Self-Healing Underwater Superoleophobic and Antibiof Assembly of Hierarchical Microgel Spheres

ACS Nano

10, 1386-1394

DOI: 10.1021/acsnano.5b06816

Citation Report

#	Article	IF	CITATIONS
1	Hydrogels with Self-Healing Attribute., 2016,,.		О
2	Temperatureâ€dependent phaseâ€segregation behavior and antifouling performance of UVâ€curable methacrylated PDMS/PEG coatings. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1612-1623.	2.4	17
3	Silicone Oil-Infused Slippery Surfaces Based on Sol–Gel Process-Induced Nanocomposite Coatings: A Facile Approach to Highly Stable Bioinspired Surface for Biofouling Resistance. ACS Applied Materials & Lorentz & L	4.0	147
4	A Green Route for Substrate-Independent Oil-Repellent Coatings. Scientific Reports, 2016, 6, 38016.	1.6	6
5	Multiphase Media Antiadhesive Coatings: Hierarchical Self-Assembled Porous Materials Generated Using Breath Figure Patterns. ACS Nano, 2016, 10, 11087-11095.	7.3	72
6	Highly transparent and self-healing films based on the dynamic Schiff base linkage. RSC Advances, 2016, 6, 115247-115251.	1.7	22
7	Regulating Underwater Superoleophobicity to Superoleophilicity on Hierarchical Structured Copper Substrates through Assembling n-Alkanoic Acids. Langmuir, 2016, 32, 13493-13499.	1.6	4
8	Development of electrically conductive-superoleophobic micropillars for reducing surface adhesion of oil at low temperatures. Applied Surface Science, 2016, 389, 623-631.	3.1	7
9	Surfaces with Sustainable Superhydrophobicity upon Mechanical Abrasion. ACS Applied Materials & Lamp; Interfaces, 2016, 8, 28171-28179.	4.0	74
10	Facile fabrication of highly omniphobic and self-cleaning surfaces based on water mediated fluorinated nanosilica aggregation. RSC Advances, 2016, 6, 74340-74348.	1.7	30
11	Robust Underwater Oilâ€Repellent Material Inspired by Columnar Nacre. Advanced Materials, 2016, 28, 8505-8510.	11.1	96
12	Stabilization of catechol–boronic ester bonds for underwater self-healing and recycling of lipophilic bulk polymer in wider pH range. Journal of Materials Chemistry A, 2016, 4, 14122-14131.	5.2	75
13	Fabrication of Robust Hydrophobic and Superâ€Hydrophobic Polymer Films with Onefold or Dual Inverse Opal Structures. Macromolecular Materials and Engineering, 2016, 301, 1430-1436.	1.7	6
14	Intriguing Morphology Evolution from Noncrosslinked Poly(<i>tert</i> -butyl acrylate) Seeds with Polar Functional Groups in Soap-Free Emulsion Polymerization of Styrene. Langmuir, 2016, 32, 7829-7840.	1.6	25
15	Robust, Self-Healing Superhydrophobic Fabrics Prepared by One-Step Coating of PDMS and Octadecylamine. Scientific Reports, 2016, 6, 27262.	1.6	159
16	Hybrid Hairy Janus Particles as Building Blocks for Antibiofouling Surfaces. ACS Applied Materials & Interfaces, 2016, 8, 32591-32603.	4.0	31
17	Facile preparation of self-healing waterborne superhydrophobic coatings based on fluoroalkyl silane-loaded microcapsules. RSC Advances, 2016, 6, 53949-53954.	1.7	30
18	Fish Gill Inspired Crossflow for Efficient and Continuous Collection of Spilled Oil. ACS Nano, 2017, 11, 2477-2485.	7. 3	186

#	ARTICLE	IF	CITATIONS
19	Synthesis of Dualâ€Stimuliâ€Responsive Microcontainers with Two Payloads in Different Storage Spaces for Preprogrammable Release. Angewandte Chemie - International Edition, 2017, 56, 3552-3556.	7.2	52
20	Synthesis of Dual-Stimuli-Responsive Microcontainers with Two Payloads in Different Storage Spaces for Preprogrammable Release. Angewandte Chemie, 2017, 129, 3606-3610.	1.6	10
21	A facile immersion-curing approach to surface-tailored poly(vinyl alcohol)/silica underwater superoleophobic coatings with improved transparency and robustness. Journal of Materials Chemistry A, 2017, 5, 10866-10875.	5 . 2	45
22	A robust salt-tolerant superoleophobic alginate/graphene oxide aerogel for efficient oil/water separation in marine environments. Scientific Reports, 2017, 7, 46379.	1.6	51
23	Preparation and characterization of underwater superoleophobic chitosan/poly(vinyl alcohol) coatings for self-cleaning and oil/water separation. Applied Surface Science, 2017, 412, 10-18.	3.1	38
24	Grafting Binary PEG and Fluoropolymer Brushes from Mix-Biomimic Initiator as "Ambiguous―Surfaces for Antibiofouling. Macromolecular Chemistry and Physics, 2017, 218, 1700085.	1.1	11
25	Robust transparent superamphiphobic coatings on non-fabric flat substrates with inorganic adhesive titania bonded silica. Journal of Materials Chemistry A, 2017, 5, 8352-8359.	5.2	35
26	Novel amphiphilic poly(dimethylsiloxane) based polyurethane networks tethered with carboxybetaine and their combined antibacterial and anti-adhesive property. Applied Surface Science, 2017, 412, 1-9.	3.1	52
27	Environmental stimuli-responsive self-repairing waterbased superhydrophobic coatings. RSC Advances, 2017, 7, 543-550.	1.7	40
28	Inorganic Adhesives for Robust Superwetting Surfaces. ACS Nano, 2017, 11, 1113-1119.	7.3	204
29	Self-Healing Superhydrophobic Materials Showing Quick Damage Recovery and Long-Term Durability. Langmuir, 2017, 33, 9972-9978.	1.6	53
30	Smart candle soot coated membranes for on-demand immiscible oil/water mixture and emulsion switchable separation. Nanoscale, 2017, 9, 13610-13617.	2.8	131
31	Transparent smart surface with pH-induced wettability transition between superhydrophobicity and underwater superoleophobicity. Materials and Design, 2017, 135, 69-76.	3.3	27
32	A robust superhydrophobic TiO2 NPs coated cellulose sponge for highly efficient oil-water separation. Scientific Reports, 2017, 7, 9428.	1.6	50
33	A general and facile chemical avenue for the controlled and extreme regulation of water wettability in air and oil wettability under water. Chemical Science, 2017, 8, 6542-6554.	3.7	47
34	Facile preparation of superhydrophobic PDMS with patternable and controllable water adhesion characteristics. Journal of Materials Science, 2017, 52, 11428-11441.	1.7	16
35	Bioinspired Design of Three-Dimensional Ordered Tribrachia-Post Arrays with Re-entrant Geometry for Omniphobic and Slippery Surfaces. ACS Nano, 2017, 11, 8265-8272.	7.3	67
36	Furan-functionalized aniline trimer based self-healing polymers exhibiting high efficiency of anticorrosion. Polymer, 2017, 125, 227-233.	1.8	35

#	ARTICLE	IF	CITATIONS
37	Inorganic adhesives for robust, self-healing, superhydrophobic surfaces. Journal of Materials Chemistry A, 2017, 5, 19297-19305.	5.2	128
38	Self-healing polymeric materials for membrane separation: an example of a polybenzimidazole-based membrane for pervaporation dehydration on isopropanol aqueous solution. RSC Advances, 2017, 7, 38360-38366.	1.7	14
39	Transparent, abrasion-insensitive superhydrophobic coatings for real-world applications. Scientific Reports, 2017, 7, 15078.	1.6	42
40	Selective hierarchical patterning of silicon nanostructures via soft nanostencil lithography. Nanotechnology, 2017, 28, 465303.	1.3	9
41	Drug release of yolk/shell microcapsule controlled by pH-responsive yolk swelling. Chemical Engineering Journal, 2017, 327, 953-961.	6.6	34
42	Raspberry-like patchy particles achieved by decorating carboxylated polystyrene cores with snowman-like poly(vinylidene fluoride)/poly(4-vinylpyridiene) Janus particles. Polymer, 2017, 122, 139-147.	1.8	23
43	Water-repairable zwitterionic polymer coatings for anti-biofouling surfaces. Journal of Materials Chemistry B, 2017, 5, 6728-6733.	2.9	58
44	Robust micro-nanoscale flowerlike ZnO/epoxy resin superhydrophobic coating with rapid healing ability. Chemical Engineering Journal, 2017, 313, 1152-1159.	6.6	136
45	Production and Characterization of Superhydrophobic and Antibacterial Coated Fabrics Utilizing ZnO Nanocatalyst. Scientific Reports, 2018, 8, 3925.	1.6	129
46	Selfâ€Healing Biomaterials: From Molecular Concepts to Clinical Applications. Advanced Materials Interfaces, 2018, 5, 1800118.	1.9	73
47	Intelligent environmental nanomaterials. Environmental Science: Nano, 2018, 5, 811-836.	2.2	54
48	Underwater Mechanically Robust Oilâ€Repellent Materials: Combining Conflicting Properties Using a Heterostructure. Advanced Materials, 2018, 30, 1706634.	11.1	58
49	Novel dual superlyophobic materials in water–oil systems: under oil magneto-fluid transportation and oil–water separation. Journal of Materials Chemistry A, 2018, 6, 2935-2941.	5.2	57
50	Sprayed superamphiphilic copper foams for long term recoverable oil-water separation. Surface and Coatings Technology, 2018, 334, 394-401.	2.2	20
51	Underoil superhydrophilic surfaces: water adsorption in metal–organic frameworks. Journal of Materials Chemistry A, 2018, 6, 1692-1699.	5.2	84
52	Low cost and facile preparation of robust multifunctional coatings with self-healing superhydrophobicity and high conductivity. Composites Science and Technology, 2018, 156, 177-185.	3.8	44
53	Preparation of high wear-resisting superamphiphobic robust film by self-assembled monolayer surface reaction. Progress in Organic Coatings, 2018, 117, 20-28.	1.9	9
54	â€Fish-scale'-mimicked stretchable and robust oil-wettability that performs in various practically relevant physically/chemically severe scenarios. Journal of Materials Chemistry A, 2018, 6, 22027-22036.	5.2	19

#	ARTICLE	IF	CITATIONS
55	Synthesis of raspberry-like polymer/SiO 2 hybrid colloidal spheres grafted by block-copolymer poly(MPC- b -MPS) for underwater superoleophobic anti-biofouling coatings. Journal of Colloid and Interface Science, 2018, 522, 20-28.	5.0	31
56	Structural regulation of hollow spherical TiO2 by varying titanium source amount and their thermal insulation property. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 537, 69-75.	2.3	22
57	Introduction of Nature's Complexity in Engineered Bloodâ€compatible Biomaterials. Advanced Healthcare Materials, 2018, 7, 1700505.	3.9	37
58	Robust and underwater superoleophobic coating with excellent corrosion and biofouling resistance in harsh environments. Applied Surface Science, 2018, 436, 152-161.	3.1	41
59	Nonswellable hydrogels with robust micro/nano-structures and durable superoleophobic surfaces under seawater. Science China Chemistry, 2018, 61, 64-70.	4.2	25
60	Development of liquid repellent coating on cotton fabric by simple binary silanization with excellent self-cleaning and oil-water separation properties. Carbohydrate Polymers, 2018, 181, 1052-1060.	5.1	53
61	Designing robust underwater superoleophobic microstructures on copper substrates. Nanoscale, 2018, 10, 20435-20442.	2.8	14
62	Dual water-healable zwitterionic polymer coatings for anti-biofouling surfaces. Journal of Materials Chemistry B, 2018, 6, 6930-6935.	2.9	40
63	Aloe vera mucilage derived highly tolerant underwater superoleophobic coatings. Journal of Materials Chemistry A, 2018, 6, 22465-22471.	5.2	14
64	General Way To Compute the Intrinsic Contact Angle at Tubes. Journal of Physical Chemistry C, 2018, 122, 29210-29219.	1.5	21
65	Water-free dedusting on antireflective glass with durable superhydrophobicity. Surface and Coatings Technology, 2018, 356, 123-131.	2.2	23
66	Microgel in a Pore: Intraparticle Segregation or Snail-like Behavior Caused by Collapse and Swelling. Macromolecules, 2018, 51, 8147-8155.	2.2	14
67	Large-Area Preparation of Robust and Transparent Superomniphobic Polymer Films. ACS Nano, 2018, 12, 10338-10346.	7.3	83
68	Electrospinning: A versatile strategy for mimicking natural creatures. Composites Communications, 2018, 10, 175-185.	3.3	34
69	UV-Cured Fluoride-Free Polyurethane Functionalized Textile with pH-Induced Switchable Superhydrophobicity and Underwater Superoleophobicity for Controllable Oil/Water Separation. ACS Sustainable Chemistry and Engineering, 2018, 6, 16616-16628.	3.2	62
70	Bioinspired Superwettability Electrospun Micro/Nanofibers and Their Applications. Advanced Functional Materials, 2018, 28, 1801114.	7.8	204
71	Seeded Emulsion Polymerization of Styrene in the Presence of Water-Swollen Hydrogel Microspheres. Langmuir, 2018, 34, 8571-8580.	1.6	17
72	Durable superoleophobic–superhydrophilic fabrics with high anti-oil-fouling property. RSC Advances, 2018, 8, 26939-26947.	1.7	20

#	ARTICLE	IF	Citations
73	Hydrophilic Self-Replenishing Coatings with Long-Term Water Stability for Anti-Fouling Applications. Coatings, 2018, 8, 184.	1.2	28
74	Stimuli-Responsive Microgels and Microgel-Based Systems: Advances in the Exploitation of Microgel Colloidal Properties and Their Interfacial Activity. Polymers, 2018, 10, 418.	2.0	65
75	Synthesis of fish scale and lotus leaf mimicking, stretchable and durable multilayers. Journal of Materials Chemistry A, 2018, 6, 15993-16002.	5.2	37
76	Fabrication of self-healing waterbased superhydrophobic coatings from POSS modified silica nanoparticles. Materials Letters, 2018, 229, 281-285.	1.3	43
77	Corrosive environments tolerant, ductile and self-healing hydrogel for highly efficient oil/water separation. Chemical Engineering Journal, 2018, 354, 1185-1196.	6.6	44
78	Fabrication of UV-Triggered Liquid-Repellent Coatings with Long-Term Self-Repairing Performance. ACS Applied Materials & Samp; Interfaces, 2018, 10, 31777-31783.	4.0	37
79	Antiâ€Biofouling and Healable Materials: Preparation, Mechanisms, and Biomedical Applications. Advanced Functional Materials, 2018, 28, 1800596.	7.8	75
80	Facile Fabrication of Superhydrophobic and Underwater Superoleophobic Coatings. ACS Applied Nano Materials, 2018, 1, 4894-4899.	2.4	28
81	Hierarchical, Self-Healing and Superhydrophobic Zirconium Phosphate Hybrid Membrane Based on the Interfacial Crystal Growth of Lyotropic Two-Dimensional Nanoplatelets. ACS Applied Materials & Samp; Interfaces, 2018, 10, 22793-22800.	4.0	36
82	Large-scale fabrication of 3D hierarchical MoSe ₂ hollow sphere arrays with like-Pacific Plate architecture for high-performance hydrogen evolution reaction. Nanotechnology, 2019, 30, 455601.	1.3	2
83	Recent Advances in Bioinspired Gel Surfaces with Superwettability and Special Adhesion. Advanced Science, 2019, 6, 1900996.	5.6	57
85	Physically Cross-Linked Double-Network Hydrogel for High-Performance Oil–Water Separation Mesh. Industrial & Engineering Chemistry Research, 2019, 58, 21649-21658.	1.8	21
86	Mitigating Reverse Engineering Attacks on Deep Neural Networks., 2019,,.		10
87	Eco-friendly and scratch-resistant hybrid coating on mesh for gravity-driven oil/water separation. Journal of Cleaner Production, 2019, 241, 118369.	4.6	40
88	Grafting Robust Thick Zwitterionic Polymer Brushes via Subsurface-Initiated Ring-Opening Metathesis Polymerization for Antimicrobial and Anti-Biofouling. ACS Applied Materials & Samp; Interfaces, 2019, 11, 39171-39178.	4.0	66
89	A direct polymerization approach toward hindered phenol/polymer composite latex and its application for waterborne damping coating. Progress in Organic Coatings, 2019, 130, 1-7.	1.9	11
90	Bioinspired nonswellable ultrastrong nanocomposite hydrogels with long-term underwater superoleophobic behavior. Chemical Engineering Journal, 2019, 375, 122047.	6.6	48
91	Healable and shape editable supercapacitors based on shape memory polyurethanes. Journal of Materials Chemistry A, 2019, 7, 17456-17465.	5.2	40

#	Article	IF	CITATIONS
92	NIRâ€Triggered Photothermal Responsive Coatings with Remote and Localized Tunable Underwater Oil Adhesion. Small, 2019, 15, e1901888.	5.2	18
93	Under-liquid dual superlyophobic nanofibrous polymer membranes achieved by coating thin-film composites: a design principle. Chemical Science, 2019, 10, 6382-6389.	3.7	31
94	Multifunctional anti-wax coatings for paraffin control in oil pipelines. Petroleum Science, 2019, 16, 619-631.	2.4	43
95	Angle-Independent Structurally Colored PS@TiO ₂ Film with Excellent Underwater Superoleophobicity in Harsh Environments. Langmuir, 2019, 35, 6956-6961.	1.6	13
96	Bioinspired poly(vinyl alcohol)/zeolite composite coating with multifunctional integration. Journal of Colloid and Interface Science, 2019, 552, 27-33.	5.0	7
97	Facile fabrication of waterborne fabric coatings with multifunctional superhydrophobicity and thermal insulation. Materials Letters, 2019, 250, 123-126.	1.3	9
98	Superwettable antibacterial textiles for versatile oil/water separation. Plasma Processes and Polymers, 2019, 16, 1900003.	1.6	13
99	Ultrastable Underwater Anti-Oil Fouling Coatings from Spray Assemblies of Polyelectrolyte Grafted Silica Nanochains. ACS Applied Materials & Silica Nanochains.	4.0	39
100	A dually prewetted membrane for continuous filtration of water-in-light oil, oil-in-water, and water-in-heavy oil multiphase emulsion mixtures. Journal of Materials Chemistry A, 2019, 7, 11305-11313.	5.2	47
101	Synthesis of mesoporous silica-shell/oil-core microspheres for common waterborne polymer coatings with robust superhydrophobicity. Progress in Organic Coatings, 2019, 132, 275-282.	1.9	27
102	Bioinspired surfaces with wettability for antifouling application. Nanoscale, 2019, 11, 22636-22663.	2.8	130
104	Effective anti-biofouling enabled by surface electric disturbance from water wave-driven nanogenerator. Nano Energy, 2019, 57, 558-565.	8.2	45
105	A rubber-like, underwater superoleophobic hydrogel for efficient oil/water separation. Chemical Engineering Journal, 2019, 361, 364-372.	6.6	63
106	Seawater-Induced Healable Underwater Superoleophobic Antifouling Coatings. ACS Applied Materials & Lamp; Interfaces, 2019, 11, 1353-1362.	4.0	34
107	Biomimetic Hierarchical TiO ₂ @CuO Nanowire Arrays-Coated Copper Meshes with Superwetting and Self-Cleaning Properties for Efficient Oil/Water Separation. ACS Sustainable Chemistry and Engineering, 2019, 7, 2569-2577.	3.2	64
108	Smart UV-curable fabric coatings with self-healing ability for durable self-cleaning and intelligent oil/water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 565, 86-96.	2.3	34
109	Radical Cation Initiated Surface Polymerization on Photothermal Rubber for Smart Antifouling Coatings. Chemistry - A European Journal, 2019, 25, 183-188.	1.7	17
110	Bioinspired Hairy Crab Claw Polymer Surface with Excellent Self-Cleaning Wettability in Muddy or Oil-Contaminated Water. ACS Applied Bio Materials, 2019, 2, 424-429.	2.3	2

#	Article	IF	CITATIONS
111	Novel dual-functional coating with underwater self-healing and anti-protein-fouling properties by combining two kinds of microcapsules and a zwitterionic copolymer. Progress in Organic Coatings, 2019, 127, 211-221.	1.9	35
112	Poly(vinyl alcohol) hydrogels integrated with cuprous oxide–tannic acid submicroparticles for enhanced mechanical properties and synergetic antibiofouling. Journal of Colloid and Interface Science, 2019, 535, 491-498.	5.0	38
113	Robust Mg(OH)2/epoxy resin superhydrophobic coating applied to composite insulators. Applied Surface Science, 2019, 466, 126-132.	3.1	38
114	Underwater superoleophobic APTES-SiO2/PVA organohydrogel for low-temperature tolerant, self-healing, recoverable oil/water separation mesh. Chemical Engineering Journal, 2020, 382, 122925.	6.6	72
115	Underwater superoleophobicity of a superhydrophilic surface with unexpected drag reduction driven by electrochemical water splitting. Chemical Engineering Journal, 2020, 381, 122734.	6.6	31
116	Antifouling and antibacterial behaviors of capsaicin-based pH responsive smart coatings in marine environments. Materials Science and Engineering C, 2020, 108, 110361.	3.8	74
117	Protein-resistant surface based on zwitterion-functionalized nanoparticles for marine antifouling applications. New Journal of Chemistry, 2020, 44, 2059-2069.	1.4	19
118	Three-dimensional flower-like shaped Bi5O7I particles incorporation zwitterionic fluorinated polymers with synergistic hydration-photocatalytic for enhanced marine antifouling performance. Journal of Hazardous Materials, 2020, 389, 121854.	6.5	32
119	Preparation and properties of polyvinylpyrrolidone-cuprous oxide microcapsule antifouling coating. Progress in Organic Coatings, 2020, 141, 105317.	1.9	16
120	Preparation and synergistic antifouling effect of self-renewable coatings containing quaternary ammonium-functionalized SiO2 nanoparticles. Journal of Colloid and Interface Science, 2020, 563, 261-271.	5.0	35
121	Covalently Modulated and Transiently Visible Writing: Rational Association of Two Extremes of Water Wettabilities. ACS Applied Materials & Samp; Interfaces, 2020, 12, 2935-2943.	4.0	10
122	Efficient separation of crude oil-in-water emulsion based on a robust underwater superoleophobic titanium dioxide-coated mesh. New Journal of Chemistry, 2020, 44, 2705-2713.	1.4	24
123	Cashew nut shell liquid terminated self-healable polyurethane as an effective anticorrosive coating with biodegradable attribute. Progress in Organic Coatings, 2020, 139, 105472.	1.9	19
124	Salt crystallization-assisted degradation of epoxy resin surface in simulated marine environments. Progress in Organic Coatings, 2020, 149, 105932.	1.9	11
125	Hydrophilic polymer-based anti-biofouling coatings: Preparation, mechanism, and durability. Advances in Colloid and Interface Science, 2020, 284, 102264.	7.0	34
126	Self-healing biomaterials based on polymeric systems. , 2020, , 167-207.		1
127	Superhydrophobic surface containing cerium salt and organosilane for corrosion protection of galvanized steel. Journal of Alloys and Compounds, 2020, 825, 153921.	2.8	30
128	Scaling Laws in the Diffusive Release of Neutral Cargo from Hollow Hydrogel Nanoparticles: Paclitaxel-Loaded Poly(4-vinylpyridine). ACS Nano, 2020, 14, 15227-15240.	7.3	15

#	Article	IF	CITATIONS
129	Amphiphilic Marine Antifouling Coatings Based on a Hydrophilic Polyvinylpyrrolidone and Hydrophobic Fluorine–Silicon-Containing Block Copolymer. Langmuir, 2020, 36, 14573-14581.	1.6	49
130	A highly stretchable and biodegradable superamphiphobic fluorinated polycaprolactone nanofibrous membrane for antifouling. Progress in Organic Coatings, 2020, 147, 105776.	1.9	20
131	NIR triggered healable underwater superoleophobic coating with exceptional anti-biofouling performance. Applied Surface Science, 2020, 528, 146805.	3.1	11
132	Fabrication of mechanically resistant superhydrophobic synthetic suede materials. RSC Advances, 2020, 10, 10758-10763.	1.7	3
133	An overview of controlled-biocide-release coating based on polymer resin for marine antifouling applications. Journal of Polymer Research, 2020, 27, 1.	1.2	42
134	Zwitterionic nanogels modified nanofibrous membrane for efficient oil/water separation. Journal of Membrane Science, 2020, 612, 118379.	4.1	55
135	Reduction of imine-based cross-linkages to achieve sustainable underwater superoleophobicity that performs under challenging conditions. Journal of Materials Chemistry A, 2020, 8, 15148-15156.	5.2	13
136	Robust Superhydrophobic Membrane for Solving Water-Accelerated Fatigue of ZDDP-Containing Lubricating Oils. Langmuir, 2020, 36, 8560-8569.	1.6	15
137	Superomniphobic Silk Fibroin/Ag Nanowires Membrane for Flexible and Transparent Electronic Sensor. ACS Applied Materials & Sensor. 10039-10049.	4.0	35
138	A Selfâ€Cleaning Mucusâ€like and Hierarchical Ciliary Bionic Surface for Marine Antifouling. Advanced Engineering Materials, 2020, 22, 1901198.	1.6	17
140	Preparation of water-borne non-fluorinated anti-smudge surfaces and their applications. Progress in Organic Coatings, 2020, 142, 105581.	1.9	10
141	Flourishing Selfâ∈Healing Surface Materials: Recent Progresses and Challenges. Advanced Materials Interfaces, 2020, 7, 1901959.	1.9	30
142	Self-assembly of strawberry-like organicâ€"inorganic hybrid particle clusters with directionally distributed bimetal and facile transformation of the core and corona. Polymer Chemistry, 2020, 11, 3136-3151.	1.9	5
143	Fabrication and structural characterization of poly(vinylidene fluoride)/polyacrylate composite waterborne coatings with excellent weather resistance and room-temperature curing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 598, 124851.	2.3	5
144	Multiscale Modeling to Predict the Hydrophobicity of an Experimentally Designed Coating. Journal of Physical Chemistry C, 2020, 124, 9866-9875.	1.5	2
145	Developments and Challenges in Selfâ€Healing Antifouling Materials. Advanced Functional Materials, 2020, 30, 1908098.	7.8	110
146	Synthesis, properties and applications of selfâ€repairing carbohydrates as smart materials via thermally reversible DA bonds. Polymers for Advanced Technologies, 2021, 32, 1026-1037.	1.6	3
147	Special issue on advanced corrosion-resistance materials and emerging applications. The progress on antifouling organic coating: From biocide to biomimetic surface. Journal of Materials Science and Technology, 2021, 61, 46-62.	5.6	62

#	Article	IF	CITATIONS
148	Stiffness Tomography of Ultraâ€Soft Nanogels by Atomic Force Microscopy. Angewandte Chemie, 2021, 133, 2310-2317.	1.6	4
149	Stiffness Tomography of Ultraâ€ s oft Nanogels by Atomic Force Microscopy. Angewandte Chemie - International Edition, 2021, 60, 2280-2287.	7.2	39
150	Synthesis of hollow TiO2@SiO2 spheres via a recycling template method for solar heat protection coating. Ceramics International, 2021, 47, 2678-2685.	2.3	21
151	Plant-inspired quercetin thin films: universal coatings and their postfunctionalization for non-biofouling applications. New Journal of Chemistry, 2021, 45, 7533-7541.	1.4	5
152	Copper Tannic Acid-Coordinated Metal–Organic Nanosheets for Synergistic Antimicrobial and Antifouling Coatings. ACS Applied Materials & Diterfaces, 2021, 13, 10446-10456.	4.0	45
153	Review of Self-Healing Polymers as Propituous Biomaterials. Current Smart Materials, 2021, 5, 38-53.	0.5	0
154	Fabrication of silica/PVA-co-PE nanofiber membrane for oil/water separation. Fashion and Textiles, 2021, 8, .	1.3	6
155	Facile fabrication of ultra-robust underwater superoleophobic coating with remarkable self-cleaning performance in harsh environments. Materials Chemistry and Physics, 2021, 263, 124413.	2.0	5
156	Preparation of the Temperature-Responsive Superhydrophobic Paper with High Stability. ACS Omega, 2021, 6, 16016-16028.	1.6	10
157	Robust and Eco-Friendly Superhydrophobic Starch Nanohybrid Materials with Engineered Lotus Leaf Mimetic Multiscale Hierarchical Structures. ACS Applied Materials & Interfaces, 2021, 13, 36558-36573.	4.0	63
158	Grafting embedded poly(ionic liquid) brushes on biomimetic sharklet resin surface for anti-biofouling applications. Progress in Organic Coatings, 2021, 157, 106298.	1.9	12
159	Antifouling strategies based on super-phobic polymer materials. Progress in Organic Coatings, 2021, 157, 106285.	1.9	40
160	Multibioinspired Wettable Patterned Slippery Surface for Efficient Water Harvesting. Advanced Materials Interfaces, 2021, 8, 2100691.	1.9	6
161	Preparation of biomimetic hair-like composite coatings with water-collecting and superamphiphobic properties. Progress in Organic Coatings, 2021, 158, 106372.	1.9	5
162	Multiresponsive Microgels: Toward an Independent Tuning of Swelling and Surface Properties. Langmuir, 2021, 37, 11212-11221.	1.6	3
163	Superhydrophilic, underwater superoleophobic and self-cleaning nickel composite mesh via simultaneous acid etching and in-situ growth of Prussian blue analogue for oil-water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627, 127140.	2.3	10
164	Nanogels: A novel approach in antimicrobial delivery systems and antimicrobial coatings. Bioactive Materials, 2021, 6, 3634-3657.	8.6	63
165	Layer-by-layer construction of super-hydrophilic and self-healing polyvinylidene fluoride composite membrane for efficient oil/water emulsion separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127462.	2.3	21

#	Article	IF	Citations
166	Underwater superoleophobic composite coating characteristic of durable antifouling and anticorrosion properties in marine environment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628, 127323.	2.3	20
167	Sea slug inspired smart marine antifouling coating with reversible chemical bonds: Controllable UV-responsive coumarin releasing and efficient UV-healing properties. Chemical Engineering Journal, 2022, 429, 132471.	6.6	36
168	Recent Progress and Future Directions of Multifunctional (Super)Wetting Smooth/Structured Surfaces and Coatings. Advanced Functional Materials, 2020, 30, 1907772.	7.8	53
169	Self-Healing of Polymer in Acidic Water toward Strength Restoration through the Synergistic Effect of Hydrophilic and Hydrophobic Interactions. ACS Applied Materials & Samp; Interfaces, 2017, 9, 37300-37309.	4.0	39
170	Synthesis of â€reactive' and covalent polymeric multilayer coatings with durable superoleophobic and superoleophilic properties under water. Chemical Science, 2017, 8, 6092-6102.	3.7	48
171	Probing Antimicrobial Halloysite/Biopolymer Composites with Electron Microscopy: Advantages and Limitations. Polymers, 2021, 13, 3510.	2.0	7
172	Ultrafast Fabrication of a Robust Superwetting Coating. Industrial & Engineering Chemistry Research, 2021, 60, 15151-15161.	1.8	5
173	Recent advancement in Bi5O7I-based nanocomposites for high performance photocatalysts. Chemosphere, 2022, 288, 132668.	4.2	22
174	Modification, Degradation and Evaluation of a Few Organic Coatings for Some Marine Applications. Corrosion and Materials Degradation, 2020, 1, 408-442.	1.0	15
175	Bioinspired marine antifouling coatings: Status, prospects, and future. Progress in Materials Science, 2022, 124, 100889.	16.0	181
176	Fabrication of Cobalt-Based Nano-Composite Film for Corrosion Mitigation of Copper in Flow Chloride Medium. Corrosion and Materials Degradation, 2021, 2, 743-761.	1.0	3
177	Sol–gel-derived hard coatings from tetraethoxysilane and organoalkoxysilanes bearing zwitterionic and isothiazolinone groups and their antifouling behaviors. Journal of Materials Chemistry B, 2022, 10, 406-417.	2.9	19
178	Dually reactive multilayer coatings enable orthogonal manipulation of underwater superoleophobicity and oil adhesion <i>via</i> post-functionalization. Materials Horizons, 2022, 9, 991-1001.	6.4	14
179	Fabrication and characterization of transparent underwater superoleophobic coatings based chitin nanofibers and polyvinyl alcohol. Journal of Applied Polymer Science, 2022, 139, .	1.3	3
180	3D inner-outer asymmetric sponge for enormous-volume emulsion wastewater treatment based on a new "demulsification-transport―mechanism. Green Energy and Environment, 2023, 8, 1398-1408.	4.7	2
181	Visible light triggered controlled formation of rapidly self-healing hydrogels based on thiol–disulfide exchange. Soft Matter, 2022, 18, 3004-3012.	1.2	9
182	Hagfishâ€inspired Smart SLIPS Marine Antifouling Coating Based on Supramolecular: Lubrication Modes Responsively Switching and Selfâ€healing Properties. Advanced Functional Materials, 2022, 32, .	7.8	59
183	Bio-inspired robust superhydrophilic/underwater superoleophobic coating with lubrication, anti-crude oil fouling and anti-corrosion performances. Journal of Colloid and Interface Science, 2022, 616, 720-729.	5.0	18

#	Article	IF	CITATIONS
184	Anti-Biofouling Polymers with Special Surface Wettability for Biomedical Applications. Frontiers in Bioengineering and Biotechnology, 2021, 9, 807357.	2.0	21
185	Preparation of Nano-silica with Radial Wrinkle Structures for Self-cleaning and Superhydrophobic Coatings. Fibers and Polymers, 2022, 23, 1293-1299.	1.1	9
186	Hydrogels for underwater adhesion: adhesion mechanism, design strategies and applications. Journal of Materials Chemistry A, 2022, 10, 11823-11853.	5.2	74
187	Recent advances in bio-inspired multifunctional coatings for corrosion protection. Progress in Organic Coatings, 2022, 168, 106858.	1.9	22
188	Role of chemistry in bio-inspired liquid wettability. Chemical Society Reviews, 2022, 51, 5452-5497.	18.7	53
189	Facile fabrication of multifunctional underwater superoleophobicity zwitterionic coating by surface-initiated redox polymerization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 649, 129463.	2.3	2
190	Design of a Super-Liquid Crystal-Phobic Coating for Immobilizing Liquid Crystal Î⅓-Droplets─Without Affecting Their Sensitivity. Langmuir, 0, , .	1.6	0
191	Recent advances in gel materials with special wettability: a review. Journal of Materials Science, 2022, 57, 13179-13201.	1.7	3
192	Fabrication of transparent wear-resistant superhydrophobic SiO2 film via phase separation and chemical vapor deposition methods. Ceramics International, 2022, 48, 32143-32151.	2.3	24
193	Tailoring the Hydrophilicity for Delayed Condensation Frosting in Antifogging Coatings. ACS Applied Materials & Samp; Interfaces, 2022, 14, 35064-35073.	4.0	9
194	Robust and durable liquid-repellent surfaces. Chemical Society Reviews, 2022, 51, 8476-8583.	18.7	105
195	Respiratory mucosa-inspired "sticky-slippery coating―with transparency and structure adaptation based on comb-polymer nanogel. Chemical Engineering Journal, 2023, 452, 139478.	6.6	8
196	An overview of surface with controllable wettability for microfluidic system, intelligent cleaning, water harvesting, and surface protection. Advanced Composites and Hybrid Materials, 2023, 6, .	9.9	17
197	Macroscopic Supramolecular Assembly of Rigid Building Blocks Facilitated by Layer-By-Layer Assembled Microgel Film. ACS Applied Materials & Samp; Interfaces, 2023, 15, 2459-2467.	4.0	7
198	Self-Healing Superwetting Surfaces, Their Fabrications, and Properties. Chemical Reviews, 2023, 123, 663-700.	23.0	18
199	Smart polymer with rapid self-healing and early corrosion reporting capabilities: Design, performance and mechanism. Chemical Engineering Journal, 2023, 456, 141159.	6.6	2
200	Enhanced durability and self-healing properties of palygorskite-based superhydrophobic coatings. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 663, 130981.	2.3	5
201	Introduction of Smart Materials: The Art to Outrival Technology. , 2023, , 284-305.		0

#	Article	IF	CITATIONS
202	Superhydrophobic and Conductive Foams with Antifouling and Oil–Water Separation Properties. ACS Applied Materials & Diterfaces, 2023, 15, 7610-7626.	4.0	16
203	Polyurethane coatings modified by OH-PDMS for anti-cavitation, antifouling and anticorrosion applications. Progress in Organic Coatings, 2023, 179, 107515.	1.9	4
204	Nanogel-based coating as an alternative strategy for biofilm control in drinking water distribution systems. Biofouling, 2023, 39, 121-134.	0.8	2
206	Elastomeric nanocoatings. , 2023, , 75-90.		0
209	A systematic review on polymer-based superhydrophobic coating for preventing biofouling menace. Journal of Coatings Technology Research, 2023, 20, 1499-1512.	1.2	4