2	440
392	Immunity, Hypoxia, and Metabolism–the Ménage à Trois of Cancer: Implications for Immunotherapy. Physiological Reviews, 2020, 100, 1-102.	13.1	190
393	The metabolic regulator Lamtor5 suppresses inflammatory signaling via regulating mTOR-mediated TLR4 degradation. Cellular and Molecular Immunology, 2020, 17, 1063-1076.	4.8	21
394	Macrophages and Autoimmunity. , 2020, , 191-212.		0
395	Autophagy is critical for group 2 innate lymphoid cell metabolic homeostasis and effector function. Journal of Allergy and Clinical Immunology, 2020, 145, 502-517.e5.	1.5	47
396	Alum impairs tolerogenic properties induced by allergoidâ€mannan conjugates inhibiting mTOR and metabolic reprogramming in human DCs. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 648-659.	2.7	33
397	Impact of viral disease hypophagia on pig jejunal function and integrity. PLoS ONE, 2020, 15, e0227265.	1.1	9
398	Pyruvate dehydrogenase kinase is a negative regulator of interleukin-10 production in macrophages. Journal of Molecular Cell Biology, 2020, 12, 543-555.	1.5	24
399	Innate immunity to malaria—The role of monocytes. Immunological Reviews, 2020, 293, 8-24.	2.8	46
400	Metabolic regulation of innate immunity. Advances in Immunology, 2020, 145, 129-157.	1.1	10

#	Article	IF	CITATIONS
401	Regulation of mononuclear phagocyte function by the microbiota at mucosal sites. Immunology, 2020, 159, 26-38.	2.0	20
402	Endogenous oxidized phospholipids reprogram cellular metabolism and boost hyperinflammation. Nature Immunology, 2020, 21, 42-53.	7.0	112
403	Blood metabolomics uncovers inflammation-associated mitochondrial dysfunction as a potential mechanism underlying ACLF. Journal of Hepatology, 2020, 72, 688-701.	1.8	223
404	Mitochondrial genetics cooperate with nuclear genetics to selectively alter immune cell development/trafficking. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165648.	1.8	9
405	Fatty acid oxidation of alternatively activated macrophages prevents foam cell formation, but Mycobacterium tuberculosis counteracts this process via HIF-1 \hat{l} ± activation. PLoS Pathogens, 2020, 16, e1008929.	2.1	21
406	A Molecular Subtype Model for Liver HBV-Related Hepatocellular Carcinoma Patients Based on Immune-Related Genes. Frontiers in Oncology, 2020, 10, 560229.	1.3	7
407	Immunometabolism in the Brain: How Metabolism Shapes Microglial Function. Trends in Neurosciences, 2020, 43, 854-869.	4.2	110
408	A High Glycemic Burden Relates to Functional and Metabolic Alterations of Human Monocytes in Patients With Type 1 Diabetes. Diabetes, 2020, 69, 2735-2746.	0.3	9
409	The role of uncoupling protein 2 in macrophages and its impact on obesity-induced adipose tissue inflammation and insulin resistance. Journal of Biological Chemistry, 2020, 295, 17535-17548.	1.6	10
410	Senescent Tumor CD8+ T Cells: Mechanisms of Induction and Challenges to Immunotherapy. Cancers, 2020, 12, 2828.	1.7	10
411	Lipid accumulation in macrophages confers protumorigenic polarization and immunity in gastric cancer. Cancer Science, 2020, 111, 4000-4011.	1.7	52
412	Molecular Chaperones: Molecular Assembly Line Brings Metabolism and Immunity in Shape. Metabolites, 2020, 10, 394.	1.3	10
413	Polyinosinic:polycytidylic acid in vivo enhances Chinook salmon (Oncorhynchus tshawytscha) immunity and alters the fish metabolome. Aquaculture International, 2020, 28, 2437-2463.	1.1	1
414	Immiscible immunity. Science, 2020, 370, 294-295.	6.0	6
415	Cytokines and metabolic regulation: A framework of bidirectional influences affecting Leishmania infection. Cytokine, 2021, 147, 155267.	1.4	7
416	Neutrophil diversity and plasticity in tumour progression and therapy. Nature Reviews Cancer, 2020, 20, 485-503.	12.8	548
417	Mitochondria-derived ATP participates in the formation of neutrophil extracellular traps induced by platelet-activating factor through purinergic signaling in cows. Developmental and Comparative Immunology, 2020, 113, 103768.	1.0	16
418	Metabolic Modulation of Immunity: A New Concept in Cancer Immunotherapy. Cell Reports, 2020, 32, 107848.	2.9	100

#	ARTICLE	IF	Citations
419	Enzalutamide, an Androgen Receptor Antagonist, Enhances Myeloid Cell–Mediated Immune Suppression and Tumor Progression. Cancer Immunology Research, 2020, 8, 1215-1227.	1.6	26
420	The Versatility of Sirtuin-1 in Endocrinology and Immunology. Frontiers in Cell and Developmental Biology, 2020, 8, 589016.	1.8	20
421	A fungal effector targets a heat shock–dynamin protein complex to modulate mitochondrial dynamics and reduce plant immunity. Science Advances, 2020, 6, .	4.7	39
422	The Role of Inflammation in Diabetic Retinopathy. Frontiers in Immunology, 2020, 11, 583687.	2.2	177
423	The Non-canonical Role of Metabolic Enzymes in Immune Cells and Its Impact on Diseases. Current Tissue Microenvironment Reports, 2020, 1, 221-237.	1.3	5
424	Hypoxia-Inducible Factor Is Critical for Pathogenesis and Regulation of Immune Cell Functions in Rheumatoid Arthritis. Frontiers in Immunology, 2020, 11, 1668.	2.2	42
425	Regulatory role of Gpr84 in the switch of alveolar macrophages from CD11blo to CD11bhi status during lung injury process. Mucosal Immunology, 2020, 13, 892-907.	2.7	15
426	Macropinocytosis: Insights from immunology and cancer. Current Opinion in Cell Biology, 2020, 65, 131-140.	2.6	59
427	The NLRP3 Inflammasome: Metabolic Regulation and Contribution to Inflammaging. Cells, 2020, 9, 1808.	1.8	96
428	Hyperglycemia Enhances Cancer Immune Evasion by Inducing Alternative Macrophage Polarization through Increased O-GlcNAcylation. Cancer Immunology Research, 2020, 8, 1262-1272.	1.6	32
429	Pseudomonas aeruginosa Planktonic- and Biofilm-Conditioned Media Elicit Discrete Metabolic Responses in Human Macrophages. Cells, 2020, 9, 2260.	1.8	5
430	Temperate Propolis Has Anti-Inflammatory Effects and Is a Potent Inhibitor of Nitric Oxide Formation in Macrophages. Metabolites, 2020, 10, 413.	1.3	11
431	Cancer-derived exosomal TRIM59 regulates macrophage NLRP3 inflammasome activation to promote lung cancer progression. Journal of Experimental and Clinical Cancer Research, 2020, 39, 176.	3 . 5	71
432	Exploiting Manipulated Small Extracellular Vesicles to Subvert Immunosuppression at the Tumor Microenvironment through Mannose Receptor/CD206 Targeting. International Journal of Molecular Sciences, 2020, 21, 6318.	1.8	17
433	Lactate Suppresses Macrophage Pro-Inflammatory Response to LPS Stimulation by Inhibition of YAP and NF-κB Activation via GPR81-Mediated Signaling. Frontiers in Immunology, 2020, 11, 587913.	2.2	95
434	Succinate Is an Inflammation-Induced Immunoregulatory Metabolite in Macrophages. Metabolites, 2020, 10, 372.	1.3	63
435	Enhanced lipid biosynthesis in human tumor-induced macrophages contributes to their protumoral characteristics., 2020, 8, e000638.		33
436	MicroRNAs: At the Interface of Metabolic Pathways and Inflammatory Responses by Macrophages. Frontiers in Immunology, 2020, 11, 1797.	2.2	22

#	Article	IF	Citations
437	Serine Supports IL- $\hat{1}^2$ Production in Macrophages Through mTOR Signaling. Frontiers in Immunology, 2020, 11, 1866.	2.2	32
438	Dietary Glucose Consumption Promotes RALDH Activity in Small Intestinal CD103+CD11b+ Dendritic Cells. Frontiers in Immunology, 2020, 11, 1897.	2.2	10
439	An integrated omics approach to investigate summer mortality of New Zealand Greenshellâ,,¢ mussels. Metabolomics, 2020, 16, 100.	1.4	20
440	Cathepsin Inhibition Modulates Metabolism and Polarization of Tumor-Associated Macrophages. Cancers, 2020, 12, 2579.	1.7	28
441	Metabolic reprogramming as a key regulator in the pathogenesis of rheumatoid arthritis. Inflammation Research, 2020, 69, 1087-1101.	1.6	24
442	Triacylglycerol synthesis enhances macrophage inflammatory function. Nature Communications, 2020, 11, 4107.	5.8	127
443	Autophagic protein ATG5 controls antiviral immunity via glycolytic reprogramming of dendritic cells against respiratory syncytial virus infection. Autophagy, 2021, 17, 2111-2127.	4.3	17
444	Enhanced Fatty Acid Synthesis Leads to Subset Imbalance and IFN- \hat{I}^3 Overproduction in T Helper 1 Cells. Frontiers in Immunology, 2020, 11, 593103.	2.2	12
445	Non-invasive biomarkers for monitoring the immunotherapeutic response to cancer. Journal of Translational Medicine, 2020, 18, 471.	1.8	15
446	The role of bioactive lipids in attenuating the neuroinflammatory cascade in traumatic brain injury. Annals of Clinical and Translational Neurology, 2020, 7, 2524-2534.	1.7	6
447	Linking Immunoevasion and Metabolic Reprogramming in B-Cell–Derived Lymphomas. Frontiers in Oncology, 2020, 10, 594782.	1.3	13
448	Forces, Fluxes, and Fuels: Tracking mitochondrial metabolism by integrating measurements of membrane potential, respiration, and metabolites. American Journal of Physiology - Cell Physiology, 2021, 320, C80-C91.	2.1	10
449	Nitric Oxide in Macrophage Immunometabolism: Hiding in Plain Sight. Metabolites, 2020, 10, 429.	1.3	90
450	Macrophages as host, effector and immunoregulatory cells in leishmaniasis: Impact of tissue micro-environment and metabolism. Cytokine: X, 2020, 2, 100041.	0.5	58
451	Pathogenesis of ANCA-associated vasculitis: an emerging role for immunometabolism. Rheumatology, 2020, 59, iii33-iii41.	0.9	5
452	Solute Carrier Family 37 Member 2 (SLC37A2) Negatively Regulates Murine Macrophage Inflammation by Controlling Glycolysis. IScience, 2020, 23, 101125.	1.9	12
453	The iron–sulfur protein subunit of succinate dehydrogenase is critical in driving mitochondrial reactive oxygen species generation in Apostichopus japonicus. Fish and Shellfish Immunology, 2020, 102, 350-360.	1.6	8
454	Regulations of Glycolytic Activities on Macrophages Functions in Tumor and Infectious Inflammation. Frontiers in Cellular and Infection Microbiology, 2020, 10, 287.	1.8	45

#	Article	IF	CITATIONS
455	Innate Functions of Dendritic Cell Subsets in Cardiac Allograft Tolerance. Frontiers in Immunology, 2020, 11, 869.	2.2	6
456	Metabolite releasing polymers control dendritic cell function by modulating their energy metabolism. Journal of Materials Chemistry B, 2020, 8, 5195-5203.	2.9	22
457	Phagosomal removal of fungal melanin reprograms macrophage metabolism to promote antifungal immunity. Nature Communications, 2020, 11, 2282.	5.8	68
458	Endothelial Lactate Controls Muscle Regeneration from Ischemia by Inducing M2-like Macrophage Polarization. Cell Metabolism, 2020, 31, 1136-1153.e7.	7.2	233
459	Immunometabolism during Mycobacterium tuberculosis Infection. Trends in Microbiology, 2020, 28, 832-850.	3.5	38
460	Microbiota-Induced Type I Interferons Instruct a Poised Basal State of Dendritic Cells. Cell, 2020, 181, 1080-1096.e19.	13.5	139
461	The altered metabolism profile in pathogenesis of idiopathic inflammatory myopathies. Seminars in Arthritis and Rheumatism, 2020, 50, 627-635.	1.6	6
462	Fatty Acid and Carnitine Metabolism Are Dysregulated in Systemic Sclerosis Patients. Frontiers in Immunology, 2020, 11, 822.	2.2	18
463	Merocytic Dendritic Cells Compose a Conventional Dendritic Cell Subset with Low Metabolic Activity. Journal of Immunology, 2020, 205, 121-132.	0.4	11
464	Pyruvate Kinase M2 Promotes the Activation of Dendritic Cells by Enhancing IL-12p35 Expression. Cell Reports, 2020, 31, 107690.	2.9	31
465	Role of dendritic cell metabolic reprogramming in tumor immune evasion. International Immunology, 2020, 32, 485-491.	1.8	11
466	The Role of Cannabinoids in Allergic Diseases: Collegium Internationale Allergologicum (CIA) Update 2020. International Archives of Allergy and Immunology, 2020, 181, 565-584.	0.9	21
467	Macrophage metabolic reprogramming presents a therapeutic target in lupus nephritis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15160-15171.	3.3	90
468	P2Y6 Deficiency Enhances Dendritic Cell–Mediated Th1/Th17 Differentiation and Aggravates Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2020, 205, 387-397.	0.4	9
469	<i>Mycobacterium tuberculosis</i> i>infected alveolar epithelial cells modulate dendritic cell function through the HIF-1α-NOS2 axis. Journal of Leukocyte Biology, 2020, 108, 1225-1238.	1.5	7
470	Breakthrough concepts in immune-oncology: Cancer vaccines at the bedside. Journal of Leukocyte Biology, 2020, 108, 1455-1489.	1.5	22
471	Metabolic Traits in Cutaneous Melanoma. Frontiers in Oncology, 2020, 10, 851.	1.3	18
472	A 12â€month pilot study outcomes of vagus nerve stimulation in Crohn's disease. Neurogastroenterology and Motility, 2020, 32, e13911.	1.6	76

#	Article	IF	CITATIONS
473	Immunometabolism: new insights and lessons from antigen-directed cellular immune responses. Seminars in Immunopathology, 2020, 42, 279-313.	2.8	37
474	ROS-associated immune response and metabolism: a mechanistic approach with implication of various diseases. Archives of Toxicology, 2020, 94, 2293-2317.	1.9	30
475	The spectrum of macrophage activation by immunometabolism. International Immunology, 2020, 32, 467-473.	1.8	26
476	The immunological Warburg effect: Can a metabolicâ€tumorâ€stroma score (MeTS) guide cancer immunotherapy?. Immunological Reviews, 2020, 295, 187-202.	2.8	71
477	Toll-like Receptors and the Control of Immunity. Cell, 2020, 180, 1044-1066.	13.5	1,099
478	Mechanisms of Macrophage Polarization in Insulin Signaling and Sensitivity. Frontiers in Endocrinology, 2020, 11, 62.	1.5	79
479	Monocyte metabolic reprogramming promotes pro-inflammatory activity and Staphylococcus aureus biofilm clearance. PLoS Pathogens, 2020, 16, e1008354.	2.1	49
480	Tumor associated macrophages and  NO'. Biochemical Pharmacology, 2020, 176, 113899.	2.0	28
481	CD300f immunoreceptor is associated with major depressive disorder and decreased microglial metabolic fitness. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6651-6662.	3.3	21
482	Imaging of macrophage mitochondria dynamics <i>iin vivo</i> reveals cellular activation phenotype for diagnosis. Theranostics, 2020, 10, 2897-2917.	4.6	41
483	Microglial metabolic flexibility supports immune surveillance of the brain parenchyma. Nature Communications, 2020, 11 , 1559 .	5.8	139
484	Complement and human T cell metabolism: Location, location, location. Immunological Reviews, 2020, 295, 68-81.	2.8	50
485	Fetal monocytes possess increased metabolic capacity and replace primitive macrophages in tissue macrophage development. EMBO Journal, 2020, 39, e103205.	3.5	28
486	Insights Into Lung Cancer Immune-Based Biology, Prevention, and Treatment. Frontiers in Immunology, 2020, 11, 159.	2.2	7 3
487	Carbohydrate and Amino Acid Metabolism as Hallmarks for Innate Immune Cell Activation and Function. Cells, 2020, 9, 562.	1.8	24
488	Lactation stage impacts the glycolytic function of bovine CD4+ T cells during ex vivo activation. Scientific Reports, 2020, 10, 4045.	1.6	8
489	Metabolic Modulation of Macrophage Function Post Myocardial Infarction. Frontiers in Physiology, 2020, 11, 674.	1.3	11
490	Peroxisomes in host defense. PLoS Pathogens, 2020, 16, e1008636.	2.1	21

#	Article	IF	CITATIONS
491	Host Epigenetics in Intracellular Pathogen Infections. International Journal of Molecular Sciences, 2020, 21, 4573.	1.8	14
492	All-Trans Retinoic Acid Enhances both the Signaling for Priming and the Glycolysis for Activation of NLRP3 Inflammasome in Human Macrophage. Cells, 2020, 9, 1591.	1.8	18
493	Pyruvate kinase M2 in lung APCs regulates Alternaria-induced airway inflammation. Immunobiology, 2020, 225, 151956.	0.8	9
494	Staphylococcus aureus induces cell-surface expression of immune stimulatory NKG2D ligands on human monocytes. Journal of Biological Chemistry, 2020, 295, 11803-11821.	1.6	10
495	Nitric oxide orchestrates metabolic rewiring in M1 macrophages by targeting aconitase 2 and pyruvate dehydrogenase. Nature Communications, 2020, 11, 698.	5.8	232
496	Immunoregulatory Sensory Circuits in Group 3 Innate Lymphoid Cell (ILC3) Function and Tissue Homeostasis. Frontiers in Immunology, 2020, 11, 116.	2.2	42
497	Glutamine Metabolism and Its Role in Immunity, a Comprehensive Review. Animals, 2020, 10, 326.	1.0	38
498	Class IIa Histone Deacetylases Drive Toll-like Receptor-Inducible Glycolysis and Macrophage Inflammatory Responses via Pyruvate Kinase M2. Cell Reports, 2020, 30, 2712-2728.e8.	2.9	51
499	Reprogramming of macrophages employing gene regulatory and metabolic network models. PLoS Computational Biology, 2020, 16, e1007657.	1.5	37
500	Artificial Mini Dendritic Cells Boost T Cell–Based Immunotherapy for Ovarian Cancer. Advanced Science, 2020, 7, 1903301.	5.6	84
501	Histone hyperacetylation mediates enhanced ILâ€1β production in LPS/IFNâ€Î³â€stimulated macrophages. Immunology, 2020, 160, 183-197.	2.0	7
502	4-1BBL Regulates the Polarization of Macrophages, and Inhibition of 4-1BBL Signaling Alleviates Imiquimod-Induced Psoriasis. Journal of Immunology, 2020, 204, 1892-1903.	0.4	10
503	Integration of transcriptomics, proteomics and metabolomics identifies biomarkers for pulmonary injury by polyhexamethylene guanidine phosphate (PHMG-p), a humidifier disinfectant, in rats. Archives of Toxicology, 2020, 94, 887-909.	1.9	20
504	Toll-Like Receptor-Mediated Cardiac Injury during Experimental Sepsis. Mediators of Inflammation, 2020, 2020, 1-12.	1.4	3
505	Inhibition of Transglutaminase 2 as a Potential Host-Directed Therapy Against Mycobacterium tuberculosis. Frontiers in Immunology, 2019, 10, 3042.	2.2	13
506	FAMIN Is a Multifunctional Purine Enzyme Enabling the Purine Nucleotide Cycle. Cell, 2020, 180, 278-295.e23.	13.5	42
507	Spermidine Suppresses Inflammatory DC Function by Activating the FOXO3 Pathway and Counteracts Autoimmunity. IScience, 2020, 23, 100807.	1.9	49
508	Environmental arginine controls multinuclear giant cell metabolism and formation. Nature Communications, 2020, 11 , 431 .	5.8	37

#	Article	IF	CITATIONS
509	Pathogens MenTORing Macrophages and Dendritic Cells: Manipulation of mTOR and Cellular Metabolism to Promote Immune Escape. Cells, 2020, 9, 161.	1.8	25
510	Macrophage activation as an archetype of mitochondrial repurposing. Molecular Aspects of Medicine, 2020, 71, 100838.	2.7	18
511	Mitochondria: An Integrative Hub Coordinating Circadian Rhythms, Metabolism, the Microbiome, and Immunity. Frontiers in Cell and Developmental Biology, 2020, 8, 51.	1.8	37
512	Glucose-6-phosphate transporter mediates macrophage proliferation and functions by regulating glycolysis and mitochondrial respiration. Biochemical and Biophysical Research Communications, 2020, 524, 89-95.	1.0	3
513	DHA Sensor GPR120 in Host Defense Exhibits the Dual Characteristics of Regulating Dendritic Cell Function and Skewing the Balance of Th17/Tregs. International Journal of Biological Sciences, 2020, 16, 374-387.	2.6	15
514	Antileishmanial Drugs Modulate IL-12 Expression and Inflammasome Activation in Primary Human Cells. Journal of Immunology, 2020, 204, 1869-1880.	0.4	10
515	Macrophage M1/M2 polarization. European Journal of Pharmacology, 2020, 877, 173090.	1.7	883
516	Phagocytosis of Apoptotic Cells in Resolution of Inflammation. Frontiers in Immunology, 2020, 11, 553.	2.2	156
517	Deficiency in the autophagy modulator Dram1 exacerbates pyroptotic cell death of Mycobacteria-infected macrophages. Cell Death and Disease, 2020, 11, 277.	2.7	27
518	Immunometabolism in the pathogenesis of systemic lupus erythematosus. Journal of Translational Autoimmunity, 2020, 3, 100046.	2.0	24
519	Regulatory myeloid cells paralyze T cells through cell–cell transfer of the metabolite methylglyoxal. Nature Immunology, 2020, 21, 555-566.	7.0	147
520	Analyzing the impact of Mycobacterium tuberculosis infection on primary human macrophages by combined exploratory and targeted metabolomics. Scientific Reports, 2020, 10, 7085.	1.6	27
521	Fueling influenza and the immune response: Implications for metabolic reprogramming during influenza infection and immunometabolism. Immunological Reviews, 2020, 295, 140-166.	2.8	14
522	How Inflammation Blunts Innate Immunity in Aging. Interdisciplinary Topics in Gerontology and Geriatrics, 2020, 43, 1-17.	2.6	20
523	Increased host ATP efflux and its conversion to extracellular adenosine is crucial for establishing <i>Leishmania </i> i>infection. Journal of Cell Science, 2020, 133, .	1.2	10
524	TRPA1 regulates macrophages phenotype plasticity and atherosclerosis progression. Atherosclerosis, 2020, 301, 44-53.	0.4	38
525	Friend turned foe: A curious case of disrupted endosymbiotic homeostasis promoting the Warburg effect in sepsis. Medical Hypotheses, 2020, 141, 109702.	0.8	2
526	Microbiome, bile acids, and obesity: How microbially modified metabolites shape antiâ€tumor immunity. Immunological Reviews, 2020, 295, 220-239.	2.8	43

#	ARTICLE	IF	CITATIONS
527	Bitter taste receptors stimulate phagocytosis in human macrophages through calcium, nitric oxide, and cyclic-GMP signaling. Cellular and Molecular Life Sciences, 2021, 78, 271-286.	2.4	48
528	Brain control of appetite during sickness. British Journal of Pharmacology, 2021, 178, 2096-2110.	2.7	14
529	How could we forget immunometabolism in SARS-CoV2 infection or COVID-19?. International Reviews of Immunology, 2021, 40, 72-107.	1.5	33
530	Modulation of adipocyte size and fat pad weight via resveratrol releasing scaffolds implanted into the epididymal adipose tissue. Journal of Biomedical Materials Research - Part A, 2021, 109, 766-778.	2.1	6
531	T cell immunoglobulin and mucin domain protein 3 inhibits glycolysis in RAW 264.7 macrophages through Hexokinase 2. Scandinavian Journal of Immunology, 2021, 93, e12981.	1.3	11
532	Low-dose 2-deoxy glucose stabilises tolerogenic dendritic cells and generates potent in vivo immunosuppressive effects. Cellular and Molecular Life Sciences, 2021, 78, 2857-2876.	2.4	5
533	Pristane promotes anaerobic glycolysis to facilitate proinflammatory activation of macrophages and development of arthritis. Experimental Cell Research, 2021, 398, 112404.	1.2	2
534	Spatially Targeted Proteomics of the Host–Pathogen Interface during Staphylococcal Abscess Formation. ACS Infectious Diseases, 2021, 7, 101-113.	1.8	17
535	The key role of Warburg effect in SARS-CoV-2 replication and associated inflammatory response. Biochimie, 2021, 180, 169-177.	1.3	97
536	Mitochondria orchestrate macrophage effector functions in atherosclerosis. Molecular Aspects of Medicine, 2021, 77, 100922.	2.7	26
537	IGFBP2 promotes tumor progression by inducing alternative polarization of macrophages in pancreatic ductal adenocarcinoma through the STAT3 pathway. Cancer Letters, 2021, 500, 132-146.	3.2	42
538	Immunometabolism in the Tumor Microenvironment. Annual Review of Cancer Biology, 2021, 5, 137-159.	2.3	28
539	Redox regulation of immunometabolism. Nature Reviews Immunology, 2021, 21, 363-381.	10.6	225
540	Immunometabolic Interplay in the Tumor Microenvironment. Cancer Cell, 2021, 39, 28-37.	7.7	183
541	The Role of Toll-Like Receptor 4 in Infectious and Non Infectious Inflammation. Agents and Actions Supplements, 2021, , .	0.2	2
542	Mechanisms controlling bacterial infection in myeloid cells under hypoxic conditions. Cellular and Molecular Life Sciences, 2021, 78, 1887-1907.	2.4	11
543	MicroRNA-33/33* inhibit the activation of MAVS through AMPK in antiviral innate immunity. Cellular and Molecular Immunology, 2021, 18, 1450-1462.	4.8	18
545	Nephropathogenic Infectious Bronchitis Virus Infection Altered the Metabolome Profile and Immune Function of the Bursa of Fabricius in Chicken. Frontiers in Veterinary Science, 2020, 7, 628270.	0.9	3

#	Article	IF	Citations
546	Native and oxidised lipoproteins negatively regulate the serum amyloid Aâ€induced NLRP3 inflammasome activation in human macrophages. Clinical and Translational Immunology, 2021, 10, e1323.	1.7	5
547	A Combination of Polybacterial MV140 and Candida albicans V132 as a Potential Novel Trained Immunity-Based Vaccine for Genitourinary Tract Infections. Frontiers in Immunology, 2020, 11, 612269.	2.2	18
548	Host cell glutamine metabolism as a potential antiviral target. Clinical Science, 2021, 135, 305-325.	1.8	31
549	Metabolomics, Lipidomics, and Immunometabolism. Methods in Molecular Biology, 2021, 2285, 319-328.	0.4	7
550	Lipid Droplets as Regulators of Metabolism and Immunity. Immunometabolism, 2021, , .	0.7	10
551	Metabolism of Immune Cells in the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2021, 1311, 173-185.	0.8	2
552	Inhibition of succinate dehydrogenase activity impairs human T cell activation and function. Scientific Reports, 2021, 11, 1458.	1.6	24
553	Improvement of obesity-associated disorders by a small-molecule drug targeting mitochondria of adipose tissue macrophages. Nature Communications, 2021, 12, 102.	5.8	44
554	Mitofusin 2, a key coordinator between mitochondrial dynamics and innate immunity. Virulence, 2021, 12, 2273-2284.	1.8	11
555	RNA editing enzyme APOBEC3A promotes pro-inflammatory M1 macrophage polarization. Communications Biology, 2021, 4, 102.	2.0	28
556	Macrophage and Adipocyte Mitochondrial Dysfunction in Obesity-Induced Metabolic Diseases. World Journal of Men?s Health, 2021, 39, 606.	1.7	16
557	Etiology of lactic acidosis in malaria. PLoS Pathogens, 2021, 17, e1009122.	2.1	29
558	Hydrogen-Peroxide Synthesis and LDL-Uptake Controls Immunosuppressive Properties in Monocyte-Derived Dendritic Cells. Cancers, 2021, 13, 461.	1.7	4
559	Reprogramming of Central Carbon Metabolism in Myeloid Cells upon Innate Immune Receptor Stimulation. Immuno, $2021, 1, 1-14$.	0.6	2
560	Pervasive inflammatory activation in patients with deficiency in veryâ€longâ€chain acylâ€coA dehydrogenase (VLCADD). Clinical and Translational Immunology, 2021, 10, e1304.	1.7	4
561	Blockade of fatty acid signalling inhibits lipopolysaccharideâ€induced macrophage recruitment and progression of apical periodontitis. International Endodontic Journal, 2021, 54, 902-915.	2.3	5
562	Glycolytic metabolism of pathogenic T cells enables early detection of GVHD by 13C-MRI. Blood, 2021, 137, 126-137.	0.6	29
563	Crosstalk Between Staphylococcus aureus and Innate Immunity: Focus on Immunometabolism. Frontiers in Immunology, 2020, 11, 621750.	2.2	22

#	Article	IF	CITATIONS
564	Cytochrome P450 2A6 is associated with macrophage polarization and is a potential biomarker for hepatocellular carcinoma. FEBS Open Bio, 2021, 11, 670-683.	1.0	6
565	Influence of Yeast Products on Modulating Metabolism and Immunity in Cattle and Swine. Animals, 2021, 11, 371.	1.0	27
566	Metabolism of Dendritic Cells in Tumor Microenvironment: For Immunotherapy. Frontiers in Immunology, 2021, 12, 613492.	2.2	57
567	<i>Mycobacterium tuberculosis</i> Rv1987 protein induces M2 polarization of macrophages through activating the PI3K/Akt1/mTOR signaling pathway. Immunology and Cell Biology, 2021, 99, 570-585.	1.0	13
568	Targeting PIM1-Mediated Metabolism in Myeloid Suppressor Cells to Treat Cancer. Cancer Immunology Research, 2021, 9, 454-469.	1.6	23
569	Changes in mitochondrial morphology modulate LPS-induced loss of calcium homeostasis in BV-2 microglial cells. Journal of Bioenergetics and Biomembranes, 2021, 53, 109-118.	1.0	8
570	Cutting edge: Metabolic immune reprogramming, reactive oxygen species, and cancer. Journal of Cellular Physiology, 2021, 236, 6168-6189.	2.0	8
571	Targeting macrophage polarization for therapy of diabesity–the feasibility of early improvement of insulin sensitivity and insulin resistance-a comprehensive systematic review. Journal of Diabetes, Metabolic Disorders & Control, 2021, 8, 6-25.	0.2	1
572	Metabolic Strategies for Inhibiting Cancer Development. Advances in Nutrition, 2021, 12, 1461-1480.	2.9	11
573	Sema7A is crucial for resolution of severe inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	29
574	Untangling Local Pro-Inflammatory, Reparative, and Regulatory Damage-Associated Molecular-Patterns (DAMPs) Pathways to Improve Transplant Outcomes. Frontiers in Immunology, 2021, 12, 611910.	2.2	14
575	Differential responses to folic acid in an established keloid fibroblast cell line are mediated by JAK1/2 and STAT3. PLoS ONE, 2021, 16, e0248011.	1.1	7
576	Type I interferons affect the metabolic fitness of CD8+ T cells from patients with systemic lupus erythematosus. Nature Communications, 2021, 12, 1980.	5.8	56
577	Engineering Metabolism of Chimeric Antigen Receptor (CAR) Cells for Developing Efficient Immunotherapies. Cancers, 2021, 13, 1123.	1.7	11
578	Targeting macrophage polarization by Nrf2 agonists for treating various xenobiotics-induced toxic responses. Toxicology Mechanisms and Methods, 2021, 31, 334-342.	1.3	9
579	HIF-1, the Warburg Effect, and Macrophage/Microglia Polarization Potential Role in COVID-19 Pathogenesis. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-10.	1.9	30
580	Role of Mitochondria in Viral Infections. Life, 2021, 11, 232.	1.1	47
581	Metabolic Reprogramming and Inflammatory Response Induced by D-Lactate in Bovine Fibroblast-Like Synoviocytes Depends on HIF-1 Activity. Frontiers in Veterinary Science, 2021, 8, 625347.	0.9	11

#	Article	IF	CITATIONS
582	Regulatory T Cells in the Mosaic of Liver Transplantation Tolerance. , 0, , .		0
583	Cellular Energetics of Mast Cell Development and Activation. Cells, 2021, 10, 524.	1.8	12
584	Taurine Antagonizes Macrophages M1 Polarization by Mitophagy-Glycolysis Switch Blockage via Dragging SAM-PP2Ac Transmethylation. Frontiers in Immunology, 2021, 12, 648913.	2.2	22
585	Nuclear receptors, the aryl hydrocarbon receptor, and macrophage function. Molecular Aspects of Medicine, 2021, 78, 100942.	2.7	15
586	Navigating immune cell immunometabolism after liver transplantation. Critical Reviews in Oncology/Hematology, 2021, 160, 103227.	2.0	4
587	TREM2 Dictates Antibacterial Defense and Viability of Bone Marrow–derived Macrophages during Bacterial Infection. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 176-188.	1.4	14
589	Posttranslational and Therapeutic Control of Gasdermin-Mediated Pyroptosis and Inflammation. Frontiers in Immunology, 2021, 12, 661162.	2.2	43
590	The metabolism-modulating activity of IL-17 signaling in health and disease. Journal of Experimental Medicine, 2021, 218, .	4.2	34
591	Myeloid ATP Citrate Lyase Regulates Macrophage Inflammatory Responses In Vitro Without Altering Inflammatory Disease Outcomes. Frontiers in Immunology, 2021, 12, 669920.	2.2	6
592	Metabolic and Amino Acid Alterations of the Tumor Microenvironment. Current Medicinal Chemistry, 2021, 28, 1270-1289.	1.2	17
593	Mitochondria as Key Players in the Pathogenesis and Treatment of Rheumatoid Arthritis. Frontiers in Immunology, 2021, 12, 673916.	2.2	39
594	Reprogramming Immune Cells for Enhanced Cancer Immunotherapy: Targets and Strategies. Frontiers in Immunology, 2021, 12, 609762.	2.2	23
595	Emerging Therapeutic Applications for Fumarates. Trends in Pharmacological Sciences, 2021, 42, 239-254.	4.0	17
596	The genus <i>Anaplasma</i> : drawing back the curtain on tick–pathogen interactions. Pathogens and Disease, 2021, 79, .	0.8	7
597	Fa(c)t checking: How fatty acids shape metabolism and function of macrophages and dendritic cells. European Journal of Immunology, 2021, 51, 1628-1640.	1.6	8
598	Glutathionylation chemistry promotes interleukinâ€1 betaâ€mediated glycolytic reprogramming and proâ€inflammatory signaling in lung epithelial cells. FASEB Journal, 2021, 35, e21525.	0.2	9
599	Glycolytic Metabolism Is Critical for the Innate Antibacterial Defense in Acute Streptococcus pneumoniae Otitis Media. Frontiers in Immunology, 2021, 12, 624775.	2.2	6
600	Macrophage Biology and Mechanisms of Immune Suppression in Breast Cancer. Frontiers in Immunology, 2021, 12, 643771.	2.2	80

#	Article	IF	CITATIONS
601	Long noncoding RNA MIR4435-2HG enhances metabolic function of myeloid dendritic cells from HIV-1 elite controllers. Journal of Clinical Investigation, 2021, 131, .	3.9	27
602	Immunometabolism of Tissue-Resident Macrophages – An Appraisal of the Current Knowledge and Cutting-Edge Methods and Technologies. Frontiers in Immunology, 2021, 12, 665782.	2.2	15
603	Effect of a Succinate-Containing Drug on the Blood Leukocyte Composition in Rats at Rest and During a Weight-Loaded Forced Swimming Test. Journal of Medical and Biological Research, 2021, , 182-191.	0.2	1
604	Modulation of lactate-lysosome axis in dendritic cells by clotrimazole potentiates antitumor immunity., 2021, 9, e002155.		9
605	TRPV1 sustains microglial metabolic reprogramming in Alzheimer's disease. EMBO Reports, 2021, 22, e52013.	2.0	46
606	Macrophages rely on extracellular serine to suppress aberrant cytokine production. Scientific Reports, 2021, 11, 11137.	1.6	16
607	M2 Macrophage Subpopulations in Glomeruli Are Associated With the Deposition of IgG Subclasses and Complements in Primary Membranous Nephropathy. Frontiers in Medicine, 2021, 8, 657232.	1.2	9
609	Candida Administration in Bilateral Nephrectomy Mice Elevates Serum $(1\hat{a}^{\dagger})^2$ -D-glucan That Enhances Systemic Inflammation Through Energy Augmentation in Macrophages. International Journal of Molecular Sciences, 2021, 22, 5031.	1.8	24
610	The intestinal luminal sources of \hat{l}_{\pm} -synuclein: a gastroenterologist perspective. Nutrition Reviews, 2022, 80, 282-293.	2.6	4
611	A Stat1 bound enhancer promotes Nampt expression and function within tumor associated macrophages. Nature Communications, 2021, 12, 2620.	5.8	33
612	Phenolic Compounds of Red Wine Aglianico del Vulture Modulate the Functional Activity of Macrophages via Inhibition of NF-κB and the Citrate Pathway. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-15.	1.9	11
613	STING regulates metabolic reprogramming in macrophages via HIF-1α during Brucella infection. PLoS Pathogens, 2021, 17, e1009597.	2.1	45
614	Dot/Icm-Dependent Restriction of Legionella pneumophila within Neutrophils. MBio, 2021, 12, e0100821.	1.8	5
615	The role of HIF- $\hat{\Pi}$ ± in BCG-stimulated macrophages polarization and their tumoricidal effects in vitro. Medical Microbiology and Immunology, 2021, 210, 149-156.	2.6	2
616	Immunometabolism: Towards a Better Understanding the Mechanism of Parasitic Infection and Immunity. Frontiers in Immunology, 2021, 12, 661241.	2.2	12
619	Cellular stress promotes NOD1/2â€dependent inflammation via the endogenous metabolite sphingosineâ€1â€phosphate. EMBO Journal, 2021, 40, e106272.	3.5	34
620	Multi-Omics Perspective Reveals the Different Patterns of Tumor Immune Microenvironment Based on Programmed Death Ligand 1 (PD-L1) Expression and Predictor of Responses to Immune Checkpoint Blockade across Pan-Cancer. International Journal of Molecular Sciences, 2021, 22, 5158.	1.8	3
621	Immune System-Related Changes in Preclinical GL261 Glioblastoma under TMZ Treatment: Explaining MRSI-Based Nosological Imaging Findings with RT-PCR Analyses. Cancers, 2021, 13, 2663.	1.7	7

#	Article	IF	CITATIONS
622	Metabolic reprogramming and epigenetic modifications on the path to cancer. Protein and Cell, 2022, 13, 877-919.	4.8	179
623	Mitofusin-2 boosts innate immunity through the maintenance of aerobic glycolysis and activation of xenophagy in mice. Communications Biology, 2021, 4, 548.	2.0	16
624	Cellular and metabolic mechanisms of nutrient actions in immune function. Nutrition and Diabetes, 2021, 11, 22.	1.5	10
625	NOD-Like Receptors: Guards of Cellular Homeostasis Perturbation during Infection. International Journal of Molecular Sciences, 2021, 22, 6714.	1.8	12
626	Lactate and IL6 define separable paths of inflammatory metabolic adaptation. Science Advances, 2021, 7,	4.7	55
627	Cellular and metabolic mechanisms of nutrient actions in immune function. European Journal of Clinical Nutrition, 2021, 75, 1328-1331.	1.3	6
628	Allergoid–mannan conjugates reprogram monocytes into tolerogenic dendritic cells via epigenetic and metabolic rewiring. Journal of Allergy and Clinical Immunology, 2022, 149, 212-222.e9.	1.5	34
629	Extracellular Acidity Reprograms Macrophage Metabolism and Innate Responsiveness. Journal of Immunology, 2021, 206, 3021-3031.	0.4	4
630	The Role of microRNAs and Long Non-Coding RNAs in the Regulation of the Immune Response to Mycobacterium tuberculosis Infection. Frontiers in Immunology, 2021, 12, 687962.	2.2	30
631	GLUT3 as an Intersection of Glycerophospholipid Metabolism and the Innate Immune Response to Candida albicans. Frontiers in Cellular and Infection Microbiology, 2021, 11, 648988.	1.8	8
634	Plasma Metabolomics Reveals Dysregulated Metabolic Signatures in HIV-Associated Immune Reconstitution Inflammatory Syndrome. Frontiers in Immunology, 2021, 12, 693074.	2.2	11
635	Natural Compounds as Metabolic Modulators of the Tumor Microenvironment. Molecules, 2021, 26, 3494.	1.7	12
636	Turning enemies into alliesâ€"reprogramming tumor-associated macrophages for cancer therapy. Med, 2021, 2, 666-681.	2.2	17
637	Tissue-resident macrophages: guardians of organ homeostasis. Trends in Immunology, 2021, 42, 495-507.	2.9	77
638	Differential blood transcriptome modules predict response to corticosteroid therapy in alcoholic hepatitis. JHEP Reports, 2021, 3, 100283.	2.6	7
639	Evolutionary Changes in Pathways and Networks of Genes Expressed in the Brains of Humans and Macaques. Journal of Molecular Neuroscience, 2021, 71, 1825-1837.	1.1	1
640	Metabolic analysis of mouse bone-marrow-derived dendritic cells using an extracellular flux analyzer. STAR Protocols, 2021, 2, 100401.	0.5	8
641	Understanding the Central Role of Citrate in the Metabolism of Cancer Cells and Tumors: An Update. International Journal of Molecular Sciences, 2021, 22, 6587.	1.8	51

#	Article	IF	CITATIONS
642	Metabolism and Innate Immunity Meet at the Mitochondria. Frontiers in Cell and Developmental Biology, 2021, 9, 720490.	1.8	43
643	The Biogenesis, Biological Functions, and Applications of Macrophage-Derived Exosomes. Frontiers in Molecular Biosciences, 2021, 8, 715461.	1.6	30
644	Tolerogenic effects of 1,25-dihydroxyvitamin D on dendritic cells involve induction of fatty acid synthesis. Journal of Steroid Biochemistry and Molecular Biology, 2021, 211, 105891.	1.2	11
645	The Importance of Metabolism for Immune Homeostasis in Allergic Diseases. Frontiers in Immunology, 2021, 12, 692004.	2.2	17
646	Impacts of Immunometabolism on Male Reproduction. Frontiers in Immunology, 2021, 12, 658432.	2.2	18
647	Glycoproteins Presenting Galactose and N-Acetylgalactosamine in Human Seminal Plasma as Potential Players Involved in Immune Modulation in the Fertilization Process. International Journal of Molecular Sciences, 2021, 22, 7331.	1.8	5
648	Label-free two-photon imaging of mitochondrial activity in murine macrophages stimulated with bacterial and viral ligands. Scientific Reports, 2021, 11, 14081.	1.6	3
649	Integration of transcriptional and metabolic control in macrophage activation. EMBO Reports, 2021, 22, e53251.	2.0	16
650	Inflammation in Metabolic and Cardiovascular Disordersâ€"Role of Oxidative Stress. Life, 2021, 11, 672.	1.1	15
651	Regulatory Macrophages and Tolerogenic Dendritic Cells in Myeloid Regulatory Cell-Based Therapies. International Journal of Molecular Sciences, 2021, 22, 7970.	1.8	24
652	RUFY4 exists as two translationally regulated isoforms, that localize to the mitochondrion in activated macrophages. Royal Society Open Science, 2021, 8, 202333.	1.1	3
653	Substrate usage determines carbon flux <i>via</i> the citrate cycle in <i>Helicobacter pylori</i> Molecular Microbiology, 2021, 116, 841-860.	1.2	8
654	PAR2-Induced Tissue Factor Synthesis by Primary Cultures of Human Kidney Tubular Epithelial Cells Is Modified by Glucose Availability. International Journal of Molecular Sciences, 2021, 22, 7532.	1.8	2
655	Current Trends in Non-Invasive Imaging of Interactions in the Liver Tumor Microenvironment Mediated by Tumor Metabolism. Cancers, 2021, 13, 3645.	1.7	2
656	A clinically acceptable strategy for sensitizing anti-PD-1 treatment by hypoxia relief. Journal of Controlled Release, 2021, 335, 408-419.	4.8	19
657	Immunometabolism Modulation in Therapy. Biomedicines, 2021, 9, 798.	1.4	5
658	Cigarette smoke promotes oral leukoplakia via regulating glutamine metabolism and M2 polarization of macrophage. International Journal of Oral Science, 2021, 13, 25.	3.6	16
659	Regulation of macrophage functions by FABP-mediated inflammatory and metabolic pathways. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158964.	1.2	10

#	Article	IF	CITATIONS
660	Dynamicity in Host Metabolic Adaptation Is Influenced by the Synergistic Effect of Eugenol Oleate and Amphotericin B During Leishmania donovani Infection In Vitro. Frontiers in Cellular and Infection Microbiology, 2021, 11, 709316.	1.8	2
661	Fibrometabolism—An emerging therapeutic frontier in pulmonary fibrosis. Science Signaling, 2021, 14, .	1.6	31
662	Opposite Roles of Tumor Cell Proliferation and Immune Cell Infiltration in Postoperative Liver Metastasis of PDAC. Frontiers in Cell and Developmental Biology, 2021, 9, 714718.	1.8	0
663	Amino Acid Transport and Metabolism in Myeloid Function. Frontiers in Immunology, 2021, 12, 695238.	2.2	19
664	Innate immune activation by checkpoint inhibition in human patient-derived lung cancer tissues. ELife, 2021, 10, .	2.8	17
665	Inhibition of nicotinamide phosphoribosyltransferase protects against acute pancreatitis via modulating macrophage polarization and its related metabolites. Pancreatology, 2021, 21, 870-883.	0.5	11
666	TFAM-deficient mouse skin fibroblasts – an ex vivo model of mitochondrial dysfunction. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	3
667	Tuning the Immunostimulation Properties of Cationic Lipid Nanocarriers for Nucleic Acid Delivery. Frontiers in Immunology, 2021, 12, 722411.	2.2	6
668	Dual Inhibition of Endoplasmic Reticulum Stress and Oxidation Stress Manipulates the Polarization of Macrophages under Hypoxia to Sensitize Immunotherapy. ACS Nano, 2021, 15, 14522-14534.	7.3	40
669	Hypoxia Inducible Factors as Central Players in the Pathogenesis and Pathophysiology of Cardiovascular Diseases. Frontiers in Cardiovascular Medicine, 2021, 8, 709509.	1.1	14
670	Invited review: The influence of immune activation on transition cow health and performanceâ€"A critical evaluation of traditional dogmas. Journal of Dairy Science, 2021, 104, 8380-8410.	1.4	109
671	Effects of Fatty Acid Oxidation and Its Regulation on Dendritic Cell-Mediated Immune Responses in Allergies: An Immunometabolism Perspective. Journal of Immunology Research, 2021, 2021, 1-10.	0.9	4
672	Spontaneously Resolving Joint Inflammation Is Characterised by Metabolic Agility of Fibroblast-Like Synoviocytes. Frontiers in Immunology, 2021, 12, 725641.	2.2	14
674	A host lipase prevents lipopolysaccharide-induced foam cell formation. IScience, 2021, 24, 103004.	1.9	6
675	Salmonella Typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense. PLoS Pathogens, 2021, 17, e1009943.	2.1	10
676	The innate immune system in diabetic retinopathy. Progress in Retinal and Eye Research, 2021, 84, 100940.	7.3	48
677	Inhibition of Granuloma Triglyceride Synthesis Imparts Control of Mycobacterium tuberculosis Through Curtailed Inflammatory Responses. Frontiers in Immunology, 2021, 12, 722735.	2.2	11
678	Circadian Clock Regulates Inflammation and the Development of Neurodegeneration. Frontiers in Cellular and Infection Microbiology, 2021, 11, 696554.	1.8	22

#	Article	IF	CITATIONS
679	Immunostimulant Bathing Influences the Expression of Immune- and Metabolic-Related Genes in Atlantic Salmon Alevins. Biology, 2021, 10, 980.	1.3	1
681	The Association Between Risk Factors for Metabolic Syndrome and Meibomian Gland Disease in a Dry Eye Cohort. Clinical Ophthalmology, 2021, Volume 15, 3821-3832.	0.9	8
682	Sphingolipid metabolism during Tollâ€like receptor 4 (TLR4)â€mediated macrophage activation. British Journal of Pharmacology, 2021, 178, 4575-4587.	2.7	33
683	In Vitro Miniaturized Tuberculosis Spheroid Model. Biomedicines, 2021, 9, 1209.	1.4	4
684	Lymphocyte Activation Gene-3 Regulates Dendritic Cell Metabolic Programing and T Cell Priming Function. Journal of Immunology, 2021, 207, 2374-2384.	0.4	12
685	Metabolic Reprogramming of Immune Cells at the Maternal-Fetal Interface and the Development of Techniques for Immunometabolism. Frontiers in Immunology, 2021, 12, 717014.	2.2	12
686	Trained Immunity Confers Prolonged Protection From Listeriosis. Frontiers in Immunology, 2021, 12, 723393.	2.2	16
687	Hyperglycemia Induces Trained Immunity in Macrophages and Their Precursors and Promotes Atherosclerosis. Circulation, 2021, 144, 961-982.	1.6	109
688	Cannabinoids induce functional Tregs by promoting tolerogenic DCs via autophagy and metabolic reprograming. Mucosal Immunology, 2022, 15, 96-108.	2.7	25
689	A Systematic Review of the Biological Effects of Cordycepin. Molecules, 2021, 26, 5886.	1.7	30
690	SREBP1-induced fatty acid synthesis depletes macrophages antioxidant defences to promote their alternative activation. Nature Metabolism, 2021, 3, 1150-1162.	5.1	29
691	Unravelling the therapeutic potential of IL-33 for atrophic AMD. Eye, 2022, 36, 266-272.	1.1	5
692	Pyruvate Dehydrogenase Kinase Inhibitor Dichloroacetate Improves Host Control of Salmonella enterica Serovar Typhimurium Infection in Human Macrophages. Frontiers in Immunology, 2021, 12, 739938.	2.2	5
693	Host Immune-Metabolic Adaptations Upon Mycobacterial Infections and Associated Co-Morbidities. Frontiers in Immunology, 2021, 12, 747387.	2.2	14
694	Macrophage metabolic regulation in atherosclerotic plaque. Atherosclerosis, 2021, 334, 1-8.	0.4	13
695	Cortical bone stem cells modify cardiac inflammation after myocardial infarction by inducing a novel macrophage phenotype. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H684-H701.	1.5	16
696	Inhibition of glycolysis in the presence of antigen generates suppressive antigen-specific responses and restrains rheumatoid arthritis in mice. Biomaterials, 2021, 277, 121079.	5.7	32
697	Can polarization of macrophage metabolism enhance cardiac regeneration?. Journal of Molecular and Cellular Cardiology, 2021, 160, 87-96.	0.9	7

#	ARTICLE	IF	CITATIONS
698	Rescuing mitochondria in traumatic brain injury and intracerebral hemorrhages - A potential therapeutic approach. Neurochemistry International, 2021, 150, 105192.	1.9	21
699	PET/CT metabolic patterns in systemic immune activation: A new perspective on the assessment of immunotherapy response and efficacy. Cancer Letters, 2021, 520, 91-99.	3.2	14
700	Blood cell respiration rates and mtDNA copy number: A promising tool for the diagnosis of mitochondrial disease. Mitochondrion, 2021, 61, 31-43.	1.6	3
701	Dynamic changes in macrophage metabolism modulate induction and suppression of Type I inflammatory responses. Current Opinion in Immunology, 2021, 73, 9-15.	2.4	7
702	Tricarboxylic Acid (TCA) Cycle Intermediates: Regulators of Immune Responses. Life, 2021, 11, 69.	1.1	66
703	LC3-associated phagocytosis. , 2021, , 69-91.		1
704	Monosodium Urate Crystals Regulate a Unique JNK-Dependent Macrophage Metabolic and Inflammatory Response. SSRN Electronic Journal, 0, , .	0.4	0
705	Tumor cells induce LAMP2a expression in tumor-associated macrophage for cancer progression. EBioMedicine, 2019, 40, 118-134.	2.7	50
706	A Non-canonical Pathway with Potential for Safer Modulation of Transforming Growth Factor- \hat{l}^21 in Steroid-Resistant Airway Diseases. IScience, 2019, 12, 232-246.	1.9	7
707	Glycolytic reprogramming of macrophages activated by NOD1 and TLR4 agonists: No association with proinflammatory cytokine production in normoxia. Journal of Biological Chemistry, 2020, 295, 3099-3114.	1.6	22
708	Immunometabolism governs dendritic cell and macrophage function. Journal of Cell Biology, 2016, 212, 21210IA306.	2.3	3
709	Danger-associated metabolic modifications during bacterial infection of macrophages. International Immunology, 2020, 32, 475-483.	1.8	6
710	The Warburg Effect Promotes Mitochondrial Injury Regulated by Uncoupling Protein-2 in Septic Acute Kidney Injury. Shock, 2021, 55, 640-648.	1.0	23
724	The Route of Infection Influences the Contribution of Key Immunity Genes to Antibacterial Defense in <i>Anopheles gambiae</i> . Journal of Innate Immunity, 2021, 13, 107-126.	1.8	14
725	Suppressing miR-21 activity in tumor-associated macrophages promotes an antitumor immune response. Journal of Clinical Investigation, 2019, 129, 5518-5536.	3.9	92
726	Graft IL-33 regulates infiltrating macrophages to protect against chronic rejection. Journal of Clinical Investigation, 2020, 130, 5397-5412.	3.9	41
727	Hypoxia-inducible factors: key regulators of myeloid cells during inflammation. Journal of Clinical Investigation, 2016, 126, 3661-3671.	3.9	113
728	HIF1 \hat{l}_{\pm} and metabolic reprogramming in inflammation. Journal of Clinical Investigation, 2016, 126, 3699-3707.	3.9	448

#	Article	IF	CITATIONS
729	Blocking fatty acid–fueled mROS production within macrophages alleviates acute gouty inflammation. Journal of Clinical Investigation, 2018, 128, 1752-1771.	3.9	48
730	Insulin resistance causes inflammation in adipose tissue. Journal of Clinical Investigation, 2018, 128, 1538-1550.	3.9	303
731	Recent insights into the implications of metabolism in plasmacytoid dendritic cell innate functions: Potential ways to control these functions. F1000Research, 2017, 6, 456.	0.8	16
732	Recent insights into the implications of metabolism in plasmacytoid dendritic cell innate functions: Potential ways to control these functions. F1000Research, 2017, 6, 456.	0.8	18
733	Cell-intrinsic sphingosine kinase 2 promotes macrophage polarization and renal inflammation in response to unilateral ureteral obstruction. PLoS ONE, 2018, 13, e0194053.	1.1	28
734	Salmonella Typhimurium disrupts Sirt1/AMPK checkpoint control of mTOR to impair autophagy. PLoS Pathogens, 2017, 13, e1006227.	2.1	104
735	Dynamic metabolic reprogramming in dendritic cells: An early response to influenza infection that is essential for effector function. PLoS Pathogens, 2020, 16, e1008957.	2.1	13
736	Immunometabolic cross-talk in the inflamed heart. Cell Stress, 2019, 3, 240-266.	1.4	19
737	Dexmedetomidine inhibits LPS-induced proinflammatory responses via suppressing HIF1α-dependent glycolysis in macrophages. Aging, 2020, 12, 9534-9548.	1.4	12
738	An ultrastructural investigation of tumors undergoing regression mediated by immunotherapy. Oncotarget, 2017, 8, 115215-115229.	0.8	6
739	An association between mitochondria and microglia effector function: what do we think we know?. Neuroimmunology and Neuroinflammation, 2020, 2020, 150-165.	1.4	10
740	Roles of Mitochondrial Respiratory Complexes during Infection. Immunometabolism, 2019, 1, .	0.7	15
741	Mitochondrion as a Selective Target for the Treatment of Atherosclerosis: Role of Mitochondrial DNA Mutations and Defective Mitophagy in the Pathogenesis of Atherosclerosis and Chronic Inflammation. Current Neuropharmacology, 2020, 18, 1064-1075.	1.4	43
742	Metabolomic and Lipidomic Analysis of Bone Marrow Derived Macrophages. Bio-protocol, 2020, 10, e3693.	0.2	6
743	ĐšĐ¾Ñ€Ñ€ĐμĐºÑ†Đ¸Ñ•Đ¼ĐμÑ,Đ°Đ±Đ¾Đ»Đ¸Ñ‡ĐμÑĐ°Đ¸Ñ Đ½Đ°Ñ€ÑƒÑ^ĐμĐ½Đ¸Đ¹ Đ¿Ñ€Đ¸ Đ²Ñ,Đ¾Ñ€Đ¸Ñ‡	‡Đ ∳⁄2Ð ³¼Ð	₁¼2Đ°Ñ†ĐμÑ
744	Living with Yourself: Innate Lymphoid Cell Immunometabolism. Cells, 2020, 9, 334.	1.8	12
745	Natural products that target macrophages in treating non-alcoholic steatohepatitis. World Journal of Gastroenterology, 2020, 26, 2155-2165.	1.4	6
746	Multifaceted Actions of Succinate as a Signaling Transmitter Vary with Its Cellular Locations. Endocrinology and Metabolism, 2020, 35, 36.	1.3	24

#	Article	IF	CITATIONS
747	MKP-1 Modulates Mitochondrial Transcription Factors, Oxidative Phosphorylation, and Glycolysis. ImmunoHorizons, 2020, 4, 245-258.	0.8	11
748	Metabolism fine-tunes macrophage activation. ELife, 2016, 5, .	2.8	14
749	Mycobacterium tuberculosis induces decelerated bioenergetic metabolism in human macrophages. ELife, 2018, 7, .	2.8	150
7 50	Drosophila macrophages switch to aerobic glycolysis to mount effective antibacterial defense. ELife, 2019, 8, .	2.8	92
751	Wiskott Aldrich syndrome protein regulates non-selective autophagy and mitochondrial homeostasis in human myeloid cells. ELife, 2020, 9, .	2.8	18
752	Attenuating Effect of Chlorella Extract on NLRP3 Inflammasome Activation by Mitochondrial Reactive Oxygen Species. Frontiers in Nutrition, 2021, 8, 763492.	1.6	7
753	\hat{l}^2 2-Adrenergic Receptor Enhances the Alternatively Activated Macrophages and Promotes Biliary Injuries Caused by Helminth Infection. Frontiers in Immunology, 2021, 12, 754208.	2.2	5
7 54	Non-canonical glutamine transamination sustains efferocytosis by coupling redox buffering to oxidative phosphorylation. Nature Metabolism, 2021, 3, 1313-1326.	5.1	31
755	Prophylactic dendritic cell vaccination in antitumor immune response and tumor growth in a breast cancer mouse model. Research, Society and Development, 2021, 10, e100101320905.	0.0	0
7 56	Mdivi-1 Modulates Macrophage/Microglial Polarization in Mice with EAE via the Inhibition of the TLR2/4-GSK3β-NF-ΰB Inflammatory Signaling Axis. Molecular Neurobiology, 2022, 59, 1-16.	1.9	22
757	Cell Membrane-Coated Mimics: A Methodological Approach for Fabrication, Characterization for Therapeutic Applications, and Challenges for Clinical Translation. ACS Nano, 2021, 15, 17080-17123.	7.3	73
7 59	Metabolic Pathways in Immune Cells Commitment and Fate. , 2022, , 53-82.		0
760	Mitochondrial complex II in intestinal epithelial cells regulates T cell-mediated immunopathology. Nature Immunology, 2021, 22, 1440-1451.	7.0	22
761	Metformin to decrease COVID-19 severity and mortality: Molecular mechanisms and therapeutic potential. Biomedicine and Pharmacotherapy, 2021, 144, 112230.	2.5	33
762	Immunometabolism of lymphocytes and its changes in experimental diabetes mellitus. Patolog $ ilde{A}$ e, 2016, .	0.1	0
763	Immunometabolism of Dendritic Cells and T Cells. , 2018, , 837-844.		0
764	Endogenous DAMPs, Category II: Constitutively Expressed, Injury-Modified Molecules (Cat. II DAMPs)., 2018, , 269-305.		0
770	Tissue Location Drives the Metabolic Re-Profiling of Macrophages. Immunometabolism, 2020, , .	0.7	О

#	ARTICLE	IF	CITATIONS
776	Mitochondrial metabolism coordinates stage-specific repair processes in macrophages during wound healing. Cell Metabolism, 2021, 33, 2398-2414.e9.	7.2	89
777	Functionally Heterogenous Macrophage Subsets in the Pathogenesis of Giant Cell Arteritis: Novel Targets for Disease Monitoring and Treatment. Journal of Clinical Medicine, 2021, 10, 4958.	1.0	15
778	Regulation of Sirt1 on energy metabolism and immune response in rheumatoid arthritis. International Immunopharmacology, 2021, 101, 108175.	1.7	21
779	Characteristic of the urea-forming function of the liver of cats with chlamidiosis. The Agrarian Scientific Journal, 2020, , 72-74.	0.0	0
780	Targeting cystic fibrosis inflammation in the age of CFTR modulators: focus on macrophages. European Respiratory Journal, 2021, 57, 2003502.	3.1	17
781	Lipid scavenging macrophages and inflammation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2022, 1867, 159066.	1.2	8
783	The Growing World of DAMPs. , 2020, , 67-116.		0
785	Trained Immunity at a Glance; A Review on the Innate Immune Memory and its Potential Role in Infections, Diseases and New Therapeutic Strategies. Advanced Journal of Graduate Research, 2020, 8, 68-81.	0.5	2
786	Selection and stability validation of reference gene candidates for transcriptional analysis in Rousettus aegyptiacus. Scientific Reports, 2021, 11, 21662.	1.6	4
789	Metabolic reprogramming of macrophages and its involvement in inflammatory diseases. EXCLI Journal, 2021, 20, 628-641.	0.5	2
790	Mitochondrial regulation and white adipose tissue homeostasis. Trends in Cell Biology, 2022, 32, 351-364.	3.6	29
791	Biomimetic Nanoparticles Enabled by Cascade Cell Membrane Coating for Direct Crossâ€Priming of T Cells. Small, 2022, 18, e2104402.	5.2	24
792	Complementary Feeding and Iron Status: "The Unbearable Lightness of Being―Infants. Nutrients, 2021, 13, 4201.	1.7	15
793	Single-Cell Transcriptome Profiles Reveal Fibrocytes as Potential Targets of Cell Therapies for Abdominal Aortic Aneurysm. Frontiers in Cardiovascular Medicine, 2021, 8, 753711.	1.1	10
794	Efferocytosis induces macrophage proliferation to help resolve tissue injury. Cell Metabolism, 2021, 33, 2445-2463.e8.	7.2	98
795	Metabolite transporters as regulators of macrophage polarization. Naunyn-Schmiedeberg's Archives of Pharmacology, 2022, 395, 13-25.	1.4	3
797	Citrulline depletion by ASS1 is required for proinflammatory macrophage activation and immune responses. Molecular Cell, 2022, 82, 527-541.e7.	4.5	31
798	Immunometabolism modulation, a new trick of edible and medicinal plants in cancer treatment. Food Chemistry, 2022, 376, 131860.	4.2	12

#	Article	IF	CITATIONS
799	Transcriptomic and Lipidomic Mapping of Macrophages in the Hub of Chronic Beta-Adrenergic-Stimulation Unravels Hypertrophy-, Proliferation-, and Lipid Metabolism-Related Genes as Novel Potential Markers of Early Hypertrophy or Heart Failure. Biomedicines, 2022, 10, 221.	1.4	2
800	Emerging Functions of IL-33 in Homeostasis and Immunity. Annual Review of Immunology, 2022, 40, 15-43.	9.5	44
801	Role of Cellular Metabolism during Candida-Host Interactions. Pathogens, 2022, 11, 184.	1.2	14
802	Diverse Roles of TRPV4 in Macrophages: A Need for Unbiased Profiling. Frontiers in Immunology, 2021, 12, 828115.	2.2	16
803	Oxylipin metabolism is controlled by mitochondrial \hat{l}^2 -oxidation during bacterial inflammation. Nature Communications, 2022, 13, 139.	5.8	27
805	The impact of the lung environment on macrophage development, activation and function: diversity in the face of adversity. Mucosal Immunology, 2022, 15, 223-234.	2.7	81
806	Deciphering the Immune–Tumor Interplay During Early-Stage Lung Cancer Development via Single-Cell Technology. Frontiers in Oncology, 2021, 11, 716042.	1.3	5
807	Immunometabolism in biofilm infection: lessons from cancer. Molecular Medicine, 2022, 28, 10.	1.9	18
808	Protein O-GlcNAcylation Regulates Innate Immune Cell Function. Frontiers in Immunology, 2022, 13, 805018.	2.2	10
809	Food nutrients as inherent sources of immunomodulation during COVID-19 pandemic. LWT - Food Science and Technology, 2022, 158, 113154.	2.5	31
810	The Tuberculous Granuloma and Preexisting Immunity. Annual Review of Immunology, 2022, 40, 589-614.	9.5	32
812	Itaconate indirectly influences expansion of effector T cells following vaccination with Francisella tularensis live vaccine strain. Cellular Immunology, 2022, 373, 104485.	1.4	5
813	In vivo fluorescence lifetime imaging of macrophage intracellular metabolism during wound responses in zebrafish. ELife, 2022, 11 , .	2.8	19
814	Identification of 14 Differentially-Expressed Metabolism-Related Genes as Potential Targets of Gastric Cancer by Integrated Proteomics and Transcriptomics. Frontiers in Cell and Developmental Biology, 2022, 10, 816249.	1.8	2
815	Helminth and Host Crosstalk: New Insight Into Treatment of Obesity and Its Associated Metabolic Syndromes. Frontiers in Immunology, 2022, 13, 827486.	2.2	6
816	Macrophage polarization in hypoxia and ischemia/reperfusion: Insights into the role of energetic metabolism. Experimental Biology and Medicine, 2022, 247, 958-971.	1.1	9
817	TFAM-Dependent Mitochondrial Metabolism Is Required for Alveolar Macrophage Maintenance and Homeostasis. Journal of Immunology, 2022, 208, 1456-1466.	0.4	13
818	IL-6-induced FOXO1 activity determines the dynamics of metabolism in CD8 TÂcells cross-primed by liver sinusoidal endothelial cells. Cell Reports, 2022, 38, 110389.	2.9	10

#	Article	IF	CITATIONS
819	New Immunometabolic Strategy Based on Cell Type-Specific Metabolic Reprogramming in the Tumor Immune Microenvironment. Cells, 2022, 11, 768.	1.8	14
820	Blockage of citrate export prevents TCA cycle fragmentation via lrg1 inactivation. Cell Reports, 2022, 38, 110391.	2.9	29
821	Immunometabolic adaptation and immune plasticity in pregnancy and the bi-directional effects of obesity. Clinical and Experimental Immunology, 2022, 208, 132-146.	1.1	6
822	PD-L1 blockade liberates intrinsic antitumourigenic properties of glycolytic macrophages in hepatocellular carcinoma. Gut, 2022, 71, 2551-2560.	6.1	36
823	Impaired phosphocreatine metabolism in white adipocytes promotes inflammation. Nature Metabolism, 2022, 4, 190-202.	5.1	21
824	Amelioration of Endotoxemia by a Synthetic Analog of Omega-3 Epoxyeicosanoids. Frontiers in Immunology, 2022, 13, 825171.	2.2	2
825	Oxamate Attenuates Glycolysis and ER Stress in Silicotic Mice. International Journal of Molecular Sciences, 2022, 23, 3013.	1.8	5
826	Therapeutic Targeting of Endosome and Mitochondrial Reactive Oxygen Species Protects Mice From Influenza Virus Morbidity. Frontiers in Pharmacology, 2022, 13, 870156.	1.6	2
827	15-F2t-Isoprostane Favors an Anti-Inflammatory Phenotype in RAW 264.7 Macrophages during Endotoxin Challenge. Antioxidants, 2022, 11, 586.	2.2	3
828	Modulation of the cell membrane lipid milieu by peroxisomal \hat{l}^2 -oxidation induces Rho1 signaling to trigger inflammatory responses. Cell Reports, 2022, 38, 110433.	2.9	11
829	Monosodium urate crystals regulate a unique JNK-dependent macrophage metabolic and inflammatory response. Cell Reports, 2022, 38, 110489.	2.9	20
830	Macrophage metabolism in the intestine is compartment specific and regulated by the microbiota. Immunology, 2022, 166, 138-152.	2.0	10
831	Estrogen-related receptor \hat{l}_{\pm} (ERR \hat{l}_{\pm}) functions in the hypoxic injury of microglial cells. Journal of Veterinary Research (Poland), 2022, 66, 131-140.	0.3	1
832	PTIP governs NAD+ metabolism by regulating CD38 expression to drive macrophage inflammation. Cell Reports, 2022, 38, 110603.	2.9	4
833	Trained Immunity Contribution to Autoimmune and Inflammatory Disorders. Frontiers in Immunology, 2022, 13, 868343.	2.2	16
834	Early Protective Role of Inflammation in Cardiac Remodeling and Heart Failure: Focus on TNF $\hat{I}\pm$ and Resident Macrophages. Cells, 2022, 11, 1249.	1.8	22
835	Prohibitin plays a role in the functional plasticity of macrophages. Molecular Immunology, 2022, 144, 152-165.	1.0	2
836	Hexokinase 1 cellular localization regulates the metabolic fate of glucose. Molecular Cell, 2022, 82, 1261-1277.e9.	4.5	42

#	Article	IF	Citations
837	Transcriptome Architecture of Osteoblastic Cells Infected With Staphylococcus aureus Reveals Strong Inflammatory Responses and Signatures of Metabolic and Epigenetic Dysregulation. Frontiers in Cellular and Infection Microbiology, 2022, 12, 854242.	1.8	7
839	Targeting fatty acid \hat{l}^2 -oxidation impairs monocyte differentiation and prolongs heart allograft survival. JCI Insight, 2022, 7, .	2.3	7
840	Pro-inflammatory polarization of macrophages is associated with reduced endoplasmic reticulum-mitochondria interaction. Biochemical and Biophysical Research Communications, 2022, 606, 61-67.	1.0	5
841	Metabolites as drivers and targets in rheumatoid arthritis. Clinical and Experimental Immunology, 2022, 208, 167-180.	1.1	13
842	Targeting immunometabolism in host-directed therapies to fungal disease. Clinical and Experimental Immunology, 2022, 208, 158-166.	1.1	5
843	Model systems in SDHx-related pheochromocytoma/paraganglioma. Cancer and Metastasis Reviews, 2021, 40, 1177-1201.	2.7	7
844	Gallic and Vanillic Acids as Promising Succinate Dehydrogenase Inhibitors and Antigenotoxic Agents. Revista Brasileira De Farmacognosia, 2021, 31, 779-787.	0.6	0
845	Hematopoietic Cell-Specific SLC37A2 Deficiency Accelerates Atherosclerosis in LDL Receptor-Deficient Mice. Frontiers in Cardiovascular Medicine, 2021, 8, 777098.	1.1	2
846	Sirtuin 5 is Dispensable for CD8+ T Cell Effector and Memory Differentiation. Frontiers in Cell and Developmental Biology, 2021, 9, 761193.	1.8	0
847	Reverting the mode of action of the mitochondrial FOF1-ATPase by Legionella pneumophila preserves its replication niche. ELife, 2021, 10 , .	2.8	8
848	Identification of Profound Metabolic Alterations in Human Dendritic Cells by Progesterone Through Integrated Bioinformatics Analysis. Frontiers in Immunology, 2021, 12, 806110.	2.2	4
849	Role of Cellular Metabolism in the Formation of Neutrophil Extracellular Traps in Airway Diseases. Frontiers in Immunology, 2022, 13, 850416.	2.2	9
850	EFFECT OF SUCCINATE-CONTAINING DRUGS ON CELLULAR COMPOSITION OF BLOOD IN RATS AT REST, DURING FREE SWIMMING AND WEIGHT-LOADED FORCED SWIMMING TEST. Ulyanovsk Medico-biological Journal, 2022, , 135-146.	0.0	1
851	Impacts and mechanisms of metabolic reprogramming of tumor microenvironment for immunotherapy in gastric cancer. Cell Death and Disease, 2022, 13, 378.	2.7	37
852	Cyclin J–CDK complexes limit innate immune responses by reducing proinflammatory changes in macrophage metabolism. Science Signaling, 2022, 15, eabm5011.	1.6	4
853	Hypothesis of immune homeostasis regulator: The nervous system regulates glucose immunometabolism to control immunity. Medical Hypotheses, 2022, 163, 110841.	0.8	0
911	Novel Pharmacological Targets for Pulmonary Arterial Hypertension., 2021, 11, 2297-2349.		5
912	Temporal transcriptome reveals that circadian clock is involved in the dynamic regulation of immune response to bacterial infection in <i>Bombyx mori</i> . Insect Science, 2023, 30, 31-46.	1.5	5

#	ARTICLE	IF	Citations
913	Distinct Inflammatory Macrophage Populations Sequentially Infiltrate Boneâ€toâ€Tendon Interface Tissue After Anterior Cruciate Ligament (<scp>ACL)</scp> Reconstruction Surgery in Mice. JBMR Plus, 2022, 6,	1.3	9
914	Immune Cell Metabolic Fitness for Life. Antibodies, 2022, 11, 32.	1.2	0
915	Single-cell RNA-seq of UVB-radiated skin reveals landscape of photoaging-related inflammation and protection by vitamin D. Gene, 2022, 831, 146563.	1.0	10
916	Intracellular infection and immune system cues rewire adipocytes to acquire immune function. Cell Metabolism, 2022, 34, 747-760.e6.	7.2	21
918	Challenging molecular dogmas in human sepsis using mathematical reasoning. EBioMedicine, 2022, 80, 104031.	2.7	10
919	GIMAP6 regulates autophagy, immune competence, and inflammation in mice and humans. Journal of Experimental Medicine, 2022, 219, .	4.2	4
921	Crosstalk of Immuno-Oncology and Metabolism: Influence of Akkermansia muciniphila and Personalized Therapy Approach., 2022,, 91-115.		1
923	Exploring the role of macrophages in determining the pathogenesis of liver fluke infection. Parasitology, 2022, 149, 1364-1373.	0.7	6
924	Trained immunity: implications for vaccination. Current Opinion in Immunology, 2022, 77, 102190.	2.4	31
925	Effects of Estrogens on Osteoimmunology: A Role in Bone Metastasis. Frontiers in Immunology, $0,13,.$	2.2	3
926	G9a promotes inflammation in Streptococcus pneumoniae induced pneumonia mice by stimulating M1 macrophage polarization and H3K9me2 methylation in FOXP1 promoter region. Annals of Translational Medicine, 2022, 10, 583-583.	0.7	3
927	Editorial: Immune Regulation of Metabolic Homeostasis. Frontiers in Endocrinology, 2022, 13, .	1.5	1
929	Blood-based untargeted metabolomics in relapsing-remitting multiple sclerosis revealed the testable therapeutic target. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	25
930	Transcriptional Profiling of Leishmania infantum Infected Dendritic Cells: Insights into the Role of Immunometabolism in Host-Parasite Interaction. Microorganisms, 2022, 10, 1271.	1.6	6
931	A mouse infection model and long-term lymphatic endothelium co-culture system to evaluate drugs against adult Brugia malayi. PLoS Neglected Tropical Diseases, 2022, 16, e0010474.	1.3	2
932	Immune cell metabolism and metabolic reprogramming. Molecular Biology Reports, 2022, 49, 9783-9795.	1.0	29
933	Microbiome–Immune Interactions in Allergy and Asthma. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 2244-2251.	2.0	12
934	Metabolic remodeling in tumor-associated macrophages contributing to antitumor activity of cryptotanshinone by regulating TRAF6-ASK1 axis. Molecular Therapy - Oncolytics, 2022, 26, 158-174.	2.0	4

#	Article	IF	CITATIONS
935	Immunometabolism – The Role of Branched-Chain Amino Acids. Frontiers in Immunology, 0, 13, .	2.2	11
936	Coronavirus disease 2019 (COVIDâ€19) update: From metabolic reprogramming to immunometabolism. Journal of Medical Virology, 2022, 94, 4611-4627.	2.5	18
937	The emerging role of microbiota-derived short-chain fatty acids in immunometabolism. International Immunopharmacology, 2022, 110, 108983.	1.7	19
938	Quantifying Regulated Mitochondrial Fission in Macrophages. Methods in Molecular Biology, 2022, , 281-301.	0.4	2
939	Breathe In, Breathe Out: Metabolic Regulation of Lung Macrophages in Host Defense Against Bacterial Infection. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	3
940	Xiao-Chai-Hu Decoction Ameliorates Poly (I:C)-Induced Viral Pneumonia through Inhibiting Inflammatory Response and Modulating Serum Metabolism. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-15.	0.5	1
941	<i>NR1H3</i> (LXRα) is associated with proâ€inflammatory macrophages, predicts survival and suggests potential therapeutic rationales in diffuse large bâ€cell lymphoma. Hematological Oncology, 2022, 40, 864-875.	0.8	7
942	Simulated hypoxia modulates P2X7 receptor function in mice peritoneal macrophages. International Immunopharmacology, 2022, 110, 109062.	1.7	1
943	Inhibition of BTK improved APAP-induced liver injury via suppressing proinflammatory macrophages activation by restoring mitochondrion function. International Immunopharmacology, 2022, 110, 109036.	1.7	3
944	Uncovering the source of mitochondrial superoxide in pro-inflammatory macrophages: Insights from immunometabolism. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166481.	1.8	3
945	AXL and MERTK receptor tyrosine kinases inhibition protects against pancreatic necrosis via selectively limiting CXCL2-related neutrophil infiltration. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166490.	1.8	0
946	Macrophages: A communication network linking Porphyromonas gingivalis infection and associated systemic diseases. Frontiers in Immunology, 0, 13 , .	2.2	13
947	Regulation of metabolic and transcriptional responses by the thyroid hormone in cellular models of murine macrophages. Frontiers in Immunology, 0, 13 , .	2.2	1
948	AÎ ² and Tau Regulate Microglia Metabolism via Exosomes in Alzheimer's Disease. Biomedicines, 2022, 10, 1800.	1.4	10
949	MDSCs in sepsis-induced immunosuppression and its potential therapeutic targets. Cytokine and Growth Factor Reviews, 2023, 69, 90-103.	3.2	17
950	The complex role of tumor-infiltrating macrophages. Nature Immunology, 2022, 23, 1148-1156.	7.0	194
951	Glycogen metabolism reprogramming promotes inflammation in coal dust-exposed lung. Ecotoxicology and Environmental Safety, 2022, 242, 113913.	2.9	6
952	Immunosuppressive landscape in hepatocellular carcinoma revealed by single-cell sequencing. Frontiers in Immunology, 0, 13, .	2.2	15

#	Article	IF	Citations
953	Monocyte biology conserved across species: Functional insights from cattle. Frontiers in Immunology, $0,13,\ldots$	2.2	13
954	Metabolic strategy of macrophages under homeostasis or immune stress in Drosophila. Marine Life Science and Technology, 0, , .	1.8	1
955	AMPK/SIRT1 Deficiency Drives Adjuvant-Induced Arthritis in Rats by Promoting Glycolysis-Mediated Monocytes Inflammatory Polarization. Journal of Inflammation Research, 0, Volume 15, 4663-4675.	1.6	6
956	The matricellular protein SPARC induces inflammatory interferon-response in macrophages during aging. Immunity, 2022, 55, 1609-1626.e7.	6.6	30
957	Escherichia coli O88 induces intestinal damage and inflammatory response through the oxidative phosphorylation and ribosome pathway in Pekin ducks. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	1
959	Prediction of prognosis, immunogenicity and efficacy of immunotherapy based on glutamine metabolism in lung adenocarcinoma. Frontiers in Immunology, 0, 13, .	2.2	16
960	Metabolomics profiles in acute-on-chronic liver failure: Unveiling pathogenesis and predicting progression. Frontiers in Pharmacology, 0, 13 , .	1.6	6
962	<scp>SPICEâ€Met</scp> : profiling and imaging energy metabolism at the singleâ€cell level using a fluorescent reporter mouse. EMBO Journal, 2022, 41, .	3.5	8
963	Immune cellular components and signaling pathways in the tumor microenvironment. Seminars in Cancer Biology, 2022, 86, 187-201.	4.3	18
964	Short open reading frame genes in innate immunity: from discovery to characterization. Trends in Immunology, 2022, 43, 741-756.	2.9	9
965	TGF- \hat{l}^2 signaling in the tumor metabolic microenvironment and targeted therapies. Journal of Hematology and Oncology, 2022, 15, .	6.9	35
966	Nutritional senolytics and senomorphics: Implications to immune cells metabolism and aging – from theory to practice. Frontiers in Nutrition, 0, 9, .	1.6	6
967	HDM induces distinct immunometabolic phenotype in macrophages in TLR4-dependent manner. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166531.	1.8	3
968	Renewal of embryonic and neonatal-derived cardiac-resident macrophages in response to environmental cues abrogated their potential to promote cardiomyocyte proliferation via Jagged-1–Notch1. Acta Pharmaceutica Sinica B, 2023, 13, 128-141.	5.7	7
969	Engineered endosymbionts that alter mammalian cell surface marker, cytokine and chemokine expression. Communications Biology, 2022, 5, .	2.0	1
970	Redox regulation of the immune response. , 2022, 19, 1079-1101.		96
972	mTOR-regulated mitochondrial metabolism limits mycobacterium-induced cytotoxicity. Cell, 2022, 185, 3720-3738.e13.	13.5	21
973	Bacillus subtilis Protects the Ducks from Oxidative Stress Induced by Escherichia coli: Efficacy and Molecular Mechanism. Antioxidants, 2022, 11, 1951.	2.2	0

#	Article	IF	CITATIONS
974	Macrophage-Mediated Inflammation in Skin Wound Healing. Cells, 2022, 11, 2953.	1.8	48
975	Effects of a natural nutritional supplement on immune cell infiltration and immune gene expression in exercise-induced injury. Frontiers in Nutrition, 0, 9, .	1.6	1
976	Cross talk between glucose metabolism and immunosuppression in IFN-γ–primed mesenchymal stem cells. Life Science Alliance, 2022, 5, e202201493.	1.3	8
977	Performance of bat-derived macrophages at different temperatures. Frontiers in Veterinary Science, 0, 9, .	0.9	2
978	Lipid metabolic features of T cells in the Tumor Microenvironment. Lipids in Health and Disease, 2022, 21, .	1.2	2
979	Developments and emerging technologies in allergic and immunologic disease management. , 2022, , 187-219.		0
980	The Tumor Microenvironment Reprograms Immune Cells. Cellular Reprogramming, 2022, 24, 343-352.	0.5	4
981	Glutamine metabolism and optimal immune and CNS function. Proceedings of the Nutrition Society, 2023, 82, 22-31.	0.4	6
982	Heterogeneity of glioblastoma stem cells in the context of the immune microenvironment and geospatial organization. Frontiers in Oncology, $0, 12, \ldots$	1.3	8
983	Mycobacterium tuberculosis exploits MPT64 to generate myeloid-derived suppressor cells to evade the immune system. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	1
984	Untargeted metabolomics analysis reveals Mycobacterium tuberculosis strain H37Rv specifically induces tryptophan metabolism in human macrophages. BMC Microbiology, 2022, 22, .	1.3	4
985	Macrophage Mitochondrial Biogenesis and Metabolic Reprogramming Induced by Leishmania donovani Require Lipophosphoglycan and Type I Interferon Signaling. MBio, 2022, 13, .	1.8	1
987	Comprehensive Analysis and Validation of Solute Carrier Family 25 (SLC25) and Its Correlation with Immune Infiltration in Pan-Cancer. BioMed Research International, 2022, 2022, 1-23.	0.9	3
988	Early effects of LPS-induced neuroinflammation on the rat hippocampal glycolytic pathway. Journal of Neuroinflammation, 2022, 19, .	3.1	16
989	OPA1 drives macrophage metabolism and functional commitment via p65 signaling. Cell Death and Differentiation, 2023, 30, 742-752.	5.0	7
990	Nitrosylation rewires metabolism. Nature Chemical Biology, 2023, 19, 253-254.	3.9	1
992	Immune–Metabolic Interactions and T Cell Tolerance in Pregnancy. Journal of Immunology, 2022, 209, 1426-1436.	0.4	6
993	Gut fungi enhances immunosuppressive function of myeloid-derived suppressor cells by activating PKM2-dependent glycolysis to promote colorectal tumorigenesis. Experimental Hematology and Oncology, 2022, 11 , .	2.0	14

#	Article	IF	CITATIONS
994	Impact of ATP-citrate lyase catalytic activity and serine 455 phosphorylation on histone acetylation and inflammatory responses in human monocytic THP-1 cells. Frontiers in Immunology, 0, 13, .	2.2	1
995	EGFR tyrosine kinase activity and Rab GTPases coordinate EGFR trafficking to regulate macrophage activation in sepsis. Cell Death and Disease, 2022, 13, .	2.7	8
996	SLC7A8 is a key amino acids supplier for the metabolic programs that sustain homeostasis and activation of type 2 innate lymphoid cells. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	6
997	Cholesterol accumulation on dendritic cells reverses chronic hepatitis B virus infection-induced dysfunction., 2022, 19, 1347-1360.		9
998	The inflammasomes and immunometabolism: A small molecule inhibitor of the NLRP3 inflammasome. Biochemical and Biophysical Research Communications, 2022, 633, 84-87.	1.0	1
999	NCoR1 controls immune tolerance in conventional dendritic cells by fine-tuning glycolysis and fatty acid oxidation. Redox Biology, 2023, 59, 102575.	3.9	10
1000	Biomaterial mediated simultaneous delivery of spermine and alpha ketoglutarate modulate metabolism and innate immune cell phenotype in sepsis mouse models. Biomaterials, 2023, 293, 121973.	5.7	9
1001	Two for the price of one: itaconateÂand its derivativesÂas an anti-infective and anti-inflammatory immunometabolite. Current Opinion in Immunology, 2023, 80, 102268.	2.4	7
1002	Lysosomal damage drives mitochondrial proteome remodelling and reprograms macrophage immunometabolism. Nature Communications, 2022, 13, .	5.8	16
1003	Macrophage acetyl-CoA carboxylase regulates acute inflammation through control of glucose and lipid metabolism. Science Advances, 2022, 8, .	4.7	15
1004	Glutamine Metabolism Supports the Functional Activity of Immune Cells against Aspergillus fumigatus. Microbiology Spectrum, 0, , .	1.2	1
1005	Circadian metabolism regulates the macrophage inflammatory response. , 2022, 1, 224-233.		1
1006	The circadian clock influences T cell responses to vaccination by regulating dendritic cell antigen processing. Nature Communications, 2022, 13, .	5.8	22
1007	Eosinophilâ€derived <scp>IL</scp> â€4 is necessary to establish the inflammatory structure in innate inflammation. EMBO Molecular Medicine, 2023, 15, .	3.3	5
1008	The signaling pathways and therapeutic potential of itaconate to alleviate inflammation and oxidative stress in inflammatory diseases. Redox Biology, 2022, 58, 102553.	3.9	11
1009	Macrophages inhibit <i>Coxiella burnetii</i> by the <scp>ACOD1</scp> â€itaconate pathway for containment of Q fever. EMBO Molecular Medicine, 2023, 15, .	3.3	9
1010	Endogenous drivers of altered immune cell metabolism. Experimental Biology and Medicine, 2022, 247, 2192-2200.	1.1	1
1011	Nutraceuticals as Potential Therapeutic Modulators in Immunometabolism. Nutrients, 2023, 15, 411.	1.7	4

#	Article	IF	CITATIONS
1012	Integration of mRNA and protein expression data for the identification of potential biomarkers associated with pancreatic ductal adenocarcinoma. Computers in Biology and Medicine, 2023, 157, 106529.	3.9	3
1013	IGF2: A Role in Metastasis and Tumor Evasion from Immune Surveillance?. Biomedicines, 2023, 11, 229.	1.4	10
1014	$\mbox{\ensuremath{\mbox{\scriptsize (i)}}}$ Mycobacterium tuberculosis $\mbox{\ensuremath{\mbox{\scriptsize (i)}}}$ induces delayed lipid droplet accumulation in dendritic cells depending on bacterial viability and virulence. Molecular Microbiology, 0, , .	1.2	1
1015	Glycolytic side pathways regulating macrophage inflammatory phenotypes and functions. American Journal of Physiology - Cell Physiology, 2023, 324, C558-C564.	2.1	2
1016	On the Potential Therapeutic Roles of Taurine in Autism Spectrum Disorder. Neuroglia (Basel,) Tj ETQq0 0 0 rgBT	/Oyerlock	19 Tf 50 58
1017	Rise of the natural red pigment â€~prodigiosin' as an immunomodulator in cancer. Cancer Cell International, 2022, 22, .	1.8	5
1018	Macrophages-microenvironment crosstalk in fibrostenotic inflammatory bowel disease: from basic mechanisms to clinical applications. Expert Opinion on Therapeutic Targets, 0, , 1-16.	1.5	0
1019	Gut Microbiota-Derived Glutamine Attenuates Liver Ischemia/Reperfusion Injury via Macrophage Metabolic Reprogramming. Cellular and Molecular Gastroenterology and Hepatology, 2023, 15, 1255-1275.	2.3	7
1020	Obesity and dysregulated innate immune responses: impact of micronutrient deficiencies. Trends in Immunology, 2023, 44, 217-230.	2.9	10
1022	IFNâ€stimulated metabolite transporter ENT3 facilitates viral genome release. EMBO Reports, 0, , .	2.0	1
1023	Metabolism along the life journey of T cells. , 2023, 2, .		4
1024	The role of ApoE-mediated microglial lipid metabolism in brain aging and disease. Immunometabolism, 2023, 5, e00018.	0.7	2
1025	Do macrophages follow the beat of circadian rhythm in TIME (Tumor Immune Microenvironment)?. F1000Research, 0, 12, 101.	0.8	0
1026	Functionalized DNA Nanomaterials Targeting Tollâ€Like Receptor 4 Prevent Bisphosphonateâ€Related Osteonecrosis of the Jaw via Regulating Mitochondrial Homeostasis in Macrophages. Advanced Functional Materials, 2023, 33, .	7.8	30
1027	Itaconate Suppresses the Activation of Mitochondrial NLRP3 Inflammasome and Oxidative Stress in Allergic Airway Inflammation. Antioxidants, 2023, 12, 489.	2.2	4
1028	p38 MAPK and MKP-1 control the glycolytic program via the bifunctional glycolysis regulator PFKFB3 during sepsis. Journal of Biological Chemistry, 2023, 299, 103043.	1.6	5
1029	Glycolysis drives STING signaling to facilitate dendritic cell antitumor function. Journal of Clinical Investigation, 2023, 133, .	3.9	7
1030	Interactions between Macrophages and Biofilm during <i>Staphylococcus aureus</i> -Associated Implant Infection: Difficulties and Solutions. Journal of Innate Immunity, 2023, 15, 499-515.	1.8	9

#	Article	IF	CITATIONS
1031	The involvement of Th1 cell differentiation in the anti-tumor effect of purified polysaccharide from Sanghuangporus vaninii in colorectal cancer via multi-omics analysis. International Journal of Biological Macromolecules, 2023, 237, 123927.	3.6	9
1032	Alpha-ketoglutarate promotes alveolar bone regeneration by modulating M2 macrophage polarization. Bone Reports, 2023, 18, 101671.	0.2	1
1033	Metabolites from scutellarin alleviating deferoxamine-induced hypoxia injury in BV2 cells cultured on microfluidic chip combined with a mass spectrometer. Talanta, 2023, 259, 124478.	2.9	4
1034	Putrescine accelerates the differentiation of bone marrow derived dendritic cells via inhibiting phosphorylation of STAT3 at Tyr705. International Immunopharmacology, 2023, 116, 109739.	1.7	2
1035	Chemical mimetics of the N-degron pathway alleviate systemic inflammation by activating mitophagy and immunometabolic remodeling. Experimental and Molecular Medicine, 2023, 55, 333-346.	3.2	4
1036	IL-6/ERK signaling pathway participates in type I IFN-programmed, unconventional M2-like macrophage polarization. Scientific Reports, 2023, 13, .	1.6	6
1037	Inhibition of hexokinase 2 with 3-BrPA promotes MDSCs differentiation and immunosuppressive function. Cellular Immunology, 2023, 385, 104688.	1.4	1
1038	Macrophage efferocytosis in health and disease. Cell Biochemistry and Function, 2023, 41, 152-165.	1.4	11
1039	Myelomonocytic cells in giant cell arteritis activate trained immunity programs sustaining inflammation and cytokine production. Rheumatology, 2023, 62, 3469-3479.	0.9	1
1040	The effect of sodium thiosulfate on immune cell metabolism during porcine hemorrhage and resuscitation. Frontiers in Immunology, 0, 14 , .	2.2	6
1041	CD40 signal rewires fatty acid and glutamine metabolism for stimulating macrophage anti-tumorigenic functions. Nature Immunology, 2023, 24, 452-462.	7.0	29
1042	Gamma-aminobutyric acid type A receptor alpha 4 coordinates autophagy, inflammation, and immunometabolism to promote innate immune activation., 2023, 2,.		2
1043	Aryl hydrocarbon receptor activity downstream of IL-10 signaling is required to promote regulatory functions in human dendritic cells. Cell Reports, 2023, 42, 112193.	2.9	3
1045	Cellular energy supply for promoting vascular remodeling of small-diameter vascular grafts: a preliminary study of a new strategy for vascular graft development. Biomaterials Science, 2023, 11, 3197-3213.	2.6	1
1046	Metabolic regulation of dendritic cell activation and immune function during inflammation. Frontiers in Immunology, $0,14,.$	2.2	3
1048	A metabolic conspiracy drives anti-tumorigenic macrophages. , 0, , .		O
1049	The Dysregulated Host Response. Lessons From the ICU, 2023, , 19-34.	0.1	0
1050	Mitochondrial bioenergetic changes in systemic lupus erythematosus immune cell subsets: Contributions to pathogenesis and clinical applications. Lupus, 2023, 32, 603-611.	0.8	5

#	ARTICLE	IF	CITATIONS
1051	Mitochondrial Dysfunction as a Trigger of Inflammation in Cardiomyopathies. , 2023, , 113-137.		0
1053	Cannabinoid WIN55,212-2 reprograms monocytes and macrophages to inhibit LPS-induced inflammation. Frontiers in Immunology, 0, 14, .	2.2	3
1054	Targeting hexokinase 1 alleviates NLRP3â€mediated inflammation in apical periodontitis: A laboratory investigation. International Endodontic Journal, 2023, 56, 734-747.	2.3	2
1055	Untangling Cellular Host-Pathogen Encounters at Infection Bottlenecks. Infection and Immunity, 2023, 91, .	1.0	2
1056	Comparing the Effects of Rocaglates on Energy Metabolism and Immune Modulation on Cells of the Human Immune System. International Journal of Molecular Sciences, 2023, 24, 5872.	1.8	2
1058	Alphaâ€ketoglutaric acid based polymeric particles for cutaneous wound healing. Journal of Biomedical Materials Research - Part A, 2023, 111, 1372-1378.	2.1	2
1059	Targeted therapy and immunotherapy: Diamonds in the rough in the treatment of epithelial ovarian cancer. Frontiers in Pharmacology, 0, 14 , .	1.6	4
1060	Gainâ€'ofâ€'function of IDO in DCs inhibits TÂcell immunity by metabolically regulating surface molecules and cytokines. Experimental and Therapeutic Medicine, 2023, 25, .	0.8	1
1061	Transcriptional programing of T cell metabolism by STAT family transcription factors. European Journal of Immunology, 2023, 53, .	1.6	0
1062	A Decision-tree Approach to Stratify DLBCL Risk Based on Stromal and Immune Microenvironment Determinants. HemaSphere, 2023, 7, e862.	1.2	1
1063	Mitochondria in innate immunity signaling and its therapeutic implications in autoimmune diseases. Frontiers in Immunology, 0, 14, .	2.2	0
1064	Abnormal glucose metabolism in virus associated sepsis. Frontiers in Cellular and Infection Microbiology, $0,13,.$	1.8	1
1065	Natural Isoforms of Listeria monocytogenes Virulence Factor Inlb Differ in c-Met Binding Efficiency and Differently Affect Uptake and Survival Listeria in Macrophage. International Journal of Molecular Sciences, 2023, 24, 7256.	1.8	2
1066	Macrophages from naked mole-rat possess distinct immunometabolic signatures upon polarization. Frontiers in Immunology, 0, 14 , .	2.2	3
1067	Epigenomic regulation of macrophage polarization: Where do the nuclear receptors belong?. Immunological Reviews, 2023, 317, 152-165.	2.8	4
1068	Alterations in immunophenotype and metabolic profile of mononuclear cells during follow up in children with multisystem inflammatory syndrome (MIS-C). Frontiers in Immunology, $0,14,.$	2.2	0
1070	Induction of unique macrophage subset by simultaneous stimulation with LPS and IL-4. Frontiers in Immunology, 0, 14 , .	2.2	3
1090	Inflamed macrophages sans mitochondrial pyruvate carrier?. Nature Metabolism, 2023, 5, 724-726.	5.1	0

#	Article	IF	CITATIONS
1125	Immunometabolism: a new dimension in immunotherapy resistance. Frontiers of Medicine, 2023, 17, 585-616.	1.5	O
1128	Visualizing Macrophage Phenotypes and Polarization in Diseases: From Biomarkers to Molecular Probes. Phenomics, 2023, 3, 613-638.	0.9	1
1145	Immunometabolism of dendritic cells in health and disease. Advances in Immunology, 2023, , .	1.1	0
1166	Diabetes Mellitus to Accelerated Atherosclerosis: Shared Cellular and Molecular Mechanisms in Glucose and Lipid Metabolism. Journal of Cardiovascular Translational Research, 2024, 17, 133-152.	1.1	1
1171	Metabolism Serves as a Bridge Between Cardiomyocytes and Immune Cells in Cardiovascular Diseases. Cardiovascular Drugs and Therapy, 0, , .	1.3	0
1186	Editorial: Understanding how myeloid cell development and function meet tissue distinct metabolic requirements. Frontiers in Immunology, 0, 15 , .	2.2	0
1187	Decidual macrophage: a reversible role in immunotolerance between mother and fetus during pregnancy. Archives of Gynecology and Obstetrics, 2024, 309, 1735-1744.	0.8	0
1191	Epigenetic integration of signaling from the regenerative environment. Current Topics in Developmental Biology, 2024, , .	1.0	0
1194	Immunometabolic mechanisms of HIV-associated neurocognitive disorders and traumatic brain injury. , 2024, , 245-269.		0
1200	Visualizing mitochondrial electron transport chain complexes and super-complexes during infection of human macrophages with Legionella pneumophila. Methods in Cell Biology, 2024, , .	0.5	O