CITATION REPORT List of articles citing

Powering Lithium-Sulfur Battery Performance by Propelling Polysulfide Redox at Sulfiphilic Hosts

DOI: 10.1021/acs.nanolett.5b04166 Nano Letters, 2016, 16, 519-27.

Source: https://exaly.com/paper-pdf/65639662/citation-report.pdf

Version: 2024-04-10

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
1189	Graphene Sandwiched by Sulfur-Confined Mesoporous Carbon Nanosheets: A Kinetically Stable Cathode for LiS Batteries.		
1188	Vanadium Dioxide-Graphene Composite with Ultrafast Anchoring Behavior of Polysulfides for LithiumSulfur Batteries.		
1187	Conductive Mesoporous Niobium Nitride Microspheres/Nitrogen-Doped Graphene Hybrid with Efficient Polysulfide Anchoring and Catalytic Conversion for High-Performance LithiumSulfur Batteries.		
1186	Investigation of the Nanocrystal CoS2 Embedded in 3D Honeycomb-like Graphitic Carbon with a Synergistic Effect for High-Performance Lithium Sulfur Batteries.		
1185	In-Situ Assembled VS4 as a Polysulfide Mediator for High-Loading LithiumSulfur Batteries.		
1184	From MetalOrganic Framework to Li2S@CCoN Nanoporous Architecture: A High-Capacity Cathode for LithiumSulfur Batteries.		
1183	Self-Templated Formation of Interlaced Carbon Nanotubes Threaded Hollow Co3S4 Nanoboxes for High-Rate and Heat-Resistant LithiumSulfur Batteries.		
1182	Rational Design of High-Loading Sulfur Cathodes with a Poached-Egg-Shaped Architecture for Long-Cycle LithiumSulfur Batteries.		
1181	Efficient Trapping and Catalytic Conversion of Polysulfides by VS4 Nanosites for LiS Batteries.		
1180	Mesoporous Titanium Nitride-Enabled Highly Stable Lithium-Sulfur Batteries. 2016 , 28, 6926-31		459
1179	Stabilizing sulfur cathodes using nitrogen-doped graphene as a chemical immobilizer for Li S batteries. 2016 , 108, 120-126		115
1178	Lithium Sulfide/Metal Nanocomposite as a High-Capacity Cathode Prelithiation Material. 2016 , 6, 1600	154	57
1177	From Metal-Organic Framework to LiS@C-Co-N Nanoporous Architecture: A High-Capacity Cathode for Lithium-Sulfur Batteries. 2016 , 10, 10981-10987		241
1176	A separator modified by spray-dried hollow spherical cerium oxide and its application in lithium sulfur batteries. 2016 , 6, 114989-114996		14
1175	An integrally-designed, flexible polysulfide host for high-performance lithium-sulfur batteries with stabilized lithium-metal anode. 2016 , 26, 224-232		84
1174	Manganese dioxide nanosheet functionalized sulfur@PEDOT coreBhell nanospheres for advanced lithiumBulfur batteries. 2016 , 4, 9403-9412		92
1173	Vertically Oriented Arrays of ReS2 Nanosheets for Electrochemical Energy Storage and Electrocatalysis. <i>Nano Letters</i> , 2016 , 16, 3780-7	11.5	201

(2016-2016)

1172	composite cathode for high performance lithium/sulfur batteries. 2016 , 22, 1819-1827	6
1171	Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithiumBulfur batteries. 2016 , 9, 3061-3070	502
1170	Enhancing the performance of lithiumBulfur batteries by anchoring polar polymers on the surface of sulfur host materials. 2016 , 4, 16148-16156	42
1169	Confining Sulfur Species in Cathodes of LithiumBulfur Batteries: Insight into Nonpolar and Polar Matrix Surfaces. 2016 , 1, 481-489	44
1168	Unique electrochemical behavior of heterocyclic selenium ulfur cathode materials in ether-based electrolytes for rechargeable lithium batteries. 2016 , 5, 171-179	63
1167	Enhanced Electrochemical Kinetics on Conductive Polar Mediators for Lithium-Sulfur Batteries. 2016 , 55, 12990-12995	442
1166	Enhanced Electrochemical Kinetics on Conductive Polar Mediators for LithiumBulfur Batteries. 2016 , 128, 13184-13189	104
1165	Effects of the Pd3Co Nanoparticles-Additive on the Redox Shuttle Reaction in Rechargeable Li-S Batteries. 2016 , 163, A2179-A2184	9
1164	A MnO/Graphene Oxide/Multi-Walled Carbon Nanotubes-Sulfur Composite with Dual-Efficient Polysulfide Adsorption for Improving Lithium-Sulfur Batteries. 2016 , 8, 28566-28573	66
1163	Titanium-Carbide-Decorated Carbon Nanofibers as Hybrid Electrodes for High Performance Li-S Batteries. 2016 , 2, 937-941	34
1162	Bi2S3 in-situ formed in molten S environment stabilized sulfur cathodes for high-performance lithium-sulfur batteries. 2016 , 329, 379-386	18
1161	Kinetically-enhanced polysulfide redox reactions by Nb2O5 nanocrystals for high-rate lithiumBulfur battery. 2016 , 9, 3230-3239	259
1160	A review of recent developments in rechargeable lithium-sulfur batteries. 2016 , 8, 16541-16588	269
1159	Nanostructured energy materials for electrochemical energy conversion and storage: A review. 2016 , 25, 967-984	316
1158	A Cooperative Interface for Highly Efficient Lithium-Sulfur Batteries. 2016 , 28, 9551-9558	431
1157	A lightweight multifunctional interlayer of sulfurflitrogen dual-doped graphene for ultrafast, long-life lithiumflulfur batteries. 2016 , 4, 15343-15352	106
1156	A simple melting-diffusing-reacting strategy to fabricate S/NiS-C for lithium-sulfur batteries. 2016 , 8, 17616-17622	83
1155	Designing high-energy lithium-sulfur batteries. 2016 , 45, 5605-5634	1475

1154	SnS2- Compared to SnO2-Stabilized S/C Composites toward High-Performance Lithium Sulfur Batteries. 2016 , 8, 19550-7	88
1153	3D Carbonaceous Current Collectors: The Origin of Enhanced Cycling Stability for High-Sulfur-Loading LithiumBulfur Batteries. 2016 , 26, 6351-6358	191
1152	Synergistic Design of Cathode Region for the High-Energy-Density Li-S Batteries. 2016 , 8, 28689-28699	25
1151	Stabilizing polysulfide-shuttle in a LiB battery using transition metal carbide nanostructures. 2016 , 6, 110301-110306	33
1150	Ferrocene-Promoted Long-Cycle LithiumBulfur Batteries. 2016 , 128, 15038-15042	11
1149	Ferrocene-Promoted Long-Cycle Lithium-Sulfur Batteries. 2016 , 55, 14818-14822	34
1148	Foldable and High Sulfur Loading 3D Carbon Electrode for High-performance Li-S Battery Application. 2016 , 6, 33871	19
1147	Advances in lithiumBulfur batteries based on multifunctional cathodes and electrolytes. 2016 , 1,	1317
1146	A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries. 2016 , 7, 13065	511
1145	Modeling of lithium-sulfur batteries incorporating the effect of Li2S precipitation. 2016 , 336, 115-125	65
1144	Porous carbon derived from rice husks as sustainable bioresources: insights into the role of micro-/mesoporous hierarchy in hosting active species for lithium ulphur batteries. 2016 , 18, 5169-5179	117
1143	Refined Sulfur Nanoparticles Immobilized in Metal-Organic Polyhedron as Stable Cathodes for Li-S Battery. 2016 , 8, 14328-33	38
1142	The enhancement of polysulfide absorbsion in Li S batteries by hierarchically porous CoS2/carbon paper interlayer. 2016 , 325, 71-78	123
1141	Pyrite FeS2 as an efficient adsorbent of lithium polysulphide for improved lithium ulphur batteries. 2016 , 4, 4371-4374	167
1140	Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. 2017 , 114, 840-845	742
1139	Towards stable lithium-sulfur batteries: Mechanistic insights into electrolyte decomposition on lithium metal anode. 2017 , 8, 194-201	133
1138	In Situ TEM Study of Volume Expansion in Porous Carbon Nanofiber/Sulfur Cathodes with Exceptional High-Rate Performance. 2017 , 7, 1602078	69
1137	Optimization of Microporous Carbon Structures for Lithium-Sulfur Battery Applications in Carbonate-Based Electrolyte. 2017 , 13, 1603533	51

(2017-2017)

1136	Hollow cobalt sulfide polyhedra-enabled long-life, high areal-capacity lithium-sulfur batteries. 2017 , 33, 124-129	130
1135	Heterogeneous Catalysis for LithiumBulfur Batteries: Enhanced Rate Performance by Promoting Polysulfide Fragmentations. 2017 , 2, 327-333	141
1134	Polysulfide-Scission Reagents for the Suppression of the Shuttle Effect in Lithium-Sulfur Batteries. 2017 , 11, 2209-2218	168
1133	Life cycle assessment of lithium sulfur battery for electric vehicles. 2017 , 343, 284-295	112
1132	Nanostructured Metal Oxides and Sulfides for Lithium-Sulfur Batteries. 2017 , 29, 1601759	911
1131	The strategies of advanced cathode composites for lithium-sulfur batteries. 2017 , 60, 175-185	19
1130	Propelling polysulfides transformation for high-rate and long-life lithium ulfur batteries. 2017, 33, 306-312	277
1129	Advent of 2D Rhenium Disulfide (ReS2): Fundamentals to Applications. 2017 , 27, 1606129	224
1128	Core-Shell Structure and Interaction Mechanism of EMnO Coated Sulfur for Improved Lithium-Sulfur Batteries. 2017 , 13, 1603466	113
1127	Carbon nano-composites for lithiumBulfur batteries. 2017 , 4, 64-71	19
1126	Supercritical fluid assisted synthesis of titanium carbide particles embedded in mesoporous carbon for advanced Li-S batteries. 2017 , 706, 227-233	16
1125	An Analogous Periodic Law for Strong Anchoring of Polysulfides on Polar Hosts in Lithium Sulfur Batteries: S- or Li-Binding on First-Row Transition-Metal Sulfides?. 2017 , 2, 795-801	203
1124	Investigation of the reaction mechanism of lithium sulfur batteries in different electrolyte systems by in situ Raman spectroscopy and in situ X-ray diffraction. 2017 , 1, 737-747	72
1123	Lithium sulfur and lithium oxygen batteries: new frontiers of sustainable energy storage. 2017 , 1, 228-247	53
1122	Hydrothermal synthesis of boron-doped unzipped carbon nanotubes/sulfur composite for high-performance lithium-sulfur batteries. 2017 , 232, 156-163	22
1121	Electrodeposition Kinetics in Li-S Batteries: Effects of Low Electrolyte/Sulfur Ratios and Deposition Surface Composition. 2017 , 164, A917-A922	122
1120	Carboxymethyl cellulose binders enable high-rate capability of sulfurized polyacrylonitrile cathodes for LiB batteries. 2017 , 5, 5460-5465	41
1119	A pomegranate-structured sulfur cathode material with triple confinement of lithium polysulfides for high-performance lithium Bulfur batteries. 2017 , 5, 11788-11793	18

1118	Ultrafine nano-sulfur particles anchored on in situ exfoliated graphene for lithiumBulfur batteries. 2017 , 5, 9412-9417	68
1117	A novel strategy for high-stability lithium sulfur batteries by in situ formation of polysulfide adsorptive-blocking layer. 2017 , 355, 147-153	22
1116	Interaction of TiS2and Sulfur in Li-S Battery System. 2017 , 164, A1291-A1297	55
1115	A Quinonoid-Imine-Enriched Nanostructured Polymer Mediator for Lithium-Sulfur Batteries. 2017 , 29, 1606802	107
1114	Highly efficient oxygen evolution from CoS/CNT nanocomposites via a one-step electrochemical deposition and dissolution method. 2017 , 9, 6886-6894	38
1113	Understanding Heterogeneous Electrocatalysis of Lithium Polysulfide Redox on Pt and WS2 Surfaces. 2017 , 121, 12718-12725	37
1112	Facilitating the redox reaction of polysulfides by an electrocatalytic layer-modified separator for lithiumBulfur batteries. 2017 , 5, 10936-10945	65
1111	Beaver-dam-like membrane: A robust and sulphifilic MgBO2(OH)/CNT/PP nest separator in Li-S batteries. 2017 , 8, 153-160	63
1110	Review on High-Loading and High-Energy LithiumBulfur Batteries. 2017 , 7, 1700260	1010
1109	Synergistic mediation of sulfur conversion in lithium ulfur batteries by a Gerber tree-like interlayer with multiple components. 2017 , 5, 11255-11262	37
1108	Ultrathin SnS2 nanosheets as robust polysulfides immobilizers for high performance lithium-sulfur batteries. 2017 , 96, 509-515	35
1107	Multifunctional Co 3 S 4 @sulfur nanotubes for enhanced lithium-sulfur battery performance. 2017 , 37, 7-14	254
1106	Hierarchical sulfur confinement by graphene oxide wrapped, walnut-like carbon spheres for cathode of Li-S battery. 2017 , 714, 311-317	26
1105	Self-assembly sandwiches of reduced graphene oxide layers with zeolitic-imidazolate-frameworks-derived mesoporous carbons as polysulfides reservoirs for lithium-sulfur batteries. 2017 , 341, 68-74	39
1104	Ferroelectric-Enhanced Polysulfide Trapping for Lithium-Sulfur Battery Improvement. 2017 , 29, 1604724	124
1103	Lithium Bond Chemistry in LithiumBulfur Batteries. 2017 , 129, 8290-8294	50
1102	Lithium Bond Chemistry in Lithium-Sulfur Batteries. 2017 , 56, 8178-8182	332
1101	Highly Conductive Porous Transition Metal Dichalcogenides via Water Steam Etching for High-Performance Lithium-Sulfur Batteries. 2017 , 9, 18845-18855	41

(2017-2017)

1100	Ultra-high rate LiB batteries based on a novel conductive Ni2P yolkBhell material as the host for the S cathode. 2017 , 5, 14519-14524	67
1099	Encapsulating sulfur in EMnO2 at room temperature for Li-S battery cathode. 2017 , 9, 78-84	69
1098	Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithiumBulfur batteries. 2017 , 10, 1476-1486	617
1097	Metallic and polar Co 9 S 8 inlaid carbon hollow nanopolyhedra as efficient polysulfide mediator for lithiumBulfur batteries. 2017 , 38, 239-248	241
1096	A Toolbox for LithiumBulfur Battery Research: Methods and Protocols. 2017 , 1, 1700134	160
1095	More Reliable Lithium-Sulfur Batteries: Status, Solutions and Prospects. 2017 , 29, 1606823	1054
1094	A Novel Polar Copolymer Design as a Multi-Functional Binder for Strong Affinity of Polysulfides in Lithium-Sulfur Batteries. 2017 , 12, 195	26
1093	Healing High-Loading Sulfur Electrodes with Unprecedented Long Cycling Life: Spatial Heterogeneity Control. 2017 , 139, 8458-8466	163
1092	Immobilization of sulfur by constructing three-dimensional nitrogen rich carbons for long life lithiumBulfur batteries. 2017 , 5, 8360-8366	24
1091	Ultrathin dendrimer-graphene oxide composite film for stable cycling lithium-sulfur batteries. 2017 , 114, 3578-3583	78
1090	From Silica Sphere to Hollow Carbon Nitride-Based Sphere: Rational Design of Sulfur Host with Both Chemisorption and Physical Confinement. 2017 , 4, 1601195	21
1089	Understanding the anchoring behavior of titanium carbide-based MXenes depending on the functional group in LiS batteries: A density functional theory study. 2017 , 342, 64-69	106
1088	Inspired by the lip effect[la novel structural design strategy for the cathode in advanced lithium lufur batteries. 2017, 5, 3140-3144	18
1087	Hierarchical porous carbon modified with ionic surfactants as efficient sulfur hosts for the high-performance lithium-sulfur batteries. 2017 , 313, 404-414	77
1086	Highly Conductive and Lightweight Composite Film as Polysulfide Reservoir for High-Performance LithiumBulfur Batteries. 2017 , 4, 362-368	25
1085	Shape-controlled synthesis of Ti4O7 nanostructures under solvothermal-assisted heat treatment and its application in lithium-sulfur batteries. 2017 , 729, 1136-1144	36
1084	Application of diatomite as an effective polysulfides adsorbent for lithium-sulfur batteries. 2017 , 26, 1267-1275	21
1083	Stabilized Lithium-Sulfur Batteries by Covalently Binding Sulfur onto the Thiol-Terminated Polymeric Matrices. 2017 , 13, 1702104	29

1082	Operando Multi-modal Synchrotron Investigation for Structural and Chemical Evolution of Cupric Sulfide (CuS) Additive in Li-S battery. 2017 , 7, 12976	13
1081	High coulombic efficiency and high-rate capability lithium sulfur batteries with low-solubility lithium polysulfides by using alkylene radicals to covalently connect sulfur. 2017 , 41, 758-764	29
1080	Coaxial Carbon/MnO Hollow Nanofibers as Sulfur Hosts for High-Performance Lithium-Sulfur Batteries. 2017 , 12, 3128-3134	28
1079	Three-Dimensionally Hierarchical Ni/NiS/S Cathode for Lithium-Sulfur Battery. 2017 , 9, 38477-38485	45
1078	A review of nanocarbons in energy electrocatalysis: Multifunctional substrates and highly active sites. 2017 , 26, 1077-1093	220
1077	Self-Templated Formation of Interlaced Carbon Nanotubes Threaded Hollow CoS Nanoboxes for High-Rate and Heat-Resistant Lithium-Sulfur Batteries. 2017 , 139, 12710-12715	364
1076	Interwoven NiCo2O4 Nanosheet/Carbon Nanotube Composites as Highly Efficient LithiumBulfur Cathode Hosts. 2017 , 4, 2959-2965	14
1075	A Praline-Like Flexible Interlayer with Highly Mounted Polysulfide Anchors for Lithium-Sulfur Batteries. 2017 , 13, 1700357	33
1074	Integration of Graphene, Nano Sulfur, and Conducting Polymer into Compact, Flexible Lithium-Sulfur Battery Cathodes with Ultrahigh Volumetric Capacity and Superior Cycling Stability for Foldable Devices. 2017 , 29, 1703324	148
1073	Bis(aryl) Tetrasulfides as Cathode Materials for Rechargeable Lithium Batteries. 2017 , 23, 16941-16947	40
1072	Hierarchical mesoporous SnO2 nanosheets on carbon cloth toward enhancing the polysulfides redox for lithiumBulfur batteries. 2017 , 5, 19613-19618	59
1071	Metal/nanocarbon layer current collectors enhanced energy efficiency in lithium-sulfur batteries. 2017 , 62, 1267-1274	34
1070	Rutile TiO Mesocrystals as Sulfur Host for High-Performance Lithium-Sulfur Batteries. 2017 , 23, 16312-16318	30
1069	Freestanding carbon encapsulated mesoporous vanadium nitride nanowires enable highly stable sulfur cathodes for lithium-sulfur batteries. 2017 , 40, 655-662	128
1068	A Freestanding Selenium Disulfide Cathode Based on Cobalt Disulfide-Decorated Multichannel Carbon Fibers with Enhanced Lithium Storage Performance. 2017 , 129, 14295-14300	21
1067	A Freestanding Selenium Disulfide Cathode Based on Cobalt Disulfide-Decorated Multichannel Carbon Fibers with Enhanced Lithium Storage Performance. 2017 , 56, 14107-14112	91
1066	A polysulfide reduction accelerator INiS2-modified sulfurized polyacrylonitrile as a high performance cathode material for lithiumBulfur batteries. 2017 , 5, 22120-22124	51
1065	NiS2/FeS Holey Film as Freestanding Electrode for High-Performance Lithium Battery. 2017 , 7, 1701309	70

1064	Porous hollow carbon nanospheres embedded with well-dispersed cobalt monoxide nanocrystals as effective polysulfide reservoirs for high-rate and long-cycle lithium ulfur batteries. 2017 , 5, 17352-17359	20
1063	A 3D Hybrid of Chemically Coupled Nickel Sulfide and Hollow Carbon Spheres for High Performance LithiumBulfur Batteries. 2017 , 27, 1702524	265
1062	An Effective Lithium Sulfide Encapsulation Strategy for Stable Lithium Bulfur Batteries. 2017, 7, 1701122	40
1061	Separator Decoration with Cobalt/Nitrogen Codoped Carbon for Highly Efficient Polysulfide Confinement in Lithium-Sulfur Batteries. 2017 , 10, 3557-3564	23
1060	Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. 2017 , 117, 10403-10473	2918
1059	Sandwich-Type NbS@S@I-Doped Graphene for High-Sulfur-Loaded, Ultrahigh-Rate, and Long-Life Lithium-Sulfur Batteries. 2017 , 11, 8488-8498	141
1058	Thermal Exfoliation of Layered Metal-Organic Frameworks into Ultrahydrophilic Graphene Stacks and Their Applications in Li-S Batteries. 2017 , 29, 1702829	115
1057	Electrostatic Polysulfides Confinement to Inhibit Redox Shuttle Process in the Lithium Sulfur Batteries. 2017 , 9, 31741-31745	31
1056	Dual Core-Shell-Structured S@C@MnO Nanocomposite for Highly Stable Lithium-Sulfur Batteries. 2017 , 9, 34793-34803	118
1055	A Flexible 3D Multifunctional MgO-Decorated Carbon Foam@CNTs Hybrid as Self-Supported Cathode for High-Performance Lithium-Sulfur Batteries. 2017 , 27, 1702573	138
1054	A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries. 2017 , 46, 5237-5288	461
1053	A review of transition metal chalcogenide/graphene nanocomposites for energy storage and conversion. 2017 , 28, 2180-2194	127
1052	Atomic Sulfur Anchored on Silicene, Phosphorene, and Borophene for Excellent Cycle Performance of Li-S Batteries. 2017 , 9, 42836-42844	41
1051	Porous-Shell Vanadium Nitride Nanobubbles with Ultrahigh Areal Sulfur Loading for High-Capacity and Long-Life Lithium-Sulfur Batteries. <i>Nano Letters</i> , 2017 , 17, 7839-7846	172
1050	Anionic Redox Chemistry in Polysulfide Electrode Materials for Rechargeable Batteries. 2017 , 10, 4805-4811	35
1049	A sulfur host based on cobaltgraphitic carbon nanocages for high performance lithiumBulfur batteries. 2017 , 5, 24901-24908	67
1048	Molecularly Imprinted Polymer Enables High-Efficiency Recognition and Trapping Lithium Polysulfides for Stable Lithium Sulfur Battery. <i>Nano Letters</i> , 2017 , 17, 5064-5070	96
1047	Advances in electrode materials for Li-based rechargeable batteries. 2017 , 7, 33789-33811	22

1046	Review of nanostructured current collectors in lithiumBulfur batteries. 2017 , 10, 4027-4054	74
1045	Cerium Oxide Nanocrystal Embedded Bimodal Micromesoporous Nitrogen-Rich Carbon Nanospheres as Effective Sulfur Host for Lithium-Sulfur Batteries. 2017 , 11, 7274-7283	167
1044	An in-plane heterostructure of graphene and titanium carbide for efficient polysulfide confinement. 2017 , 39, 291-296	117
1043	In Situ Observation and Electrochemical Study of Encapsulated Sulfur Nanoparticles by MoS Flakes. 2017 , 139, 10133-10141	106
1042	Efficient Activation of Li2S by Transition Metal Phosphides Nanoparticles for Highly Stable LithiumBulfur Batteries. 2017 , 2, 1711-1719	180
1041	Co3O4 nanoneedle arrays as a multifunctional Buper-reservoirDelectrode for long cycle life LiB batteries. 2017 , 5, 250-257	116
1040	A Comprehensive Approach toward Stable LithiumBulfur Batteries with High Volumetric Energy Density. 2017 , 7, 1601630	240
1039	Calendering of free-standing electrode for lithium-sulfur batteries with high volumetric energy density. 2017 , 111, 493-501	48
1038	Enhanced sulfide chemisorption using boron and oxygen dually doped multi-walled carbon nanotubes for advanced lithiumBulfur batteries. 2017 , 5, 632-640	129
1037	Effective strategies for stabilizing sulfur for advanced lithiumBulfur batteries. 2017, 5, 448-469	124
<i>.</i>	Effective strategies for stabilizing sulfur for advanced lithiumBulfur batteries. 2017 , 5, 448-469 Interaction of FeS2and Sulfur in Li-S Battery System. 2017 , 164, A6039-A6046	124 36
1036		
1036	Interaction of FeS2and Sulfur in Li-S Battery System. 2017 , 164, A6039-A6046	36
1036	Interaction of FeS2and Sulfur in Li-S Battery System. 2017, 164, A6039-A6046 Lithium-Sulfur Battery Technology Readiness and Applications Review. 2017, 10, 1937 Porous Co3O4/CoS2 nanosheet-assembled hierarchical microspheres as superior electrocatalyst	36 93
1036 1035 1034	Interaction of FeS2and Sulfur in Li-S Battery System. 2017, 164, A6039-A6046 Lithium-Sulfur Battery Technology Readiness and Applications Review. 2017, 10, 1937 Porous Co3O4/CoS2 nanosheet-assembled hierarchical microspheres as superior electrocatalyst towards oxygen evolution reaction. 2018, 268, 10-19 Multifunctional vanadium nitride@N-doped carbon composites for kinetically enhanced	369334
1036 1035 1034 1033	Interaction of FeS2and Sulfur in Li-S Battery System. 2017, 164, A6039-A6046 Lithium-Sulfur Battery Technology Readiness and Applications Review. 2017, 10, 1937 Porous Co3O4/CoS2 nanosheet-assembled hierarchical microspheres as superior electrocatalyst towards oxygen evolution reaction. 2018, 268, 10-19 Multifunctional vanadium nitride@N-doped carbon composites for kinetically enhanced lithium Bulfur batteries. 2018, 42, 5109-5116 Understanding the roles of activated porous carbon nanotubes as sulfur support and separator	36933429
1036 1035 1034 1033	Interaction of FeS2and Sulfur in Li-S Battery System. 2017, 164, A6039-A6046 Lithium-Sulfur Battery Technology Readiness and Applications Review. 2017, 10, 1937 Porous Co3O4/CoS2 nanosheet-assembled hierarchical microspheres as superior electrocatalyst towards oxygen evolution reaction. 2018, 268, 10-19 Multifunctional vanadium nitride@N-doped carbon composites for kinetically enhanced lithium Bulfur batteries. 2018, 42, 5109-5116 Understanding the roles of activated porous carbon nanotubes as sulfur support and separator coating for lithium-sulfur batteries. 2018, 268, 1-9 Tungsten Carbide as a Highly Efficient Catalyst for Polysulfide Fragmentations in Liß Batteries.	3693342949

1028	Designing Realizable and Scalable Techniques for Practical Lithium Sulfur Batteries: A Perspective. 2018 , 9, 1398-1414	43
1027	Effective strategies for long-cycle life lithiumBulfur batteries. 2018 , 6, 6155-6182	125
1026	Sulfur film sandwiched between few-layered MoS2 electrocatalysts and conductive reduced graphene oxide as a robust cathode for advanced lithiumBulfur batteries. 2018 , 6, 5899-5909	79
1025	Enhanced electrochemical kinetics in lithium-sulfur batteries by using carbon nanofibers/manganese dioxide composite as a bifunctional coating on sulfur cathode. 2018 , 269, 180-187	52
1024	Nitrogen doped yolk-shell carbon spheres as cathode host for lithium-sulfur battery. 2018 , 747, 283-292	14
1023	Core-shell polyhedrons of carbon nanotubes-grafted graphitic carbon@nitrogen doped carbon as efficient sulfur immobilizers for lithium-sulfur batteries. 2018 , 450, 364-371	23
1022	Iron-nitrogen-carbon species boosting fast conversion kinetics of Fe1-xS@C nanorods as high rate anodes for lithium ion batteries. 2018 , 338, 726-733	54
1021	Self-templated preparation of hollow mesoporous TiN microspheres as sulfur host materials for advanced lithium fulfur batteries. 2018 , 53, 10363-10371	10
1020	Vanadium Dioxide-Graphene Composite with Ultrafast Anchoring Behavior of Polysulfides for Lithium-Sulfur Batteries. 2018 , 10, 15733-15741	70
1019	Stabilizing Lithium-Sulfur Batteries through Control of Sulfur Aggregation and Polysulfide Dissolution. 2018 , 14, e1703816	25
1018	In Situ Assembly of 2D Conductive Vanadium Disulfide with Graphene as a High-Sulfur-Loading Host for LithiumBulfur Batteries. 2018 , 8, 1800201	146
1017	Porphyrin-Derived Graphene-Based Nanosheets Enabling Strong Polysulfide Chemisorption and Rapid Kinetics in LithiumBulfur Batteries. 2018 , 8, 1800849	172
1016	A three-dimensional self-assembled SnS2-nano-dots@graphene hybrid aerogel as an efficient polysulfide reservoir for high-performance lithiumBulfur batteries. 2018 , 6, 7659-7667	70
1015	Toward High Performance LithiumBulfur Batteries Based on Li2S Cathodes and Beyond: Status, Challenges, and Perspectives. 2018 , 28, 1800154	81
1014	Revisiting the Role of Polysulfides in Lithium-Sulfur Batteries. 2018 , 30, e1705590	291
1013	Sustainable, inexpensive, naturally multi-functionalized biomass carbon for both Li metal anode and sulfur cathode. 2018 , 15, 218-225	66
1012	An interwoven MoO3@CNT scaffold interlayer for high-performance lithiumBulfur batteries. 2018 , 6, 8612-8619	122
1011	Metal-Embedded Porous Graphitic Carbon Fibers Fabricated from Bamboo Sticks as a Novel Cathode for Lithium-Sulfur Batteries. 2018 , 10, 13598-13605	44

1010	Enhanced performance of lithium-sulfur batteries with an ultrathin and lightweight MoS2/carbon nanotube interlayer. 2018 , 389, 169-177	85
1009	Core-shell structured MoS2@S spherical cathode with improved electrochemical performance for lithium-sulfur batteries. 2018 , 34, 1912-1918	29
1008	Construction of a stable lithium sulfide membrane to greatly confine polysulfides for high performance lithiumBulfur batteries. 2018 , 6, 8655-8661	8
1007	Nitrogen-doped carbon fiber foam enabled sulfur vapor deposited cathode for high performance lithium sulfur batteries. 2018 , 341, 441-449	41
1006	High-performance Li-Se battery cathode based on CoSe 2 -porous carbon composites. 2018 , 264, 341-349	33
1005	Honeycomb-Like Spherical Cathode Host Constructed from Hollow Metallic and Polar Co9S8 Tubules for Advanced LithiumBulfur Batteries. 2018 , 28, 1704443	170
1004	Designing Safe Electrolyte Systems for a High-Stability Lithium Bulfur Battery. 2018, 8, 1702348	210
1003	Biomimetic Bipolar Microcapsules Derived from Staphylococcus aureus for Enhanced Properties of LithiumBulfur Battery Cathodes. 2018 , 8, 1702373	77
1002	Manipulating the Redox Kinetics of LiB Chemistry by Tellurium Doping for Improved LiB Batteries. 2018 , 3, 420-427	94
1001	Direct Observation of Electrochemical LithiumBulfur Reaction inside Carbon Nanotubes. 2018, 1, 807-813	13
1001	Direct Observation of Electrochemical LithiumBulfur Reaction inside Carbon Nanotubes. 2018 , 1, 807-813 A simple approach for making a viable, safe, and high-performances lithium-sulfur battery. 2018 , 377, 26-35	13 48
	A simple approach for making a viable, safe, and high-performances lithium-sulfur battery. 2018 ,	
1000	A simple approach for making a viable, safe, and high-performances lithium-sulfur battery. 2018 , 377, 26-35 Elastic Sandwich-Type rGONS2/S Composites with High Tap Density: Structural and Chemical	48
1000	A simple approach for making a viable, safe, and high-performances lithium-sulfur battery. 2018, 377, 26-35 Elastic Sandwich-Type rGOVS2/S Composites with High Tap Density: Structural and Chemical Cooperativity Enabling LithiumBulfur Batteries with High Energy Density. 2018, 8, 1702337 Sulfur Immobilization by Chemical AnchorCo Suppress the Diffusion of Polysulfides in	48
1000 999 998	A simple approach for making a viable, safe, and high-performances lithium-sulfur battery. 2018, 377, 26-35 Elastic Sandwich-Type rGOVS2/S Composites with High Tap Density: Structural and Chemical Cooperativity Enabling LithiumBulfur Batteries with High Energy Density. 2018, 8, 1702337 Sulfur Immobilization by Themical AnchorIto Suppress the Diffusion of Polysulfides in LithiumBulfur Batteries. 2018, 5, 1701274 MOF-derived porous NTo3O4@NT nanododecahedra wrapped with reduced graphene oxide as a	48 172 73
1000 999 998 997	A simple approach for making a viable, safe, and high-performances lithium-sulfur battery. 2018, 377, 26-35 Elastic Sandwich-Type rGONS2/S Composites with High Tap Density: Structural and Chemical Cooperativity Enabling LithiumBulfur Batteries with High Energy Density. 2018, 8, 1702337 Sulfur Immobilization by Themical AnchorIto Suppress the Diffusion of Polysulfides in LithiumBulfur Batteries. 2018, 5, 1701274 MOF-derived porous NICo3O4@NIC nanododecahedra wrapped with reduced graphene oxide as a high capacity cathode for lithiumBulfur batteries. 2018, 6, 2797-2807	48 172 73 212
1000 999 998 997 996	A simple approach for making a viable, safe, and high-performances lithium-sulfur battery. 2018, 377, 26-35 Elastic Sandwich-Type rGONS2/S Composites with High Tap Density: Structural and Chemical Cooperativity Enabling LithiumBulfur Batteries with High Energy Density. 2018, 8, 1702337 Sulfur Immobilization by Chemical AnchorCho Suppress the Diffusion of Polysulfides in LithiumBulfur Batteries. 2018, 5, 1701274 MOF-derived porous NCo3O4@NC nanododecahedra wrapped with reduced graphene oxide as a high capacity cathode for lithiumBulfur batteries. 2018, 6, 2797-2807 Design of structural and functional nanomaterials for lithium-sulfur batteries. 2018, 18, 35-64 Updated Metal Compounds (MOFs, ?S, ?OH, ?N, ?C) Used as Cathode Materials for LithiumBulfur	48 172 73 212 82

(2018-2018)

992	Stable cycling of lithium-sulfur battery enabled by a reliable gel polymer electrolyte rich in ester groups. 2018 , 550, 399-406	46
991	Lightweight Reduced Graphene Oxide@MoS Interlayer as Polysulfide Barrier for High-Performance Lithium-Sulfur Batteries. 2018 , 10, 3707-3713	182
990	Low Cost Metal Carbide Nanocrystals as Binding and Electrocatalytic Sites for High Performance Li-S Batteries. <i>Nano Letters</i> , 2018 , 18, 1035-1043	222
989	A multi-electron redox mediator for redox-targeting lithium-sulfur flow batteries. 2018, 378, 418-422	6
988	Enhanced kinetics of polysulfide redox reactions on MoC/CNT in lithium-sulfur batteries. 2018, 29, 295401	25
987	High-Performance and Low-Temperature LithiumBulfur Batteries: Synergism of Thermodynamic and Kinetic Regulation. 2018 , 8, 1703638	86
986	CeF-Doped Porous Carbon Nanofibers as Sulfur Immobilizers in Cathode Material for High-Performance Lithium-Sulfur Batteries. 2018 , 10, 12626-12638	39
985	Self-supporting porous CoS2/rGO sulfur host prepared by bottom-up assembly for lithium-sulfur batteries. 2018 , 749, 586-593	48
984	Effective Dual Polysulfide Rejection by a Tannic Acid/Fe Complex-Coated Separator in Lithium-Sulfur Batteries. 2018 , 10, 12708-12715	29
983	Anchor and activate sulfide with LiTi2(PO4)2.88F0.12 nano spheres for lithium sulfur battery application. 2018 , 6, 7639-7648	15
982	A polypyrrole hollow nanosphere with ultra-thin wrinkled shell: Synergistic trapping of sulfur in Lithium-Sulfur batteries with excellent elasticity and buffer capability. 2018 , 271, 67-76	30
981	Facile fabrication of permselective g-C 3 N 4 separator for improved lithium-sulfur batteries. 2018 , 272, 60-67	31
980	Cobalt-Doped Vanadium Nitride Yolk-Shell Nanospheres @ Carbon with Physical and Chemical Synergistic Effects for Advanced Li-S Batteries. 2018 , 10, 11642-11651	85
979	Cationic polymer binder inhibit shuttle effects through electrostatic confinement in lithium sulfur batteries. 2018 , 6, 6959-6966	51
978	TiN synergetic with micro-/mesoporous carbon for enhanced performance lithium ulfur batteries. 2018 , 24, 2983-2993	10
977	N-doped yolk-shell hollow carbon sphere wrapped with graphene as sulfur host for high-performance lithium-sulfur batteries. 2018 , 427, 823-829	43
976	Enhanced sulfide chemisorption by conductive Al-doped ZnO decorated carbon nanoflakes for advanced LiB batteries. 2018 , 11, 477-489	33
975	Recent development of metal compound applications in lithium ulphur batteries. 2018, 33, 16-31	33

974	Multifunctional Separator with Porous Carbon/Multi-Walled Carbon Nanotube Coating for Advanced LithiumBulfur Batteries. 2018 , 5, 71-77	27
973	Leaf-like interconnected network structure of MWCNT/Co9S8/S for lithium-sulfur batteries. 2018 , 731, 964-970	27
972	Hybrids of MnO2 nanoparticles anchored on graphene sheets as efficient sulfur hosts for high-performance lithium sulfur batteries. 2018 , 22, 693-703	21
971	Polymeric multilayer-modified manganese dioxide with hollow porous structure as sulfur host for lithium sulfur batteries. 2018 , 259, 440-448	23
970	Electrocatalytically Active Niobium Sulfide Modified Carbon Cloth for LithiumBulfur Batteries. 2018 , 15,	8
969	MnS decorated N/S codoped 3D graphene which used as cathode of the lithium-sulfur battery. 2018 , 433, 10-15	34
968	The Role of Metal Disulfide Interlayer in Liß Batteries. 2018, 122, 1014-1023	36
967	Superior lithium-ion storage performances of carbonaceous microspheres with high electrical conductivity and uniform distribution of Fe and TiO ultrafine nanocrystals for Li-S batteries. 2018 , 126, 394-403	10
966	Catalytic Effects in Lithium-Sulfur Batteries: Promoted Sulfur Transformation and Reduced Shuttle Effect. 2018 , 5, 1700270	471
965	Advanced chemical strategies for lithiumBulfur batteries: A review. 2018 , 3, 2-19	119
964	Sulfur nanoparticles encapsulated in reduced graphene oxide nanotubes for flexible lithium-sulfur batteries. 2018 , 11, 1345-1357	66
963	Controlling the Wettability between Freestanding Electrode and Electrolyte for High Energy Density Lithium-Sulfur Batteries. 2018 , 165, A5006-A5013	27
962	Applications of Phosphorene and Black Phosphorus in Energy Conversion and Storage Devices. 2018 , 8, 1702093	272
961	Hollow polypyrrole @ MnO2 spheres as nano-sulfur hosts for improved lithium-sulfur batteries. 2018 , 260, 912-920	50
960	PEO-Linked MoS2© raphene Nanocomposites with 2D Polar Monpolar Amphoteric Surfaces as Sulfur Hosts for High-Performance LiB Batteries. 2018 , 6, 974-982	29
959	Homogeneous Sulfur©obalt Sulfide Nanocomposites as LithiumBulfur Battery Cathodes with Enhanced Reaction Kinetics. 2018 , 1, 167-172	22
958	Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes. 2018 , 12, 161-175	284

(2018-2018)

956	Rational integration of hierarchical structural CoS1.097 nanosheets/reduced graphene oxide nanocomposites with enhanced electrocatalytic performance for triiodide reduction. 2018 , 126, 514-521	17
955	Long-chain solid organic polysulfide cathode for high-capacity secondary lithium batteries. 2018 , 12, 30-36	20
954	Tubular titanium oxide/reduced graphene oxide-sulfur composite for improved performance of lithium sulfur batteries. 2018 , 128, 63-69	35
953	Synthesis and electrochemical analysis of electrode prepared from zeolitic imidazolate framework (ZIF)-67/graphene composite for lithium sulfur cells. 2018 , 259, 1021-1029	32
952	Multifunctional second barrier layers for lithiumBulfur batteries. 2018 , 2, 235-252	27
951	Inhibiting polysulfides diffusion of lithium-sulfur batteries using an acetylene black-CoS2 modified separator: Mechanism research and performance improvement. 2018 , 427, 242-252	58
950	Polysulfide immobilization and conversion on a conductive polar MoC@MoOx material for lithium-sulfur batteries. 2018 , 10, 56-61	132
949	Recent Advances in Applying Vulcanization/Inverse Vulcanization Methods to Achieve High-Performance Sulfur-Containing Polymer Cathode Materials for Liß Batteries. 2018 , 2, 1800156	42
948	The facile synthesis and enhanced lithiumBulfur battery performance of an amorphous cobalt boride (Co2B)@graphene composite cathode. 2018 , 6, 24045-24049	39
947	Coherent TiO/BaTiO heterostructure as a functional reservoir and promoter for polysulfide intermediates. 2018 , 54, 12250-12253	36
946	Self-supporting TiCT foam/S cathodes with high sulfur loading for high-energy-density lithium-sulfur batteries. 2018 , 10, 22954-22962	33
945	Polyvinylchloride-derived N, S co-doped carbon as an efficient sulfur host for high-performance Li-S batteries 2018 , 8, 37811-37816	6
944	A rechargeable metal-free full-liquid sulfurBromine battery for sustainable energy storage. 2018 , 6, 20737-20745	5
943	A functional separator coated with sulfonated metalBrganic framework/Nafion hybrids for LiB batteries. 2018 , 6, 24971-24978	59
942	Metal-based nanostructured materials for advanced lithium ulfur batteries. 2018, 6, 23127-23168	128
941	Multi-functional nanowall arrays with unrestricted Li+ transport channels and an integrated conductive network for high-areal-capacity LiB batteries. 2018 , 6, 22958-22965	25
940	Large-Scale Production of MOF-Derived Coatings for Functional Interlayers in High-Performance Liß Batteries. 2018 , 1, 6986-6991	14
939	Recent Advances in Energy Chemical Engineering of Next-Generation Lithium Batteries. 2018 , 4, 831-847	116

938	Self-Supported FeCoS Nanotube Arrays as Binder-Free Cathodes for Lithium-Sulfur Batteries. 2018 , 10, 43707-43715	53
937	Insight of Enhanced Redox Chemistry for Porous MoO Carbon-Derived Framework as Polysulfide Reservoir in Lithium-Sulfur Batteries. 2018 , 10, 42286-42293	23
936	Ultrasensitive immunoassay of glycoprotein 125 (CA 125) in untreated human plasma samples using poly (CTAB-chitosan) doped with silver nanoparticles. 2018 , 120, 2048-2064	25
935	Electrocatalysis in Lithium Sulfur Batteries under Lean Electrolyte Conditions. 2018 , 130, 15775-15778	55
934	Deciphering the Modulation Essence of p Bands in Co-Based Compounds on Li-S Chemistry. 2018 , 2, 2681-26	93241
933	Conductive and Polar Titanium Boride as a Sulfur Host for Advanced LithiumBulfur Batteries. 2018 , 30, 6969-6977	75
932	A Review of Functional Binders in LithiumBulfur Batteries. 2018, 8, 1802107	203
931	A high performance lithium-ion-sulfur battery with a free-standing carbon matrix supported Li-rich alloy anode. 2018 , 9, 8829-8835	24
930	Electrocatalysis in Lithium Sulfur Batteries under Lean Electrolyte Conditions. 2018 , 57, 15549-15552	130
929	Facile preparation of ultrafine Ti4O7 nanoparticle-embedded porous carbon for high areal capacity lithiumBulfur batteries. 2018 , 6, 20083-20092	26
928	Three-dimensional hierarchical NiSe nanorod array as binder/carbon-free electrode for high-areal-capacity Na storage. 2018 , 10, 18942-18948	26
927	Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries. 2018 , 9, 4164	210
926	A Li2S-Based Sacrificial Layer for Stable Operation of Lithium-Sulfur Batteries. 2018 , 6, 2210-2219	4
925	Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium. 2018 , 9, 4480	129
924	CoO-NP embedded mesoporous carbon rod with enhanced electrocatalytic conversion in lithium-sulfur battery. 2018 , 8, 16133	18
923	Catalytic Activity of CoX (X = S, P, O) and Its Dependency on Nanostructure/Chemical Composition in LithiumBulfur Batteries. 2018 , 1, 7014-7021	34
922	Multifunctional Heterostructures for Polysulfide Suppression in High-Performance Lithium-Sulfur Cathode. 2018 , 14, e1803134	57
921	Synergistic stabilizing lithium sulfur battery via nanocoating polypyrrole on cobalt sulfide nanobox. 2018 , 405, 51-60	35

(2018-2018)

920	NickelLobalt Double Hydroxide as a Multifunctional Mediator for Ultrahigh-Rate and Ultralong-Life LiB Batteries. 2018 , 8, 1802431	64
919	2D MoN-VN Heterostructure To Regulate Polysulfides for Highly Efficient Lithium-Sulfur Batteries. 2018 , 130, 16945-16949	10
918	2D MoN-VN Heterostructure To Regulate Polysulfides for Highly Efficient Lithium-Sulfur Batteries. 2018 , 57, 16703-16707	224
917	Electrocatalysis of Ruthenium Nanoparticles-Decorated Hollow Carbon Spheres for the Conversion of LiS/LiS in Lithium-Sulfur Batteries. 2018 , 10, 38853-38861	21
916	Recent advances of polar transition-metal sulfides host materials for advanced lithium ulfur batteries. 2018 , 11, 1840010	22
915	In-situ PECVD-enabled graphene-V2O3 hybrid host for lithiumBulfur batteries. 2018 , 53, 432-439	76
914	Multi-functional CoS2-N-C porous carbon composite derived from metal-organic frameworks for high performance lithium-sulfur batteries. 2018 , 289, 94-103	43
913	Double-Shelled Phosphorus and Nitrogen Codoped Carbon Nanospheres as Efficient Polysulfide Mediator for High-Performance Lithium-Sulfur Batteries. 2018 , 5, 1800621	65
912	Boosting the Electrochemical Performance of Li-S Batteries with a Dual Polysulfides Confinement Strategy. 2018 , 14, e1802516	47
911	Biotemplating Growth of Nepenthes-like N-Doped Graphene as a Bifunctional Polysulfide Scavenger for Li-S Batteries. 2018 , 12, 10240-10250	104
910	Unexpected Effect of Electrode Architecture on High-Performance Lithium-Sulfur Batteries. 2018 , 10, 33269-33275	6
909	Enhanced Electrochemical Kinetics and Polysulfide Traps of Indium Nitride for Highly Stable Lithium-Sulfur Batteries. 2018 , 12, 9578-9586	146
908	Recent progress in metalBrganic frameworks for lithiumBulfur batteries. 2018 , 155, 464-484	48
907	Chinese knot-like electrode design for advanced Li-S batteries. 2018 , 53, 354-361	46
906	Advances in Polar Materials for LithiumBulfur Batteries. 2018 , 28, 1707520	181
905	Progress on the Critical Parameters for LithiumBulfur Batteries to be Practically Viable. 2018 , 28, 1801188	257
904	Double-Shelled NiO-NiCo2O4 Heterostructure@Carbon Hollow Nanocages as an Efficient Sulfur Host for Advanced LithiumBulfur Batteries. 2018 , 8, 1800709	184
903	Metal oxide nanoprism-arrays assembled in N-doped carbon foamy nanoplates that have efficient polysulfide-retention for ultralong-cycle-life lithium ulfur batteries. 2018 , 6, 11260-11269	21

902	A defective MOF architecture threaded by interlaced carbon nanotubes for high-cycling lithium-sulfur batteries 2018 , 8, 18604-18612	35
901	Ultra-small self-discharge and stable lithium-sulfur batteries achieved by synergetic effects of multicomponent sandwich-type composite interlayer. 2018 , 50, 367-375	89
900	MOF-derived Cobalt Sulfide Grown on 3D Graphene Foam as an Efficient Sulfur Host for Long-Life Lithium-Sulfur Batteries. 2018 , 4, 36-43	117
899	Atomic Iron Catalysis of Polysulfide Conversion in Lithium-Sulfur Batteries. 2018 , 10, 19311-19317	103
898	Stringed E ube on cube[hanohybrids as compact cathode matrix for high-loading and lean-electrolyte lithium Eulfur batteries. 2018 , 11, 2372-2381	193
897	Nickel-Iron Layered Double Hydroxide Hollow Polyhedrons as a Superior Sulfur Host for Lithium-Sulfur Batteries. 2018 , 57, 10944-10948	205
896	A polymeric nanocomposite interlayer as ion-transport-regulator for trapping polysulfides and stabilizing lithium metal. 2018 , 15, 447-457	21
895	Pomegranate-like microclusters organized by ultrafine Co nanoparticles@nitrogen-doped carbon subunits as sulfur hosts for long-life lithium ulfur batteries. 2018 , 6, 14178-14187	63
894	Insight into the Function Mechanism of the Carbon Interlayer in Lithium-Sulfur Batteries. 2018 , 165, A1880-A	A18 8 5
893	Structural Design of LithiumBulfur Batteries: From Fundamental Research to Practical Application. 2018 , 1, 239-293	197
892	Graphene and its derivatives in lithiumBulfur batteries. 2018 , 9, 319-335	96
891	A heterogenized Ni-doped zeolitic imidazolate framework to guide efficient trapping and catalytic conversion of polysulfides for greatly improved lithium allfur batteries. 2018 , 6, 13593-13598	43
890	Nickellron Layered Double Hydroxide Hollow Polyhedrons as a Superior Sulfur Host for LithiumBulfur Batteries. 2018 , 130, 11110-11114	23
889	Synchronous immobilization and conversion of polysulfides on a VO2NN binary host targeting high sulfur load LiB batteries. 2018 , 11, 2620-2630	327
888	Improving the electrochemical property of Li-S batteries by using CoS2 as substrate materials. 2018 , 44, 17340-17344	10
887	Regulating the polysulfide redox conversion by iron phosphide nanocrystals for high-rate and ultrastable lithium-sulfur battery. 2018 , 51, 340-348	202
886	Thin-Layered Molybdenum Disulfide Nanoparticles as an Effective Polysulfide Mediator in Lithium-Sulfur Batteries. 2018 , 10, 23122-23130	31
885	A novel class of functional additives for cyclability enhancement of the sulfur cathode in lithium sulfur batteries. 2018 , 5, 2013-2017	11

884	Inverse Capacity Growth and Pocket Effect in SnS Semifilled Carbon Nanotube Anode. 2018 , 12, 8037-8047	61
883	Novel Non-Carbon Sulfur Hosts Based on Strong Chemisorption for Lithium-Sulfur Batteries. 2018 , 14, e1801987	48
882	Promoting polysulfide redox reactions and improving electronic conductivity in lithium ulfur batteries via hierarchical cathode materials of graphene-wrapped porous TiO2 microspheres with exposed (001) facets. 2018 , 6, 16574-16582	40
881	Synthesis and characterization of electrospun molybdenum dioxide-carbon nanofibers as sulfur matrix additives for rechargeable lithium-sulfur battery applications. 2018 , 9, 262-270	19
880	Ultrathin HfO2-modified carbon nanotube films as efficient polysulfide barriers for Li-S batteries. 2018 , 139, 896-905	18
879	Conductive molybdenum carbide as the polysulfide reservoir for lithium Bulfur batteries. 2018, 6, 17142-17147	' 28
878	In Situ Formation of Copper-Based Hosts Embedded within 3D N-Doped Hierarchically Porous Carbon Networks for Ultralong Cycle LithiumBulfur Batteries. 2018 , 28, 1804520	66
877	Theoretical Investigation of 2D Conductive Microporous Coordination Polymers as Liß Battery Cathode with Ultrahigh Energy Density. 2018 , 8, 1801823	45
876	CoO/Co-Activated Porous Carbon Cloth Cathode for High Performance Li-S Batteries. 2018 , 11, 2695-2702	43
875	High Capacity All-Solid-State Lithium Batteries Enabled by Pyrite-Sulfur Composites. 2018 , 8, 1801462	60
874	SnS/TiO nanohybrids chemically bonded on nitrogen-doped graphene for lithium-sulfur batteries: synergy of vacancy defects and heterostructures. 2018 , 10, 15505-15512	77
873	Self-Assembled Close-Packed MnO Nanoparticles Anchored on a Polyethylene Separator for Lithium-Sulfur Batteries. 2018 , 10, 26274-26282	64
872	Heterogeneous/Homogeneous Mediators for High-Energy-Density LithiumBulfur Batteries: Progress and Prospects. 2018 , 28, 1707536	197
871	Sulfur-polyaniline coated mesoporous carbon composite in combination with carbon nanotubes interlayer as a superior cathode assembly for high capacity lithium-sulfur cells. 2018 , 458, 751-761	18
870	Recent progress on confinement of polysulfides through physical and chemical methods. 2018 , 27, 1555-1565	89
869	3D CNTs/Graphene-S-AlNi Cathodes for High-Sulfur-Loading and Long-Life Lithium-Sulfur Batteries. 2018 , 5, 1800026	41
868	Long-Life Lithium-Sulfur Batteries with a Bifunctional Cathode Substrate Configured with Boron Carbide Nanowires. 2018 , 30, e1804149	89
867	Multifunctionality of Carbon-based Frameworks in Lithium Sulfur Batteries. 2018 , 1, 403-432	27

866	Three-dimensional spongy framework as superlyophilic, strongly absorbing, and electrocatalytic polysulfide reservoir layer for high-rate and long-cycling lithium-sulfur batteries. 2018 , 11, 6436-6446	29
865	Advances in Cathode Materials for High-Performance Lithium-Sulfur Batteries. 2018 , 6, 151-198	64
864	Three-dimensional TiO2-B nanotubes/carbon nanotubes intertwined network as sulfur hosts for high performance lithiumBulfur batteries. 2018 , 400, 23-30	30
863	Enhanced polysulfide redox kinetics electro-catalyzed by cobalt phthalocyanine for advanced lithiumBulfur batteries. 2018 , 6, 17132-17141	34
862	Electrocatalysis on Separator Modified by Molybdenum Trioxide Nanobelts for LithiumBulfur Batteries. 2018 , 5, 1800243	54
861	Functional Carbons Remedy the Shuttling of Polysulfides in Lithium B ulfur Batteries: Confining, Trapping, Blocking, and Breaking up. 2018 , 28, 1800508	117
860	Sulfur Hosts against the Shuttle Effect. 2018 , 2, 1700345	95
859	Rational Design of a Dual-Function Hybrid Cathode Substrate for LithiumBulfur Batteries. 2018 , 8, 1801014	77
858	Vertical Co9S8 hollow nanowall arrays grown on a Celgard separator as a multifunctional polysulfide barrier for high-performance LiB batteries. 2018 , 11, 2560-2568	365
857	A robust sulfur host with dual lithium polysulfide immobilization mechanism for long cycle life and high capacity Li-S batteries. 2019 , 16, 344-353	109
856	Sulfur/nickel ferrite composite as cathode with high-volumetric-capacity for lithium-sulfur battery. 2019 , 62, 74-86	68
855	LiNi0.8Co0.15Al0.05O2 as both a trapper and accelerator of polysulfides for lithium-sulfur batteries. 2019 , 17, 111-117	45
854	Combining theory and experiment in lithiumBulfur batteries: Current progress and future perspectives. 2019 , 22, 142-158	217
853	An ultrathin and continuous Li4Ti5O12 coated carbon nanofiber interlayer for high rate lithium sulfur battery. 2019 , 31, 19-26	53
852	Modeling and theoretical design of next-generation lithium metal batteries. 2019 , 16, 169-193	53
851	Carbon@titanium nitride dual shell nanospheres as multi-functional hosts for lithium sulfur batteries. 2019 , 16, 228-235	200
850	Freestanding Mo2C-decorating N-doped carbon nanofibers as 3D current collector for ultra-stable Li-S batteries. 2019 , 18, 375-381	69
849	Ultra-thin Fe3C nanosheets promote the adsorption and conversion of polysulfides in lithium-sulfur batteries. 2019 , 18, 338-348	95

848	Insight into the Anchoring and Catalytic Effects of VO and VS Nanosheets as Sulfur Cathode Hosts for Li-S Batteries. 2019 , 12, 4671-4678	26
847	Long-life Liß batteries based on enabling the immobilization and catalytic conversion of polysulfides. 2019 , 7, 21747-21758	25
846	Nitrogen-Doped Porous Carbon Networks with Active Fe-N Sites to Enhance Catalytic Conversion of Polysulfides in Lithium-Sulfur Batteries. 2019 , 11, 31860-31868	29
845	Nb O /RGO Nanocomposite Modified Separators with Robust Polysulfide Traps and Catalytic Centers for Boosting Performance of Lithium-Sulfur Batteries. 2019 , 15, e1902363	54
844	Chelation-assisted formation of multi-yolkEhell Co4N@carbon nanoboxes for self-discharge-suppressed high-performance LiBeS2 batteries. 2019 , 7, 20302-20309	22
843	Sulfur encapsulation by MOF-derived CoS2 embedded in carbon hosts for high-performance Liß batteries. 2019 , 7, 21128-21139	48
842	A nanostructured ferroelectric lithium tantalate as polysulfide immobilizer and promoter for improved lithium-sulfur batteries. 2019 , 807, 151672	8
841	Ni(OH)2@hollow carbon spheres/sulfur composites as cathode materials for high-performance LiB batteries. 2019 , 30, 17155-17163	2
840	Programmed Design of a Lithium-Sulfur Battery Cathode by Integrating Functional Units. 2019 , 6, 1900711	31
839	Li4Ti5O12 nanowire array as a sulfur host for high performance lithium sulfur battery. 2019 , 805, 873-879	11
838	In Situ Electrochemical Mapping of Lithium-Sulfur Battery Interfaces Using AFM-SECM. <i>Nano Letters</i> , 2019 , 19, 5229-5236	26
837	Boosting High-Rate Li-S Batteries by an MOF-Derived Catalytic Electrode with a Layer-by-Layer Structure. 2019 , 6, 1802362	55
836	Sandwich-Like Ultrathin TiS2 Nanosheets Confined within N, S Codoped Porous Carbon as an Effective Polysulfide Promoter in Lithium-Sulfur Batteries. 2019 , 9, 1901872	119
835	Lithium-Anode Protection in LithiumBulfur Batteries. 2019 , 1, 693-704	65
834	Duplex trapping and charge transfer with polysulfides by a diketopyrrolopyrrole-based organic framework for high-performance lithium ulfur batteries. 2019 , 7, 18100-18108	41
833	Recent advances in cathode materials for rechargeable lithium-sulfur batteries. 2019 , 11, 15418-15439	78
832	Interfacial Charge Field in Hierarchical YolkBhell Nanocapsule Enables Efficient Immobilization and Catalysis of Polysulfides Conversion. 2019 , 9, 1901667	47
831	Interfacial Molecule Mediators in Cathodes for Advanced Li-S Batteries. 2019 , 11, 29978-29984	13

830	Interfacial design for lithiumBulfur batteries: From liquid to solid. 2019 , 1, 100002	80
829	Propelling the polysulfide phase transformation of lithiumBulfur battery by VO2-rGO. 2019 , 804, 549-553	7
828	Superior cycling life of Liß batteries with high sulfur loading enabled by a bifunctional layered-MoO3 cathode. 2019 , 436, 226840	18
827	Highly Puffed CoS/Carbon Nanofibers: A Functionalized S Carrier for Superior Li-S Batteries. 2019 , 11, 26798-26806	29
826	A Class of Catalysts of BiOX (X = Cl, Br, I) for Anchoring Polysulfides and Accelerating Redox Reaction in Lithium Sulfur Batteries. 2019 , 13, 13109-13115	63
825	Stability analysis of switched positive nonlinear systems: an invariant ray approach. 2019 , 62, 1	1
824	A Conductive/Ferroelectric Hybrid Interlayer for Highly Improved Trapping of Polysulfides in LithiumBulfur Batteries. 2019 , 6, 1900984	8
823	A Molecular-Cage Strategy Enabling Efficient ChemisorptionElectrocatalytic Interface in Nanostructured Li2S Cathode for Li Metal-Free Rechargeable Cells with High Energy. 2019 , 29, 1905986	33
822	Redox Mediator: A New Strategy in Designing Cathode for Prompting Redox Process of Li-S Batteries. 2019 , 6, 1900958	27
821	Voxer日 platform for creating, customizing, and sharing scientific visualizations. 2019 , 22, 1161-1176	1
820	Advanced Li S/Si Full Battery Enabled by TiN Polysulfide Immobilizer. 2019 , 15, e1902377	21
819	Metal Coated Polypropylene Separator with Enhanced Surface Wettability for High Capacity Lithium Metal Batteries. 2019 , 9, 16795	13
818	Freestanding cellulose paper-derived carbon/Fe/Fe3C with enhanced electrochemical kinetics for high-performance lithium-sulfur batteries. 2019 , 155, 353-360	26
817	A General Atomic Surface Modification Strategy for Improving Anchoring and Electrocatalysis Behavior of TiCT MXene in Lithium-Sulfur Batteries. 2019 , 13, 11078-11086	129
816	Flexible and High-Loading LithiumBulfur Batteries Enabled by Integrated Three-In-One Fibrous Membranes. 2019 , 9, 1902001	71
815	Investigation of the Nanocrystal CoS Embedded in 3D Honeycomb-like Graphitic Carbon with a Synergistic Effect for High-Performance Lithium Sulfur Batteries. 2019 , 11, 33987-33999	51
814	Synergetic enhancement of polysulfide chemisorption and electrocatalysis over bicontinuous MoN@N-rich carbon porous nano-octahedra for LiB batteries. 2019 , 7, 21934-21943	22
813	Construction of Electrocatalytic and Heat-Resistant Self-Supporting Electrodes for High-Performance Lithium-Sulfur Batteries. 2019 , 11, 78	20

(2019-2019)

812	Improved performance of CoS2 nanoparticles encapsulated in carbon micro-polyhedron for propelling redox reaction of polysulfide. 2019 , 324, 134899	2
811	Self-assembled CdS quantum dots in carbon nanotubes: induced polysulfide trapping and redox kinetics enhancement for improved lithiumBulfur battery performance. 2019 , 7, 806-815	42
810	Die wiederaufladbare Aluminiumbatterie: Mößlichkeiten und Herausforderungen. 2019, 131, 12104-12124	15
809	Solvent-free nanocasting toward universal synthesis of ordered mesoporous transition metal sulfide@N-doped carbon composites for electrochemical applications. 2019 , 12, 2250-2258	18
808	Sulfur Redox Reactions at Working Interfaces in LithiumBulfur Batteries: A Perspective. 2019 , 6, 1802046	95
807	Graphene-based Fe-coordinated framework porphyrin as an interlayer for lithiumBulfur batteries. 2019 , 3, 615-619	33
806	Secure communication in multigroup multicasting cell-free massive MIMO networks with active spoofing attack. 2019 , 55, 96-98	13
805	Cobalt-Doped SnS2 with Dual Active Centers of Synergistic Absorption-Catalysis Effect for High-S Loading Li-S Batteries. 2019 , 29, 1806724	139
804	The Rechargeable Aluminum Battery: Opportunities and Challenges. 2019 , 58, 11978-11996	168
803	Two-dimensional materials for advanced Li-S batteries. 2019 , 22, 284-310	69
803	Two-dimensional materials for advanced Li-S batteries. 2019 , 22, 284-310 Ultrahigh sulfur loading in ZnS1-/rGO through in situ oxidation-refilling route for high-performance Li S batteries. 2019 , 414, 453-459	69 21
	Ultrahigh sulfur loading in ZnS1-/rGO through in situ oxidation-refilling route for high-performance	
802	Ultrahigh sulfur loading in ZnS1-/rGO through in situ oxidation-refilling route for high-performance Li S batteries. 2019 , 414, 453-459 Rational Design of TiO-TiO Heterostructure/Polypyrrole as a Multifunctional Sulfur Host for	21
802	Ultrahigh sulfur loading in ZnS1-/rGO through in situ oxidation-refilling route for high-performance Li S batteries. 2019 , 414, 453-459 Rational Design of TiO-TiO Heterostructure/Polypyrrole as a Multifunctional Sulfur Host for Advanced Lithium-Sulfur Batteries. 2019 , 11, 5055-5063 Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium	21 69
802 801 800	Ultrahigh sulfur loading in ZnS1-/rGO through in situ oxidation-refilling route for high-performance Li S batteries. 2019, 414, 453-459 Rational Design of TiO-TiO Heterostructure/Polypyrrole as a Multifunctional Sulfur Host for Advanced Lithium-Sulfur Batteries. 2019, 11, 5055-5063 Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in LiB batteries. 2019, 12, 344-350 3D pomegranate-like TiN@graphene composites with electrochemical reaction chambers as sulfur	2169355
802 801 800	Ultrahigh sulfur loading in ZnS1-/rGO through in situ oxidation-refilling route for high-performance Li S batteries. 2019, 414, 453-459 Rational Design of TiO-TiO Heterostructure/Polypyrrole as a Multifunctional Sulfur Host for Advanced Lithium-Sulfur Batteries. 2019, 11, 5055-5063 Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in LiB batteries. 2019, 12, 344-350 3D pomegranate-like TiN@graphene composites with electrochemical reaction chambers as sulfur hosts for ultralong-life lithium-sulfur batteries. 2019, 4, 531-539	21 69 355 35
802 801 800 799 798	Ultrahigh sulfur loading in ZnS1-/rGO through in situ oxidation-refilling route for high-performance Li S batteries. 2019, 414, 453-459 Rational Design of TiO-TiO Heterostructure/Polypyrrole as a Multifunctional Sulfur Host for Advanced Lithium-Sulfur Batteries. 2019, 11, 5055-5063 Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in LiB batteries. 2019, 12, 344-350 3D pomegranate-like TiN@graphene composites with electrochemical reaction chambers as sulfur hosts for ultralong-life lithium-sulfur batteries. 2019, 4, 531-539 Study on the effect of transition metal sulfide in lithiumBulfur battery. 2019, 6, 477-481 Manganese cluster-based MOF as efficient polysulfide-trapping platform for high-performance	21 69 355 35 25

794	Constructing Patch-Ni-Shelled Pt@Ni Nanoparticles within Confined Nanoreactors for Catalytic Oxidation of Insoluble Polysulfides in Li-S Batteries. 2019 , 15, e1902431	40
793	In-operando imaging of polysulfide catholytes for LiB batteries and implications for kinetics and mechanical stability. 2019 , 434, 226727	7
79²	Combined High Catalytic Activity and Efficient Polar Tubular Nanostructure in Urchin-Like Metallic NiCo2Se4 for High-Performance LithiumBulfur Batteries. 2019 , 29, 1903842	85
791	Enhanced rate capability due to highly active Ta2O5 catalysts for lithium sulfur batteries. 2019 , 435, 226707	15
790	Metal-Organic Frameworks/Conducting Polymer Hydrogel Integrated Three-Dimensional Free-Standing Monoliths as Ultrahigh Loading Li-S Battery Electrodes. <i>Nano Letters</i> , 2019 , 19, 4391-4399 ^{11.5}	84
789	Graphene-Based Mesoporous SnO2 Nanosheets as Multifunctional Hosts for High-Performance LithiumBulfur Batteries. 2019 , 2, 5009-5018	13
788	Blocking Polysulfide with CoB@CNT via "Synergetic Adsorptive Effect" toward Ultrahigh-Rate Capability and Robust Lithium-Sulfur Battery. 2019 , 13, 6742-6750	69
787	Porous honeycomb-like C3N4/rGO composite as host for high performance Li-S batteries. 2019 , 62, 1265-127	4 14
786	Metallic NiSe2 nanoarrays towards ultralong life and fast Li2S oxidation kinetics of LiB batteries. 2019 , 7, 15302-15308	37
7 ⁸ 5	Hollow quasi-polyhedron structure of NiCoP with strong constraint sulfur effect for lithium sulfur battery. 2019 , 847, 113187	16
784	A Comprehensive Understanding of LithiumBulfur Battery Technology. 2019 , 29, 1901730	156
783	Current-density dependence of Li2S/Li2S2 growth in lithiumBulfur batteries. 2019 , 12, 2976-2982	67
782	A review on the status and challenges of electrocatalysts in lithium-sulfur batteries. 2019 , 20, 55-70	226
781	A Comprehensive Review of Materials with Catalytic Effects in Liß Batteries: Enhanced Redox Kinetics. 2019 , 131, 18920-18931	49
780	A Comprehensive Review of Materials with Catalytic Effects in Li-S Batteries: Enhanced Redox Kinetics. 2019 , 58, 18746-18757	221
779	Propelling Polysulfide Conversion by Defect-Rich MoS Nanosheets for High-Performance Lithium-Sulfur Batteries. 2019 , 11, 20788-20795	63
778	Nanostructures and Nanomaterials for Lithium Metal Batteries. 2019 , 159-214	
777	Metal multiple-sulfides with nitrogen doped carbon layer for high performance lithium-sulfur batteries. 2019 , 798, 531-539	5

(2019-2019)

776	In-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nanosheets to multifunctionalize separators for stable Li-S batteries. 2019 , 373, 1309-1318	122
775	Silkworm Excrement Derived In-situ Co-doped Nanoporous Carbon as Confining Sulfur Host for Lithium Sulfur Batteries. 2019 , 4, 5678-5685	3
774	Promoting the Transformation of Li S to Li S: Significantly Increasing Utilization of Active Materials for High-Sulfur-Loading Li-S Batteries. 2019 , 31, e1901220	186
773	Multiple Covalent Triazine Frameworks with Strong Polysulfide Chemisorption for Enhanced Lithium-Sulfur Batteries. 2019 , 6, 2777-2781	15
772	Hydrophilic tannic acid-modified WS2 nanosheets for enhanced polysulfide conversion in aqueous media. 2019 , 1, 015005	
771	One dimensional nanostructures contribute better Liß and Liße batteries: Progress, challenges and perspectives. 2019 , 23, 190-224	55
770	Schwefel-basierte Elektroden mit Mehrelektronenreaktionen fl Raumtemperatur-Natriumionenspeicherung. 2019 , 131, 18490-18504	8
769	Sulfur-deficient MoS2-x promoted lithium polysulfides conversion in lithium-sulfur battery: A first-principles study. 2019 , 487, 452-463	36
768	Selenium Edge as a Selective Anchoring Site for Lithium-Sulfur Batteries with MoSe/Graphene-Based Cathodes. 2019 , 11, 19986-19993	36
767	Waste to Wealth: Exhausted Nitrogen-Doped Mesoporous Carbon/MgO Desulfurizers Turned to High-Sulfur-Loading Composite Cathodes for Li-S Batteries. 2019 , 11, 19096-19103	14
766	Current Status and Future Prospects of Metal-Sulfur Batteries. 2019 , 31, e1901125	237
765	Sulfur-Based Electrodes that Function via Multielectron Reactions for Room-Temperature Sodium-Ion Storage. 2019 , 58, 18324-18337	46
764	Rational Fabrication of Nitrogen and Sulfur Codoped Carbon Nanotubes/MoS for High-Performance Lithium-Sulfur Batteries. 2019 , 12, 3602-3614	27
763	Nanostructures and Nanomaterials for Batteries. 2019,	9
762	Improving electrochemical properties of LithiumBulfur batteries by adding a catalyst-embedded interlayer. 2019 , 315, 33-40	14
761	Manipulating the redox kinetics of Li S chemistry by porous hollow cobalt-B, N codoped-graphitic carbon polyhedrons for high performance lithium-sulfur batteries. 2019 , 149, 564-571	28
760	A polar TiO/MWCNT coating on a separator significantly suppress the shuttle effect in a lithium-sulfur battery. 2019 , 310, 1-12	31
759	Bifunctional Binder with Nucleophilic Lithium Polysulfide Immobilization Ability for High-Loading, High-Thickness Cathodes in Lithium-Sulfur Batteries. 2019 , 11, 17393-17399	16

758	Surface chemistry of tube-in-tube nanostructured cuprous sulfide@void@carbon in catalytical polysulfide conversion. 2019 , 7, 12815-12824	4
757	Enabling immobilization and conversion of polysulfides through a nitrogen-doped carbon nanotubes/ultrathin MoS2 nanosheet coreBhell architecture for lithiumBulfur batteries. 2019 , 7, 13103-13112	78
756	Integrated Polypyrrole@Sulfur@Graphene Aerogel 3D Architecture via Advanced Vapor Polymerization for High-Performance Lithium-Sulfur Batteries. 2019 , 11, 18448-18455	39
755	Dithiothreitol-assisted polysulfide reduction in the interlayer of lithium-sulfur batteries: a first-principles study. 2019 , 21, 16435-16443	5
754	Oxygen Deficiency Driven Conversion of Polysulfide by Electrocatalysis: MoO3-x Nanobelts for an Improved Lithium-Sulfur Battery Cathode. 2019 , 5, 926-931	22
753	Dual effects of the carbon fibers/Ti3C2Tx interlayer on retarding shuttle of polysulfides for stable Lithium-Sulfur batteries. 2019 , 312, 149-156	37
752	Status and prospects of SexSy cathodes for lithium/sodium storage. 2019 , 6, 1326-1340	23
75 ¹	Double-walled N-doped carbon@NiCo2S4 hollow capsules as SeS2 hosts for advanced LiBeS2 batteries. 2019 , 7, 12276-12282	30
750	Hierarchical flower-like cobalt phosphosulfide derived from Prussian blue analogue as an efficient polysulfides adsorbent for long-life lithium-sulfur batteries. 2019 , 12, 1115-1120	18
749	Suppressed polysulfide shuttling and improved Li+ transport in Li S batteries enabled by NbN modified PP separator. 2019 , 423, 98-105	39
748	Rational design of Co9S8/CoO heterostructures with well-defined interfaces for lithium sulfur batteries: A study of synergistic adsorption-electrocatalysis function. 2019 , 60, 332-339	102
747	Reviving catalytic activity of nitrides by the doping of the inert surface layer to promote polysulfide conversion in lithium-sulfur batteries. 2019 , 60, 305-311	77
746	The recent research status quo and the prospect of electrolytes for lithium sulfur batteries. 2019 , 369, 874-897	53
745	Synergistic Regulation of Polysulfides Conversion and Deposition by MOF-Derived Hierarchically Ordered Carbonaceous Composite for High-Energy LithiumBulfur Batteries. 2019 , 29, 1900875	65
744	Simultaneous Immobilization and Conversion of Polysulfides on Co3O4toN Heterostructured Mediators toward High-Performance LithiumBulfur Batteries. 2019 , 2, 2570-2578	13
743	Structural Engineering of Cathode Materials for LithiumBulfur Batteries. 2019 , 1-28	1
742	Hierarchically Designed CNF/Stu/CNF Nonwoven Electrode as Free-Standing Cathode for LithiumBulfur Batteries. 2019 , 2, 560-567	8
741	Highly Dispersed Catalytic CoS among a Hierarchical Carbon Nanostructure for High-Rate and Long-Life Lithium-Sulfur Batteries. 2019 , 13, 3982-3991	123

(2019-2019)

740	Implanting Niobium Carbide into Trichoderma Spore Carbon: a New Advanced Host for Sulfur Cathodes. 2019 , 31, e1900009	132
739	In Situ Synthesis of Sulfur Host with Chemisorption and Electrocatalytic Capability toward High-Performance LithiumBulfur Batteries. 2019 , 7, 1900015	4
738	Manipulating kinetics of sulfurized polyacrylonitrile with tellurium as eutectic accelerator to prevent polysulfide dissolution in lithium-sulfur battery under dissolution-deposition mechanism. 2019 , 60, 153-161	64
737	Coral-like reduced graphene oxide/tungsten sulfide hybrid as a cathode host of high performance lithium-sulfur battery. 2019 , 420, 22-28	18
736	Capture and Catalytic Conversion of Polysulfides by In Situ Built TiO2-MXene Heterostructures for LithiumBulfur Batteries. 2019 , 9, 1900219	291
735	3D Hierarchical Porous Graphene-Based Energy Materials: Synthesis, Functionalization, and Application in Energy Storage and Conversion. 2019 , 2, 332-371	59
734	Intercalation-conversion hybrid cathodes enabling LiB full-cell architectures with jointly superior gravimetric and volumetric energy densities. 2019 , 4, 374-382	282
733	Natural chalcopyrite as a sulfur source and its electrochemical performance for lithiumBulfur batteries. 2019 , 6, 1217-1227	5
732	Role and Potential of Metal Sulfide Catalysts in Lithium-Sulfur Battery Applications. 2019 , 11, 2373-2387	33
731	High areal capacity flexible sulfur cathode based on multi-functionalized super-aligned carbon nanotubes. 2019 , 12, 1105-1113	25
730	Electrospun nanostructures for conversion type cathode (S, Se) based lithium and sodium batteries. 2019 , 7, 11613-11650	41
729	Highly stable lithium fulfur batteries based on ptl heterojunctions embedded on hollow sheath carbon propelling polysulfides conversion. 2019 , 7, 9230-9240	43
728	Engineering Rice Husk into a High-Performance Electrode Material through an Ecofriendly Process and Assessing Its Application for Lithium-Ion Sulfur Batteries. 2019 , 7, 7851-7861	18
7 2 7	CoS-interposed and Ketjen black-embedded carbon nanofiber framework as a separator modulation for high performance Li-S batteries. 2019 , 369, 77-86	48
726	Promoting polythionate intermediates formation by oxygen-deficient manganese oxide hollow nanospheres for high performance lithium-sulfur batteries. 2019 , 370, 556-564	39
7 2 5	Ultrafine TiC MXene Nanodots-Interspersed Nanosheet for High-Energy-Density Lithium-Sulfur Batteries. 2019 , 13, 3608-3617	158
724	Synergistic Engineering of Defects and Architecture in Binary Metal Chalcogenide toward Fast and Reliable LithiumBulfur Batteries. 2019 , 9, 1900228	121
723	An integrated cathode with bi-functional catalytic effect for excellent-performance lithium-sulfur batteries. 2019 , 12, 1017-1024	15

722	Rational design of multi-functional CoS@rGO composite for performance enhanced Li-S cathode. 2019 , 421, 132-138	35
721	Inhibition of polysulfide diffusion in lithiumBulfur batteries: mechanism and improvement strategies. 2019 , 7, 12381-12413	96
720	Reliable Interlayer Based on Hybrid Nanocomposites and Carbon Nanotubes for Lithium-Sulfur Batteries. 2019 , 11, 15607-15615	23
719	Co-Fe Mixed Metal Phosphide Nanocubes with Highly Interconnected-Pore Architecture as an Efficient Polysulfide Mediator for Lithium-Sulfur Batteries. 2019 , 13, 4731-4741	154
718	Boosting redox activity on MXene-induced multifunctional collaborative interface in high Li2S loading cathode for high-energy Li-S and metallic Li-free rechargeable batteries. 2019 , 37, 183-191	59
717	Graphene/RuO2 nanocrystal composites as sulfur host for lithium-sulfur batteries. 2019 , 35, 204-211	21
716	Ultrathin nanosheets-assembled NiCo2S4 nanocages derived from ZIF-67 for high-performance supercapacitors. 2019 , 54, 9666-9678	33
715	NiCo2S4 yolk-shell hollow spheres with physical and chemical interaction toward polysulfides for advanced lithium-sulfur batteries. 2019 , 25, 4047-4056	13
714	Necklace-like MoC sulfiphilic sites embedded in interconnected carbon networks for LiB batteries with high sulfur loading. 2019 , 7, 11298-11304	39
713	An Entangled CobaltNitrogenNarbon Nanotube Array Electrode with Synergetic Confinement and Electrocatalysis of Polysulfides for Stable LiB Batteries. 2019 , 2, 2904-2912	15
712	Conductive CoOOH as Carbon-Free Sulfur Immobilizer to Fabricate Sulfur-Based Composite for LithiumBulfur Battery. 2019 , 29, 1901051	102
711	Nonlithium Metal-Sulfur Batteries: Steps Toward a Leap. 2019 , 31, e1802822	121
710	Enhanced Sulfur Transformation by Multifunctional FeS/FeS/S Composites for High-Volumetric Capacity Cathodes in Lithium-Sulfur Batteries. 2019 , 6, 1800815	133
709	Designing a Quinone-Based Redox Mediator to Facilitate Li2S Oxidation in Li-S Batteries. 2019 , 3, 872-884	114
708	Recent advances in shuttle effect inhibition for lithium sulfur batteries. 2019 , 23, 707-732	123
707	Bifunctional NiCo2S4 catalysts supported on a carbon textile interlayer for ultra-stable LiB battery. 2019 , 7, 7604-7613	60
706	SnS /SnO Heterostructures towards Enhanced Electrochemical Performance of Lithium-Sulfur Batteries. 2019 , 25, 5416-5421	48
705	Metal-organic framework derived yolk-shell NiS/carbon spheres for lithium-sulfur batteries with enhanced polysulfide redox kinetics. 2019 , 55, 3243-3246	43

704	Rational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithiumBulfur batteries. 2019 , 7, 6507-6513	150
703	Efficient Trapping and Catalytic Conversion of Polysulfides by VS4 Nanosites for Liß Batteries. 2019 , 4, 755-762	122
702	Synchronous Gains of Areal and Volumetric Capacities in Lithium-Sulfur Batteries Promised by Flower-like Porous TiCT Matrix. 2019 , 13, 3404-3412	110
701	Interfacial active fluorine site-induced electron transfer on TiO2 (001) facets to enhance polysulfide redox reactions for better liquid Li2S6-Based lithium alteries. 2019 , 7, 6431-6438	35
700	Constructing metal-free and cost-effective multifunctional separator for high-performance lithium-sulfur batteries. 2019 , 59, 390-398	71
699	Cobalt in Nitrogen-Doped Graphene as Single-Atom Catalyst for High-Sulfur Content Lithium-Sulfur Batteries. 2019 , 141, 3977-3985	626
698	Expediting redox kinetics of sulfur species by atomic-scale electrocatalysts in lithiumBulfur batteries. 2019 , 1, 533-541	196
697	Promoting Redox Reduction of Lithium-Sulfur Battery by Tris(2-carboxyl)phosphine Shearing S-S Bond. 2019 , 166, A3869-A3873	
696	Designing Effective Solventtatalyst Interface for Catalytic Sulfur Conversion in LithiumBulfur Batteries. 2019 , 31, 10186-10196	27
695	Stepwise Electrocatalysis as a Strategy against Polysulfide Shuttling in Li-S Batteries. 2019 , 13, 14208-14216	98
694	Lotus Root-Like Nitrogen-Doped Carbon Nanofiber Structure Assembled with VN Catalysts as a Multifunctional Host for Superior Lithium-Sulfur Batteries. 2019 , 9,	9
693	In situ grown £Cos/Co heterostructures on nitrogen doped carbon polyhedra enabling the trapping and reaction-intensification of polysulfides towards high performance lithium sulfur batteries. 2019 , 11, 20579-20588	7
692	A N-doped graphene-cobalt nickel sulfide aerogel as a sulfur host for lithium-sulfur batteries 2019 , 9, 32247-32257	7
691	3D ordered macroporous MoO2 attached on carbonized cloth for high performance free-standing binder-free lithiumBulfur electrodes. 2019 , 7, 24524-24531	13
690	Three-dimensional MoS2/rGO foams as efficient sulfur hosts for high-performance lithium-sulfur batteries. 2019 , 355, 671-678	107
689	Towards full demonstration of high areal loading sulfur cathode in lithiumBulfur batteries. 2019 , 39, 17-22	66
688	Nanoparticle Assembled Mesoporous MoO2 Microrods Derived from Metal Organic Framework and Wrapped with Graphene as the Sulfur Host for Long-Life Lithium Bulfur Batteries. 2019 , 6, 1801636	25
687	Flower-like molybdenum disulfide/carbon nanotubes composites for high sulfur utilization and high-performance lithiumBulfur battery cathodes. 2019 , 473, 540-547	41

686	Review on areal capacities and long-term cycling performances of lithium sulfur battery at high sulfur loading. 2019 , 18, 289-310	159
685	An ant-nest-like cathode substrate for lithium-sulfur batteries with practical cell fabrication parameters. 2019 , 18, 491-499	12
684	Direct electrochemical generation of supercooled sulfur microdroplets well below their melting temperature. 2019 , 116, 765-770	24
683	Separator modified with Ketjenblack-In2O3 nanoparticles for long cycle-life lithium-sulfur batteries. 2019 , 23, 645-656	17
682	Approaching Ultrastable High-Rate Li-S Batteries through Hierarchically Porous Titanium Nitride Synthesized by Multiscale Phase Separation. 2019 , 31, e1806547	105
681	A compact 3D interconnected sulfur cathode for high-energy, high-power and long-life lithium-sulfur batteries. 2019 , 20, 14-23	25
68o	Milk-based triboelectric nanogenerator on paper for harvesting energy from human body motion. 2019 , 56, 400-410	71
679	Layer by Layer Assemble of Colloid Nanomaterial and Functional Multilayer Films for Energy Storage and Conversion. 2019 , 255-278	3
678	A facile and effective sulfur loading method: Direct drop of liquid Li2S8 on carbon coated TiO2 nanowire arrays as cathode towards commercializing lithium-sulfur battery. 2019 , 17, 118-125	58
677	Conductive Mesoporous Niobium Nitride Microspheres/Nitrogen-Doped Graphene Hybrid with Efficient Polysulfide Anchoring and Catalytic Conversion for High-Performance Lithium-Sulfur Batteries. 2019 , 11, 2961-2969	47
676	Cyclic Voltammetry in LithiumBulfur Batteries@hallenges and Opportunities. 2019, 7, 1801001	51
675	NiCo2O4 Nanofibers as Carbon-Free Sulfur Immobilizer to Fabricate Sulfur-Based Composite with High Volumetric Capacity for LithiumBulfur Battery. 2019 , 9, 1803477	169
674	Spider-Web-Inspired Nanocomposite-Modified Separator: Structural and Chemical Cooperativity Inhibiting the Shuttle Effect in Li-S Batteries. 2019 , 13, 1563-1573	53
673	Blackberry-like hollow graphene spheres synthesized by spray drying for high-performance lithium-sulfur batteries. 2019 , 295, 822-828	27
672	Conductive and Catalytic Triple-Phase Interfaces Enabling Uniform Nucleation in High-Rate LithiumBulfur Batteries. 2019 , 9, 1802768	347
671	Designable Hierarchical Cathode for a High-Efficiency Polysulfide Trapper Toward High-Performance LithiumBulfur Batteries. 2019 , 48, 551-559	3
670	Designing a highly efficient polysulfide conversion catalyst with paramontroseite for high-performance and long-life lithium-sulfur batteries. 2019 , 57, 230-240	134
669	Activating Inert Metallic Compounds for High-Rate Lithium-Sulfur Batteries Through In Situ Etching of Extrinsic Metal. 2019 , 58, 3779-3783	204

(2020-2019)

668	Understanding Interactions between Lead lodide Perovskite Surfaces and Lithium Polysulfide toward New-Generation Integrated Solar-Powered Lithium Battery: An ab Initio Investigation. 2019 , 123, 82-90	8
667	Activating Inert Metallic Compounds for High-Rate LithiumBulfur Batteries Through In Situ Etching of Extrinsic Metal. 2019 , 131, 3819-3823	34
666	TiO2 nanoparticles anchored on three-dimensionally ordered macro/mesoporous carbon matrix as polysulfides[]mmobilizers for high performance lithium/sulfur batteries. 2019 , 23, 565-572	9
665	Manipulating Polysulfide Conversion with Strongly Coupled Fe3O4 and Nitrogen Doped Carbon for Stable and High Capacity LithiumBulfur Batteries. 2019 , 29, 1807309	56
664	Palladium nanocrystals-imbedded mesoporous hollow carbon spheres with enhanced electrochemical kinetics for high performance lithium sulfur batteries. 2019 , 143, 878-889	54
663	Accelerating polysulfide redox conversion on bifunctional electrocatalytic electrode for stable Li-S batteries. 2019 , 20, 98-107	50
662	Sulfuric acid-adjuvant sulfonated graphene as efficient polysulfides tamer for high-energy-density Li S batteries. 2019 , 412, 134-141	8
661	Supramolecular complexation of polysulfides by tyclodextrin polymer functionalized graphene hybrid cathode for high-performance lithium-sulfur batteries. 2019 , 21, 378-389	14
660	Cobalt nitride nanoparticles embedded in porous carbon nanosheet arrays propelling polysulfides conversion for highly stable lithium ulfur batteries. 2019 , 21, 210-218	51
659	Polymers for high performance Li-S batteries: Material selection and structure design. 2019 , 89, 19-60	68
658	Tin sulfide modified separator as an efficient polysulfide trapper for stable cycling performance in Li-S batteries. 2019 , 4, 214-222	59
657	Fully integrated hierarchical double-shelled CoS@CNT nanostructures with unprecedented performance for Li-S batteries. 2019 , 4, 182-189	46
656	Hybrid graphene album with polysulfides adsorption layer for Li-S batteries. 2019, 194, 148-155	10
655	Bio-templated formation of defect-abundant VS2 as a bifunctional material toward high-performance hydrogen evolution reactions and lithiumBulfur batteries. 2020 , 42, 34-42	56
654	The role of functional materials to produce high areal capacity lithium sulfur battery. 2020 , 42, 195-209	50
653	Chemical Confinement and Utility of Lithium Polysulfides in Lithium Sulfur Batteries. 2020 , 4, 1900001	36
652	Biomass-derived nitrogen-doped hierarchical porous carbon as efficient sulfur host for lithium Bulfur batteries. 2020 , 44, 61-67	70
651	Improving confinement and redox kinetics of polysufides through hollow NC@CeO2 nanospheres for high-performance lithium-sulfur batteries. 2020 , 382, 122852	41

650	Self-assembled N-doped carbon with a tube-in-tube nanostructure for lithium-sulfur batteries. 2020 , 559, 244-253	11
649	Fabricating better metal-organic frameworks separators for LiB batteries: Pore sizes effects inspired channel modification strategy. 2020 , 25, 164-171	46
648	Multifunctional Transition Metal-Based Phosphides in Energy-Related Electrocatalysis. 2020 , 10, 1902104	174
647	Lithium-Schwefel-Batterien mit Magerelektrolyt: Herausforderungen und Perspektiven. 2020 , 132, 12736-12	75 ₃
646	In Situ/Operando Spectroscopic Characterizations Guide the Compositional and Structural Design of LithiumBulfur Batteries. 2020 , 4, 1900467	18
645	New redox-mediating polymer binder for enhancing performance of Li-S batteries. 2020 , 44, 154-161	17
644	MoS2 nanorods with inner caves through synchronous encapsulation of sulfur for high performance LiB cathodes. 2020 , 45, 18-24	16
643	2 D Materials for Inhibiting the Shuttle Effect in Advanced Lithium-Sulfur Batteries. 2020 , 13, 1447-1479	30
642	Rationalizing Electrocatalysis of Liß Chemistry by Mediator Design: Progress and Prospects. 2020 , 10, 1901075	184
641	Recent advances in chemical adsorption and catalytic conversion materials for LiB batteries. 2020 , 42, 144-168	113
640	Enhancing Li-S redox kinetics by fabrication of a three dimensional Co/CoP@nitrogen-doped carbon electrocatalyst. 2020 , 380, 122595	45
639	Solvent-free template synthesis of SnO2/C hybrid hollow spheres for superior lithium-sulfur batteries. 2020 , 239, 122070	12
638	Hollow nitrogen-doped carbon/sulfur@MnO2 nanocomposite with structural and chemical dual-encapsulation for lithium-sulfur battery. 2020 , 381, 122746	46
637	ReS2 nanosheets anchored on rGO as an efficient polysulfides immobilizer and electrocatalyst for Li-S batteries. 2020 , 505, 144586	14
636	Promoting kinetics of polysulfides redox reactions by the multifunctional CoS/C/CNT microspheres for high-performance lithium-sulfur batteries. 2020 , 504, 144463	21
635	Cobalt phthalocyanine is a suitable scaffold for lithium polysulfide (Li2Sn n = 2B). 2020 , 739, 136942	9
634	Efficient polysulfide blocker from conductive niobium nitride@graphene for Li-S batteries. 2020 , 45, 135-141	36
633	In situ transformation of LDH into hollow cobalt-embedded and N-doped carbonaceous microflowers as polysulfide mediator for lithium-sulfur batteries. 2020 , 385, 123457	17

(2020-2020)

632	1T-MoS2 nanotubes wrapped with N-doped graphene as highly-efficient absorbent and electrocatalyst for LiB batteries. 2020 , 447, 227364	64
631	Lithium-Sulfur Batteries under Lean Electrolyte Conditions: Challenges and Opportunities. 2020 , 59, 12636-12652	230
630	Efficient adsorption of uranium (VI) from aqueous solution by a novel modified steel slag adsorbent. 2020 , 323, 73-81	6
629	A high-performance energy storage system from sphagnum uptake waste LIBs with negative greenhouse-gas emission. 2020 , 67, 104216	7
628	3D hybrid of CoS and N-doped carbon hollow spheres as effective hosts for Li-S batteries. 2020 , 31, 035404	13
627	Interface enhanced well-dispersed Co9S8 nanocrystals as an efficient polysulfide host in lithiumBulfur batteries. 2020 , 48, 109-115	41
626	Simple synthesis of Ni/high porosity biomass carbon composites with enhanced electrochemical performance of lithiumBulfur battery. 2020 , 832, 153692	15
625	Polar, catalytic, and conductive CoSe2/C frameworks for performance enhanced S cathode in LiB batteries. 2020 , 48, 128-135	33
624	Electrode Degradation in Lithium-Ion Batteries. 2020 , 14, 1243-1295	209
623	Rational design of two-dimensional nanomaterials for lithiumBulfur batteries. 2020 , 13, 1049-1075	156
622	An engineered self-supported electrocatalytic cathode and dendrite-free composite anode based on 3D double-carbon hosts for advanced LiBeS2 batteries. 2020 , 8, 2969-2983	49
621	Rational design of polar/nonpolar mediators toward efficient sulfur fixation and enhanced conductivity. 2020 , 8, 1010-1051	23
620	Electrospun carbon nanofibers with MnS sulfiphilic sites as efficient polysulfide barriers for high-performance wide-temperature-range LiB batteries. 2020 , 8, 1212-1220	35
619	Enhanced Chemisorption and Catalytic Effects toward Polysulfides by Modulating Hollow Nanoarchitectures for Long-Life Lithium-Sulfur Batteries. 2020 , 16, e1906114	28
618	Facet-tailoring five-coordinated Ti sites and structure-optimizing electron transfer in a bifunctional cathode with titanium nitride nanowire array to boost the performance of Li2S6-based lithiumBulfur batteries. 2020 , 26, 40-45	30
617	Synergetic Effect of Nitrogen/Sulfur Dual-Doped Hierarchically Porous Carbon Networks for Liß Batteries. 2020 , 8, 749-758	18
616	Long Cycle Life Organic Polysulfide Catholyte for Rechargeable Lithium Batteries. 2020 , 7, 1902646	25
615	Theoretical Calculation Guided Design of Single-Atom Catalysts toward Fast Kinetic and Long-Life Li-S Batteries. <i>Nano Letters</i> , 2020 , 20, 1252-1261	194

614	MoS2 wrapped MOFs-derived N-doped carbon nanorods as an effective sulfur host for high-performance lithium-sulfur batteries. 2020 , 46, 9614-9621	17
613	One-step hydrothermal synthesis of Ni-Co sulfide on Ni foam as a binder-free electrode for lithium-sulfur batteries. 2020 , 565, 378-387	20
612	Adsorption-Catalysis Design in the Lithium-Sulfur Battery. 2020 , 10, 1903008	154
611	Nanomaterials application in LiBe and NaBe batteries. 2020 , 69-114	1
610	Multifunctional reaction interfaces for capture and boost conversion of polysulfide in lithium-sulfur batteries. 2020 , 334, 135658	14
609	Self-assembly of MoO-decorated carbon nanofiber interlayers for high-performance lithium-sulfur batteries. 2020 , 22, 2157-2163	17
608	Design of a composite cathode and a graphene coated separator for a stable room-temperature aluminumBulfur battery. 2020 , 4, 1630-1641	15
607	Constructing a 3D compact sulfur host based on carbon-nanotube threaded defective Prussian blue nanocrystals for high performance lithiumBulfur batteries. 2020 , 8, 1154-1163	16
606	Suppression of the Shuttle Effect in LiB Batteries via Magnetron Sputtered TiO2 Thin Film at the ElectrodeElectrolyte Interface. 2020 , 3, 1515-1529	11
605	Vanadium Sulfide@Sulfur Composites as High-Performance Cathode for Advanced LithiumBulfur Batteries. 2020 , 8, 1901163	13
604	Ether-compatible lithium sulfur batteries with robust performance via selenium doping. 2020 , 46, 199-201	3
603	Designing Highly Conductive Functional Groups Improving Guest-Host Interactions in Li/S Batteries. 2020 , 16, e1905585	21
602	Donor dominated triazine-based microporous polymer as a polysulfide immobilizer and catalyst for high-performance lithium-sulfur batteries. 2020 , 392, 123694	46
601	Covalently Bonded Sulfur Anchored with Thiol-Modified Carbon Nanotube as a Cathode Material for LithiumBulfur Batteries. 2020 , 3, 487-494	8
600	Catalytic Interfaces-Enriched Hybrid Hollow Spheres Sulfur Host for Advanced Liß Batteries. 2020 , 7, 1901420	10
599	Phase-transformed Mo4P3 nanoparticles as efficient catalysts towards lithium polysulfide conversion for lithiumBulfur battery. 2020 , 330, 135310	27
598	A heterostuctured Co3S4/MnS nanotube array as a catalytic sulfur host for lithiumBulfur batteries. 2020 , 330, 135311	34
597	In-situ topochemical nitridation derivative MoO2Mo2N binary nanobelts as multifunctional interlayer for fast-kinetic Li-Sulfur batteries. 2020 , 68, 104356	64

(2020-2020)

596	lithium sulfur batteries. 2020 , 26, 570-576	30
595	TiO[Nanosheet-Redox Graphene Oxide/Sulphur Cathode for High-Performance Lithium-Sulphur Batteries. 2020 , 20, 1715-1722	1
594	Ni3S2 anchored to N/S co-doped reduced graphene oxide with highly pleated structure as a sulfur host for lithiumBulfur batteries. 2020 , 8, 3834-3844	28
593	Redox Comediation with Organopolysulfides in Working Lithium-Sulfur Batteries. 2020 , 6, 3297-3311	84
592	Electrocatalytic effect of 3D porous sulfur/gallium hybrid materials in lithiumBulfur batteries. 2020 , 364, 137259	18
591	Reducing polarization of lithium-sulfur batteries via ZnS/reduced graphene oxide accelerated lithium polysulfide conversion. 2020 , 18, 100519	25
590	Highly dispersed MoP encapsulated in P-doped porous carbon boosts polysulfide redox kinetics of lithium-sulfur batteries. 2020 , 18, 100531	15
589	FeP-decorated N,P Codoped Carbon Synthesized via Direct Biological Recycling for Endurable Sulfur Encapsulation. 2020 , 6, 1827-1834	13
588	Optimizing Redox Reactions in Aprotic LithiumBulfur Batteries. 2020 , 10, 2002180	45
587	ZnSe/N-Doped Carbon Nanoreactor with Multiple Adsorption Sites for Stable Lithium-Sulfur Batteries. 2020 , 14, 15492-15504	43
586	Accelerating Redox Kinetics of Lithium-Sulfur Batteries. 2020 , 2, 1020-1033	15
585	Ti3C2 MXene as an Energy band bridge(to regulate the heterointerface mass transfer and electron reversible exchange process for LiB batteries. 2020 , 8, 25255-25267	36
584	Constructing CoS Nanosheets Coating N-Doped Carbon Nanofibers as Freestanding Sulfur Host for High-Performance Lithium-Sulfur Batteries. 2020 , 7, 2002037	21
583	Metal-Based Electrocatalysts for High-Performance Lithium-Sulfur Batteries: A Review. 2020 , 10, 1137	4
582	Using of various metal species for improvement of electrochemical performances of lithium sulfur batteries. 2020 , 878, 114652	4
581	in situ engineered ultrafine NiS-ZnS heterostructures in micro-mesoporous carbon spheres accelerating polysulfide redox kinetics for high-performance lithium-sulfur batteries. 2020 , 12, 16201-16207	17
580	Status and prospects of porous graphene networks for lithiumBulfur batteries. 2020 , 7, 2487-2518	33
579	Applications of transition-metal sulfides in the cathodes of lithium Bulfur batteries. 2020, 2, 134-146	44

578	Pb/C Composite with Spherical Pb Nanoparticles Encapsulated in Carbon Microspheres as a High-Performance Anode for Lithium-Ion Batteries. 2020 , 3, 7416-7426	4
577	A synergistic engineering layer with a versatile H2Ti3O7 electrocatalyst for a suppressed shuttle effect and enhanced catalytic conversion in lithiumBulfur batteries. 2020 , 8, 25411-25424	8
576	Controllable Substitution of S Radicals on Triazine Covalent Framework to Expedite Degradation of Polysulfides. 2020 , 16, e2004631	6
575	Rational Design of a MnO Nanoparticle-Embedded Carbon Nanofiber Interlayer for Advanced LithiumBulfur Batteries. 2020 , 3, 10793-10801	7
574	Stable Lithium Sulfur Battery Based on In Situ Electrocatalytically Formed Li2S on Metallic MoS2©arbon Cloth Support. 2020 , 4, 2000353	24
573	Design, synthesis, and application of metal sulfides for LiB batteries: progress and prospects. 2020 , 8, 17848-17882	32
572	Fe3C composite carbon nanofiber interlayer for efficient trapping and conversion of polysulfides in lithium-sulfur batteries. 2020 , 847, 156443	18
571	Exploring and Understanding the Roles of Li2Sn and the Strategies to beyond Present Li-S Batteries. 2020 , 6, 2533-2557	62
570	Borophene-like boron subunits-inserted molybdenum framework of MoB2 enables stable and quick-acting Li2S6-based lithium-sulfur batteries. 2020 , 32, 216-224	21
569	Tuning Nitrogen in Graphitic Carbon Nitride Enabling Enhanced Performance for Polysulfide Confinement in Liß Batteries. 2020 , 34, 11557-11564	11
568	Promoting Electrocatalytic Conversion of Polysulfide using Cobalt Disulfide Nanocrystals for Lithium Sulfur Batteries. 2020 , 124, 21319-21328	1
567	Durable Conductive Webs as Multifunctional Binder for the High-Performance LithiumBulfur Battery. 2020 , 3, 7825-7831	3
566	Defective VSe-Graphene Heterostructures Enabling Electrocatalyst Evolution for Lithium-Sulfur Batteries. 2020 , 14, 11929-11938	61
565	Zeolitic Imidazolate Frameworks-Derived Activated Carbon As Electrode Material for Lithium-Sulfur Batteries and Lithium-Ion Batteries. 2020 , 49, 6156-6164	3
564	Lithiated VO2(M)@Carbon Fibers Hybrid Host for Improving the Cycling Stability of Sulfur Cathode in Lithium-Sulfur Batteries 2020, 38, 1703-1708	5
563	Constructing Defect-Rich MoS2/N-Doped Carbon Nanosheets for Catalytic Polysulfide Conversion in LithiumBulfur Batteries. 2020 , 8, 13318-13327	17
562	Selective S/LiS Conversion in-Built Crystal Facet Self-Mediation: Toward High Volumetric Energy Density Lithium-Sulfur Batteries. 2020 , 14, 15011-15022	32
561	Dual-Constrained Sulfur in FeS2@C Nanostructured Lithium-Sulfide Batteries. 2020 , 3, 10950-10960	5

560	Three-Dimensional SnS2 Nanoarrays with Enhanced Lithium-Ion Storage Properties. 2020 , 7, 4484-4491	3
559	Crosslinked cyanometallateEhitosan nanosheet assembled aerogels as efficient catalysts to boost polysulfide redox kinetics in lithiumEulfur batteries. 2020 , 8, 19262-19268	7
558	Separators Modified Using MoO2@Carbon Nanotube Nanocomposites as Dual-Mode Li-Polysulfide Anchoring Materials for High-Performance Anti-Self-Discharge LithiumBulfur Batteries. 2020 , 8, 15134-15148	7
557	Rechargeable Aluminium-Sulfur Battery with Improved Electrochemical Performance by Cobalt-Containing Electrocatalyst. 2020 , 59, 22963-22967	15
556	Nanostructured Sulfur and Sulfides for Advanced Lithium/Sulfur Cells. 2020 , 7, 3927-3942	4
555	Unravel the Catalytic Effect of Two-Dimensional Metal Sulfides on Polysulfide Conversions for Lithium-Sulfur Batteries. 2020 , 12, 43560-43567	23
554	One-step electrochemical exfoliation-deposition of MnO2 anchoring on graphite nanosheets as an effective host material for high-performance sulfur cathode. 2020 , 26, 5279-5286	2
553	Electrocatalytic Cathodes Based on Cobalt Nanoparticles Supported on Nitrogen-Doped Porous Carbon by Strong Electrostatic Adsorption for Advanced Lithium Bulfur Batteries. 2020 , 34, 13038-13047	3
552	Rechargeable AluminiumBulfur Battery with Improved Electrochemical Performance by Cobalt-Containing Electrocatalyst. 2020 , 132, 23163-23167	5
551	Unraveling the Reaction Mechanism of FeS as a Li-Ion Battery Cathode. 2020 , 12, 44850-44857	24
551 550	Unraveling the Reaction Mechanism of FeS as a Li-Ion Battery Cathode. 2020 , 12, 44850-44857 A review of cathode materials in lithium-sulfur batteries. 2020 , 26, 5299-5318	24
550	A review of cathode materials in lithium-sulfur batteries. 2020 , 26, 5299-5318 Highly Stable Lithium Bulfur Batteries Achieved by a SnS/Porous Carbon Nanosheet Architecture	24
550 549	A review of cathode materials in lithium-sulfur batteries. 2020, 26, 5299-5318 Highly Stable LithiumBulfur Batteries Achieved by a SnS/Porous Carbon Nanosheet Architecture Modified Celgard Separator. 2020, 30, 2006297 Up-Scalable Conversion of White-Waste Polystyrene Foams to Sulfur, Phosphorus-Codoped Porous	²⁴
550 549 548	A review of cathode materials in lithium-sulfur batteries. 2020, 26, 5299-5318 Highly Stable LithiumBulfur Batteries Achieved by a SnS/Porous Carbon Nanosheet Architecture Modified Celgard Separator. 2020, 30, 2006297 Up-Scalable Conversion of White-Waste Polystyrene Foams to Sulfur, Phosphorus-Codoped Porous Carbon for High-Performance LithiumBulfur Batteries. 2020, 3, 9369-9378 Promoting polysulfide conversion by catalytic separator with LiNiPO4 and rGO hybrids for high	24 18 2
55° 549 548	A review of cathode materials in lithium-sulfur batteries. 2020, 26, 5299-5318 Highly Stable LithiumBulfur Batteries Achieved by a SnS/Porous Carbon Nanosheet Architecture Modified Celgard Separator. 2020, 30, 2006297 Up-Scalable Conversion of White-Waste Polystyrene Foams to Sulfur, Phosphorus-Codoped Porous Carbon for High-Performance LithiumBulfur Batteries. 2020, 3, 9369-9378 Promoting polysulfide conversion by catalytic separator with LiNiPO4 and rGO hybrids for high performance LiB batteries. 2020, 8, 20111-20121 Highly-rough surface carbon nanofibers film as an effective interlayer for lithiumBulfur batteries.	24 18 2 14 4
55° 549 548 547 546	A review of cathode materials in lithium-sulfur batteries. 2020, 26, 5299-5318 Highly Stable LithiumBulfur Batteries Achieved by a SnS/Porous Carbon Nanosheet Architecture Modified Celgard Separator. 2020, 30, 2006297 Up-Scalable Conversion of White-Waste Polystyrene Foams to Sulfur, Phosphorus-Codoped Porous Carbon for High-Performance LithiumBulfur Batteries. 2020, 3, 9369-9378 Promoting polysulfide conversion by catalytic separator with LiNiPO4 and rGO hybrids for high performance LiB batteries. 2020, 8, 20111-20121 Highly-rough surface carbon nanofibers film as an effective interlayer for lithiumBulfur batteries. 2020, 41, 092701	24 18 2 14 4

542	Porous NiCoS Nanoneedle Arrays with Highly Efficient Electrocatalysis Anchored on Carbon Cloths as Self-Supported Hosts for High-Loading Li-S Batteries. 2020 , 12, 57975-57986	13
541	Kinetic Enhancement of Sulfur Cathodes by N-Doped Porous Graphitic Carbon with Bound VN Nanocrystals. 2020 , 16, e2004950	29
540	Atomic Layer Deposition of Single Atomic Cobalt as a Catalytic Interlayer for LithiumBulfur Batteries. 2020 , 3, 11206-11212	7
539	Inducing rapid polysulfide transformation through enhanced interfacial electronic interaction for lithium-sulfur batteries. 2020 , 12, 13980-13986	8
538	Electrocatalytic Interlayer with Fast Lithium B olysulfides Diffusion for Lithium B ulfur Batteries to Enhance Electrochemical Kinetics under Lean Electrolyte Conditions. 2020 , 30, 2000742	48
537	Atomically Engineered Transition Metal Dichalcogenides for Liquid Polysulfide Adsorption and Their Effective Conversion in Li-S Batteries. 2020 , 12, 27112-27121	18
536	Rational design of well-dispersed ultrafine CoS2 nanocrystals in microfinesoporous carbon spheres with a synergistic effect for high-performance lithium fulfur batteries. 2020 , 8, 10885-10890	24
535	Efficient polysulfide anchor: brain coral-like WS2 nanosheets. 2020 , 55, 12031-12040	2
534	Promoting the sulfur conversion kinetics via a solid auxiliary redox couple embedded in the cathode of LiB batteries. 2020 , 4, 3701-3711	О
533	Storage technologies for electric vehicles. 2020 , 7, 340-361	17
532	Conversion of Co Nanoparticles to CoS in Metal-Organic Framework-Derived Porous Carbon during Cycling Facilitates NaS Reactivity in a Na-S Battery. 2020 , 12, 29285-29295	1
531	Ultrathin Lithium Aluminate Nanoflake-Inlaid Sulfur as a Cathode Material for Lithium B ulfur Batteries with High Areal Capacity. 2020 , 3, 5637-5645	8
530	High-rate lithium-sulfur batteries enabled via vanadium nitride nanoparticle/3D porous graphene through regulating the polysulfides transformation. 2020 , 398, 125432	16
529	rGO-CNT aerogel embedding iron phosphide nanocubes for high-performance Li-polysulfide batteries. 2020 , 167, 446-454	9
528	Construction of polypyrrole coated hollow cobalt manganate nanocages as an effective sulfur host for lithium-sulfur batteries. 2020 , 46, 18224-18233	19
527	Oriented nanoporous MOFs to mitigate polysulfides migration in lithium-sulfur batteries. 2020 , 75, 105009	11
526	Ultrathin TiO2 surface layer coated TiN nanoparticles in freestanding film for high sulfur loading Li-S battery. 2020 , 399, 125674	14
525	Fast conversion and controlled deposition of lithium (poly)sulfides in lithium-sulfur batteries using high-loading cobalt single atoms. 2020 , 30, 250-259	138

524	12 years roadmap of the sulfur cathode for lithium sulfur batteries (2009\(\textbf{Q} 020 \)). 2020 , 30, 346-366	98
523	Yolk-shell structure MnO2@Hollow carbon nanospheres as sulfur host with synergistic encapsulation of polysulfides for improved LiB batteries. 2020 , 842, 155790	28
522	Nanostructured CoS2-Decorated Hollow Carbon Spheres: A Performance Booster for Li-Ion/Sulfur Batteries. 2020 , 3, 6447-6459	10
521	MoO nanoparticles embedded in N-doped hydrangea-like carbon as a sulfur host for high-performance lithium-sulfur batteries 2020 , 10, 20173-20183	5
520	Nitrogen Doping Improves the Immobilization and Catalytic Effects of Co9S8 in Li-S Batteries. 2020 , 30, 2002462	46
519	In-built durable LiB counterparts from LiTiS2 batteries. 2020 , 17, 100439	5
518	Multifunctional MoSe2@rGO coating on the cathode versus the separator as an efficient polysulfide barrier for high-performance lithium-sulfur battery. 2020 , 527, 146785	28
517	Crepe Cake Structured Layered Double Hydroxide/Sulfur/Graphene as a Positive Electrode Material for Li-S Batteries. 2020 , 14, 8220-8231	29
516	In-Situ Assembled VS4 as a Polysulfide Mediator for High-Loading LithiumBulfur Batteries. 2020 , 5, 1177-118	35 ₅₆
515	Cu2CoGeS4 nanocrystals for high performance aqueous polysulfide/iodide redox flow batteries: enhanced selectively towards the electrocatalytic conversion of polysulfides. 2020 , 4, 2892-2899	7
514	Strategies toward High-Loading LithiumBulfur Battery. 2020 , 10, 2000082	140
513	Spinel-type bimetal sulfides derived from Prussian blue analogues as efficient polysulfides mediators for lithiumBulfur batteries. 2020 , 32, 4063-4063	1
513 512		1
	mediators for lithium Bulfur batteries. 2020, 32, 4063-4063 Local Concentration Effect-Derived Heterogeneous LiS/LiS Deposition on Dual-Phase MWCNT/Cellulose Nanofiber/NiCoS Self-Standing Paper for High Performance of Lithium	
512	mediators for lithium Bulfur batteries. 2020, 32, 4063-4063 Local Concentration Effect-Derived Heterogeneous LiS/LiS Deposition on Dual-Phase MWCNT/Cellulose Nanofiber/NiCoS Self-Standing Paper for High Performance of Lithium Polysulfide Batteries. 2020, 12, 15228-15238	19
512 511	mediators for lithiumBulfur batteries. 2020, 32, 4063-4063 Local Concentration Effect-Derived Heterogeneous LiS/LiS Deposition on Dual-Phase MWCNT/Cellulose Nanofiber/NiCoS Self-Standing Paper for High Performance of Lithium Polysulfide Batteries. 2020, 12, 15228-15238 Electrode Design for LithiumBulfur Batteries: Problems and Solutions. 2020, 30, 1910375	19 109
512 511 510	mediators for lithiumBulfur batteries. 2020, 32, 4063-4063 Local Concentration Effect-Derived Heterogeneous LiS/LiS Deposition on Dual-Phase MWCNT/Cellulose Nanofiber/NiCoS Self-Standing Paper for High Performance of Lithium Polysulfide Batteries. 2020, 12, 15228-15238 Electrode Design for LithiumBulfur Batteries: Problems and Solutions. 2020, 30, 1910375 An in situ encapsulation approach for polysulfide retention in lithiumBulfur batteries. 2020, 8, 6902-6907 Cobalt single atoms supported on N-doped carbon as an active and resilient sulfur host for	19 109 4

506	Synergistic effect of cobalt, nitrogen-codoped hollow carbon sphere hosts for high performance lithium sulfur batteries. 2020 , 44, 5965-5971	1
505	An Innovative Lithium Ion Battery System Based on a CuS Anode Material. 2020 , 12, 17396-17405	11
504	Electrochemical Phase Evolution of Metal-Based Pre-Catalysts for High-Rate Polysulfide Conversion. 2020 , 132, 9096-9102	21
503	Ultrafine Co3Se4 Nanoparticles in Nitrogen-Doped 3D Carbon Matrix for High-Stable and Long-Cycle-Life Lithium Sulfur Batteries. 2020 , 10, 1904273	78
502	Improving the capacity and cycling-stability of LithiumBulfur batteries using self-healing binders containing dynamic disulfide bonds. 2020 , 4, 2760-2767	15
501	Electrocatalytic conversion of lithium polysulfides by highly dispersed ultrafine Mo2C nanoparticles on hollow N-doped carbon flowers for Li-S batteries. 2020 , 2, e12020	15
500	Micro-Mesopores Nitrogen-Doped Carbon Combined Polar-MoS2 as Host for High-Performance Li-S Batteries. 2020 , 5, 3098-3104	2
499	Conductive cobalt doped niobium nitride porous spheres as an efficient polysulfide convertor for advanced lithium-sulfur batteries. 2020 , 8, 6276-6282	38
498	Dual-confined sulfur cathodes based on SnO2-decorated MoS2 microboxes for long-life lithiumBulfur batteries. 2020 , 340, 135991	8
497	TMDs beyond MoS for Electrochemical Energy Storage. 2020 , 26, 6320-6341	20
497 496	TMDs beyond MoS for Electrochemical Energy Storage. 2020 , 26, 6320-6341 Multifunctional ultrasmall-MoS2/graphene composites for high sulfur loading LiB batteries. 2020 , 4, 1483-1491	20
	Multifunctional ultrasmall-MoS2/graphene composites for high sulfur loading Liß batteries. 2020 ,	
496	Multifunctional ultrasmall-MoS2/graphene composites for high sulfur loading LiB batteries. 2020 , 4, 1483-1491	7
496 495	Multifunctional ultrasmall-MoS2/graphene composites for high sulfur loading LiB batteries. 2020, 4, 1483-1491 A Perspective toward Practical Lithium-Sulfur Batteries. 2020, 6, 1095-1104 Bonding VSe2 ultrafine nanocrystals on graphene toward advanced lithium-sulfur batteries. 2020,	7 184
496 495 494	Multifunctional ultrasmall-MoS2/graphene composites for high sulfur loading LiB batteries. 2020, 4, 1483-1491 A Perspective toward Practical Lithium-Sulfur Batteries. 2020, 6, 1095-1104 Bonding VSe2 ultrafine nanocrystals on graphene toward advanced lithium-sulfur batteries. 2020, 13, 2673-2682 Dense MoS2 Micro-Flowers Planting on Biomass-Derived Carbon Fiber Network for Multifunctional	7 184 33
496 495 494 493	Multifunctional ultrasmall-MoS2/graphene composites for high sulfur loading LiB batteries. 2020, 4, 1483-1491 A Perspective toward Practical Lithium-Sulfur Batteries. 2020, 6, 1095-1104 Bonding VSe2 ultrafine nanocrystals on graphene toward advanced lithium-sulfur batteries. 2020, 13, 2673-2682 Dense MoS2 Micro-Flowers Planting on Biomass-Derived Carbon Fiber Network for Multifunctional Sulfur Cathodes. 2020, 5, 7563-7570	7 184 33
496 495 494 493 492	Multifunctional ultrasmall-MoS2/graphene composites for high sulfur loading LiB batteries. 2020, 4, 1483-1491 A Perspective toward Practical Lithium-Sulfur Batteries. 2020, 6, 1095-1104 Bonding VSe2 ultrafine nanocrystals on graphene toward advanced lithium-sulfur batteries. 2020, 13, 2673-2682 Dense MoS2 Micro-Flowers Planting on Biomass-Derived Carbon Fiber Network for Multifunctional Sulfur Cathodes. 2020, 5, 7563-7570 Ferrites for Electrochemical Supercapacitors. 2020, 83-122 Engineering Bifunctional Host Materials of Sulfur and Lithium-Metal Based on Nitrogen-Enriched	7 184 33 3

(2020-2020)

488	Batteries. 2020 , 3, 613-642	33
487	Recent progress in developing Li2S cathodes for LiB batteries. 2020 , 27, 279-296	63
486	Nanoengineering to achieve high efficiency practical lithium-sulfur batteries. 2020 , 5, 808-831	28
485	MCNT/MoS2 promoting the electrochemical performance of lithium-sulfur batteries by adsorption polysulfide. 2020 , 7, 035507	1
484	Hybrid Membrane with SnS2 Nanoplates Decorated Nitrogen-Doped Carbon Nanofibers as Binder-Free Electrodes with Ultrahigh Sulfur Loading for Lithium Sulfur Batteries. 2020 , 8, 2707-2715	55
483	2020 Roadmap on Carbon Materials for Energy Storage and Conversion. 2020 , 15, 995-1013	99
482	Nanosized FeS2 Particles Caged in the Hollow Carbon Shell as a Robust Polysulfide Adsorbent and Redox Mediator. 2020 , 8, 3261-3272	18
481	Solid Additives for Improving the Performance of Sulfur Cathodes in LithiumBulfur BatteriesAdsorbents, Mediators, and Catalysts. 2020 , 4, 1900864	37
480	Graphene-Modified Mesoporous Iron Phosphate as Superior Binary Sulfur Host for LithiumBulfur Batteries. 2020 , 8, 1901462	3
479	Assessment of critical materials and cell design factors for high performance lithium-sulfur batteries using machine learning. 2020 , 390, 124117	23
478	Co-Fe bimetallic sulfide with robust chemical adsorption and catalytic activity for polysulfides in lithium-sulfur batteries. 2020 , 387, 124122	29
477	An ultra-durable gel electrolyte stabilizing ion deposition and trapping polysulfides for lithium-sulfur batteries. 2020 , 27, 25-34	15
476	Spherical Metal Oxides with High Tap Density as Sulfur Host to Enhance Cathode Volumetric Capacity for Lithium-Sulfur Battery. 2020 , 12, 5909-5919	44
475	Propelling polysulfide conversion for high-loading lithiumBulfur batteries through highly sulfiphilic NiCo2S4 nanotubes. 2020 , 27, 51-60	41
474	Electrospun three-dimensional cobalt decorated nitrogen doped carbon nanofibers network as freestanding electrode for lithium/sulfur batteries. 2020 , 337, 135765	52
473	Ultrahigh volumetric capacity enabled by dynamic evolutions of host-guest pairs in self-supporting lithium-sulfur batteries. 2020 , 70, 104522	29
472	Curbing polysulfide shuttling by synergistic engineering layer composed of supported Sn4P3 nanodots electrocatalyst in lithium-sulfur batteries. 2020 , 70, 104532	53
47 ¹	High loading cotton cellulose-based aerogel self-standing electrode for Li-S batteries. 2020 , 65, 803-811	20

470	Colloidal dispersion of NbO/reduced graphene oxide nanocomposites as functional coating layer for polysulfide shuttle suppression and lithium anode protection of Li-S battery. 2020 , 566, 11-20	17
469	Graphene-Like Matrix Composites with Fe2O3 and Co3O4 as Cathode Materials for LithiumBulfur Batteries. 2020 , 3, 1382-1390	11
468	Co-based and Cu-based MOFs modified separators to strengthen the kinetics of redox reaction and inhibit lithium-dendrite for long-life lithium-sulfur batteries. 2020 , 388, 124241	47
467	Naturally derived honeycomb-like N,S-codoped hierarchical porous carbon with MS (M = Co, Ni) decoration for high-performance Li-S battery. 2020 , 12, 5114-5124	43
466	A long-life LiB battery enabled by a cathode made of well-distributed B4C nanoparticles decorated activated cotton fibers. 2020 , 451, 227751	12
465	The role of titanium-deficient anatase TiO interlayers in boosting lithium-sulfur battery performance: polysulfide trapping, catalysis and enhanced lithium ion transport. 2020 , 12, 4645-4654	28
464	An integrated hybrid interlayer for polysulfides/selenides regulation toward advanced LiBeS2 batteries. 2020 , 161, 413-422	19
463	Ordered micro-mesoporous carbon spheres embedded with well-dispersed ultrafine Fe3C nanocrystals as cathode material for high-performance lithium-sulfur batteries. 2020 , 388, 124315	16
462	The electrocatalytic activity of BaTiO3 nanoparticles towards polysulfides enables high-performance lithiumBulfur batteries. 2020 , 48, 208-216	13
461	Highly integrated sulfur cathodes with strong sulfur/high-strength binder interactions enabling durable high-loading lithiumBulfur batteries. 2020 , 49, 71-79	9
460	FeOOH Interlayer With Abundant Oxygen Vacancy Toward Boosting Catalytic Effect for Lithium Sulfur Batteries. 2020 , 8, 309	4
459	Boosting the polysulfide confinement in B/NIIodoped hierarchically porous carbon nanosheets via Lewis acidBase interaction for stable LiB batteries. 2020 , 51, 90-100	19
458	MnO2 supported on acrylic cloth as functional separator for high-performance lithiumBulfur batteries. 2020 , 464, 228181	24
457	Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. 2020 , 13, 1856-1866	161
456	One-Pot Fabrication of Crumpled N-Doped Graphene Anchored with Cobalt for High-Performance LithiumBulfur Batteries. 2020 , 7, 1733-1738	4
455	Rational design of MoNi sulfide yolk-shell heterostructure nanospheres as the efficient sulfur hosts for high-performance lithium-sulfur batteries. 2020 , 394, 124983	16
454	Review of Emerging Potassium-Sulfur Batteries. 2020 , 32, e1908007	51
453	Modulating the Void Space of Nitrogen-Doped Hollow Mesoporous Carbon Spheres for Lithium-Sulfur Batteries. 2020 , 6, 925-929	4

452	batteries. 2020 , 598, 124737	2
45 ¹	MOF-derived NiCo2S4@C as a separator modification material for high-performance lithium-sulfur batteries. 2020 , 344, 135811	19
450	Bifunctional TiS2/CNT as efficient polysulfide barrier to improve the performance of lithium ulfur battery. 2020 , 832, 154947	19
449	Mn3(PO4)2/rGO as dual-function polysulfide inhibitor through oxygen deficiencies and polar sites for lithium sulfur batteries. 2020 , 521, 146425	2
448	Molecular-Level Design of Pyrrhotite Electrocatalyst Decorated Hierarchical Porous Carbon Spheres as Nanoreactors for LithiumBulfur Batteries. 2020 , 10, 2000651	61
447	A three-dimensional hierarchical porous carbon network decorated with MnO2 nanoparticles (HPCM) as an efficient sulfur host for high-performance lithium-sulfur batteries (LSBs). 2020 , 835, 155206	4
446	Rational design of MoS2 nanosheets decorated on mesoporous hollow carbon spheres as a dual-functional accelerator in sulfur cathode for advanced pouch-type LiB batteries. 2020 , 51, 262-271	32
445	Graphene-Templated Growth of WS2 Nanoclusters for Catalytic Conversion of Polysulfides in LithiumBulfur Batteries. 2020 , 3, 4923-4930	11
444	Integration of Binary Active Sites: Co V O as Polysulfide Traps and Catalysts for Lithium-Sulfur Battery with Superior Cycling Stability. 2020 , 16, e1907153	18
443	Loading Fe3O4 nanoparticles on paper-derived carbon scaffold toward advanced lithiumBulfur batteries. 2021 , 52, 1-11	23
442	Two-dimensional multimetallic sulfide nanosheets with multi-active sites to enhance polysulfide redox reactions in liquid Li2S6-based lithium-polysulfide batteries. 2021 , 52, 163-169	17
441	Catalyzing the polysulfide conversion for promoting lithium sulfur battery performances: A review. 2021 , 54, 434-451	53
440	Solidifying Cathode E lectrolyte Interface for Lithium B ulfur Batteries. 2021 , 11, 2000791	38
439	Fe-Nx Sites enriched microporous carbon nanoflower planted with tangled bamboo-like carbon nanotube as a strong polysulfides anchor for lithium ulfur batteries. 2021 , 6, 506-516	5
438	Catalytic cobalt phosphide Co2P/carbon nanotube nanocomposite as host material for high performance lithium-sulfur battery cathode. 2021 , 851, 156289	26
437	Single-atom catalysts for metal-sulfur batteries: Current progress and future perspectives. 2021 , 54, 452-466	28
436	Host Materials Anchoring Polysulfides in Liß Batteries Reviewed. 2021 , 11, 2001304	91
435	Inorganic Mediator toward Organosulfide Active Material: Anchoring and Electrocatalysis. 2021 , 31, 2001493	12

434	Vertically rooting carbon nanotubes on cobalt-loaded hollow Titanium Dioxide spheres as conductive multifunctional sulfur hosts for superior lithium-sulfur performance. 2021 , 854, 157267	6
433	Advances in preparation methods and mechanism analysis of layered double hydroxide for lithium-ion batteries and lithium-sulfur batteries. 2021 , 58, 472-499	9
432	A carbon mixed amorphous-TiSx separator coating for lithium sulfur batteries. 2021 , 258, 123923	5
431	Unraveling Shuttle Effect and Suppression Strategy in Lithium/Sulfur Cells by In Situ/Operando X-ray Absorption Spectroscopic Characterization. 2021 , 4, 222-228	13
430	Recent advances of metal phosphides for LiB chemistry. 2021 , 55, 533-548	47
429	Rooting MnO2 nanosheet on carbon nanoboxes as efficient catalytic host for lithiumBulfur battery. 2021 , 25, 505-512	6
428	Fibrous Materials for Flexible Li B Battery. 2021 , 11, 2002580	34
427	Efficient separators with fast Li-ion transfer and high polysulfide entrapment for superior lithium-sulfur batteries. 2021 , 408, 127348	11
426	A lightweight nitrogen/oxygen dual-doping carbon nanofiber interlayer with meso-/micropores for high-performance lithium-sulfur batteries. 2021 , 58, 115-123	7
425	Rational design of Lithium-Sulfur battery cathodes based on differential Atom Electronegativity. 2021 , 35, 577-585	8
424	Rational design of functional binder systems for high-energy lithium-based rechargeable batteries. 2021 , 35, 353-377	13
423	Trapping and catalytic conversion of polysulfides by kirkendall effect built hollow NiCo2S4 nano-prisms for advanced sulfur cathodes in LiB battery. 2021 , 56, 4328-4340	3
422	Exploring lithium ion storage ability and cycling performance of the Cu2SnSe4 nanoparticles encapsulated with nitrogen-doped carbon. 2021 , 540, 148435	2
421	Triple-phase interfaces of graphene-like carbon clusters on antimony trisulfide nanowires enable high-loading and long-lasting liquid Li2S6-based lithium-sulfur batteries. 2021 , 59, 599-607	14
420	Chickpea derived Co nanocrystal encapsulated in 3D nitrogen-doped mesoporous carbon: Pressure cooking synthetic strategy and its application in lithium-sulfur batteries. 2021 , 585, 328-336	11
419	Rational design of 3D hierarchical MXene@AlF3/Ni(OH)2 nanohybrid for high-performance lithium-sulfur batteries. 2021 , 409, 128102	21
418	Yolk-shell porous carbon spheres@CoSe2 nanosheets as multilayer defenses system of polysulfide for advanced Li-S batteries. 2021 , 413, 127521	19
417	Constructing covalent triazine-based frameworks to explore the effect of heteroatoms and pore structure on electrochemical performance in LiB batteries. 2021 , 407, 127141	9

416	Vapor deposition of aluminium oxide into N-rich mesoporous carbon framework as a reversible sulfur host for lithium-sulfur battery cathode. 2021 , 14, 131-138		12
415	Dipolar and catalytic effects of an Fe3O4 based nitrogen-doped hollow carbon sphere framework for high performance lithium sulfur batteries. 2021 , 8, 1771-1778		7
414	Self-limiting lithiation of vanadium diboride nanosheets as ultra-stable mediators towards high-sulfur loading and long-cycle lithium sulfur batteries. 2021 , 5, 3134-3142		4
413	Tight bonding and high-efficiency utilization of SB moieties to enable ultra-stable and high-capacity alkali-metal conversion batteries. 2021 , 9, 6160-6171		2
412	Polymers in Lithium-Ion and Lithium Metal Batteries. 2021, 11, 2003239		45
411	Balanced capture and catalytic ability toward polysulfides by designing MoO-CoMoO heterostructures for lithium-sulfur batteries. 2021 , 13, 15689-15698		6
410	Enhanced Performance of LithiumBulfur Batteries with Co-Doped g-C3N4 Nanosheet-Based Separator. 2021 , 60, 1231-1240		4
409	Single atom catalysts supported on N-doped graphene toward fast kinetics in Liß batteries: a theoretical study. 2021 , 9, 12225-12235		18
408	Celebrating 20 years of. Nano Letters, 2021 , 21, 1-2	11.5	1
407	Triple functionalization of carved N-doped carbon nanoboxes with synergistic trimetallic sulphide for high performance lithium ulphur batteries. 2021 , 9, 9028-9037		2
406	Electrochemically synthesized liquid-sulfur/sulfide composite materials for high-rate magnesium battery cathodes. 2021 , 9, 16585-16593		2
405	Separator Design Variables and Recommended Characterization Methods for Viable LithiumBulfur Batteries. 2021 , 6, 2001136		10
404	CoS2 Nanospheres Anchored on 3D N-Doped Carbon Skeleton Derived from Bacterial Cellulose for Lithium-Sulfur Batteries. 2021 , 168, 020512		2
403	Single-Atom Iron and Doped Sulfur Improve the Catalysis of Polysulfide Conversion for Obtaining High-Performance Lithium-Sulfur Batteries. 2021 , 13, 7171-7177		17
402	Oxygen-Doped Carbon Nitride Tubes for Highly Stable Lithium Bulfur Batteries. 2021 , 9, 2001057		4
402 401	Oxygen-Doped Carbon Nitride Tubes for Highly Stable LithiumBulfur Batteries. 2021 , 9, 2001057 Preparation and Electrochemical Performance of V2O5 @N-CNT/S Composite Cathode Materials. 2021 , 8,		3
,	Preparation and Electrochemical Performance of V2O5 @N-CNT/S Composite Cathode Materials.		

398	Linking Solid Electrolyte Degradation to Charge Carrier Transport in the Thiophosphate-Based Composite Cathode toward Solid-State Lithium-Sulfur Batteries. 2021 , 31, 2010620	24
397	Incorporation of layered tin (IV) phosphate in graphene framework for high performance lithium-sulfur batteries. 2021 , 53, 99-108	6
396	Exploration of materials electrochemistry in rechargeable batteries using advanced in situ/operando x-ray absorption spectroscopy. 2021 , 3, 013001	2
395	Metal©rganic Framework-Based Sulfur-Loaded Materials.	3
394	Demystifying the catalysis in lithiumBulfur batteries: Characterization methods and techniques. 2021 , 1, 51-65	28
393	Enhanced catalytic conversion of polysulfides using high-percentage 1T-phase metallic WS2 nanosheets for LiB batteries. 2021 ,	2
392	Monolayer FeGeX (X = S, Se, and Te) as Highly Efficient Electrocatalysts for Lithium-Sulfur Batteries. 2021 , 13, 11845-11851	8
391	Online state estimation for a physics-based Lithium-Sulfur battery model. 2021 , 489, 229495	4
390	Super heating/cooling rate enabled by microwave shock on polymeric graphene foam for high performance LithiumBulfur batteries. 2021 , 173, 809-816	7
389	[email´protected] Structured [email´protected] Carbon as a Sulfur Host and Polysulfide Conversion Booster for Lithium/Sodium Sulfur Batteries. 2021 , 4, 3487-3494	6
388	ZnS-SnS@NC Heterostructure as Robust Lithiophilicity and Sulfiphilicity Mediator toward High-Rate and Long-Life Lithium-Sulfur Batteries. 2021 , 15, 7114-7130	118
387	The Si3N4/MoS2 hetero-structure as an effective polysulfide regulator for high-performance lithium-sulfur battery. 2021 , 22, 100916	7
386	Three-dimensional printing of high-mass loading electrodes for energy storage applications. 2021 , 3, 631-647	12
385	Yolk-Shell NiCo2PX as a Bidirectional Catalyst for Liquid-Solid Processes in Advanced Lithium-Sulfur Batteries. 2021 , 8, 1605-1611	4
384	Double role of CoO Co4N hetero-nanocages as sulfur host for lithium-sulfur batteries. 2021 , 7, 1301-1301	O
383	Intralayered Ostwald Ripening-Induced Self-Catalyzed Growth of CNTs on MXene for Robust Lithium-Sulfur Batteries. 2021 , 17, e2007446	14
382	Enhanced sulfur utilization in lithium-sulfur batteries by hybrid modified separators. 2021 , 26, 102133	1
381	2021 roadmap on lithium sulfur batteries. 2021 , 3, 031501	32

380	Hierarchical Nanoreactor with Multiple Adsorption and Catalytic Sites for Robust Lithium-Sulfur Batteries. 2021 , 15, 6849-6860	23
379	Phosphorus-Doped Metal-Organic Framework-Derived CoS Nanoboxes with Improved Adsorption-Catalysis Effect for Li-S Batteries. 2021 , 13, 15226-15236	9
378	Cobalt Oxide/Graphene Nanosheets/Hexagonal Boron Nitride (Co3O4/CoO/GNS/h-BN) Catalyst for High Sulfur Utilization in Liß Batteries at Elevated Temperatures. 2021 , 35, 8365-8377	7
377	Boosting Catalytic Activity by Seeding Nanocatalysts onto Interlayers to Inhibit Polysulfide Shuttling in LiB Batteries. 2021 , 31, 2101980	42
376	Enhanced polysulfide conversion catalysis in lithium-sulfur batteries with surface cleaning electrolyte additives. 2021 , 410, 128284	19
375	Nitrogen-Doped Graphene Quantum Dots: Sulfiphilic Additives for the High-Performance Liß Cells. 2021 , 4, 3518-3525	7
374	Lithium-Sulfur Battery Cathode Design: Tailoring Metal-Based Nanostructures for Robust Polysulfide Adsorption and Catalytic Conversion. 2021 , e2008654	60
373	MXene Nanoflakes Confined in Multichannel Carbon Nanofibers as Electrocatalysts for LithiumBulfur Batteries. 2022 , 19,	1
372	Designing of multifunctional and flame retardant separator towards safer high-performance lithium-sulfur batteries. 1	4
371	Sandwich-like NOCC@S8/rGO composite as cathode for high energy lithium-sulfur batteries. 2021 , 220, 119747	6
370	Embedding FeC and FeN on a Nitrogen-Doped Carbon Nanotube as a Catalytic and Anchoring Center for a High-Areal-Capacity Li-S Battery. 2021 , 13, 20153-20161	11
369	The use of graphene and its composites to suppress the shuttle effect in lithium-sulfur batteries. 2021 , 36, 336-349	5
368	Material design and structure optimization for rechargeable lithium-sulfur batteries. 2021 , 4, 1142-1188	30
367	Function-convertible metal-organic crystal derived from liquid-solid interfacial reaction for lithium-sulfur batteries. 2021 , 491, 229593	5
366	Graphene-Based Nanomaterials as the Cathode for Lithium-Sulfur Batteries. 2021 , 26,	5
365	Organic polysulfanes grafted on porous graphene as an electrode for high-performance lithium organosulfur batteries. 2021 , 491, 229617	12
364	Ionic Additives to Increase Electrochemical Utilization of Sulfur Cathode for Li-S Batteries. 2021 , 12, 279-284	0
363	Two Competing Reactions of Sulfurized Polyacrylonitrile Produce High-Performance Lithium-Sulfur Batteries. 2021 , 13, 25002-25009	6

362	Challenges and promises of lithium metal anode by soluble polysulfides in practical lithiumBulfur batteries. 2021 , 45, 62-76	40
361	Tubular CoFeP@CN as a MottBchottky Catalyst with Multiple Adsorption Sites for Robust LithiumBulfur Batteries. 2021 , 11, 2100432	40
360	A triboelectric nanogenerator based on waste polyvinyl chloride for Morse code generator. 2021 , 322, 112633	2
359	Constructed conductive CoSe2 nanoarrays as efficient electrocatalyst for high-performance Li B battery. 2021 , 40, 3147	14
358	Nanotechnology for Sulfur Cathodes. 2021 , 15, 8087-8094	8
357	Antimonene Allotropes ∃and ₱hases as Promising Anchoring Materials for LithiumBulfur Batteries. 2021 , 35, 9001-9009	4
356	A Synergistic Strategy with 3D Highly Conductive Carbon Matrix-Decorated with Low Loading of CdS Quantum Dots as a Sulfur Host for Advanced Liß Batteries. 2021 , 8, 1642-1652	2
355	Metal-Organic-Framework-Derived Nanostructures as Multifaceted Electrodes in Metal-Sulfur Batteries. 2021 , 33, e2008784	21
354	SiO2 blending polyetherimide separator modified with acetylene black/polyvinylpyrrolidone coating layer to enhance performance for lithium-sulfur batteries. 2021 , 45, 16551-16564	О
353	Immobilization and kinetic promotion of polysulfides by molybdenum carbide in lithium-sulfur batteries. 2021 , 411, 128563	14
352	Hierarchical cathode from hollow CoP embedded in graphene nanosheets to synergistically confine SeS2 for advanced Li/SeS2 batteries. 2021 , 867, 159089	О
351	Sandwiched Cathodes Assembled from CoS -Modified Carbon Clothes for High-Performance Lithium-Sulfur Batteries. 2021 , 8, e2101019	15
350	Advances in Lithium-Sulfur Batteries: From Academic Research to Commercial Viability. 2021 , 33, e2003666	77
349	Insight into LithiumBulfur Batteries with Novel Modified Separators: Recent Progress and Perspectives. 2021 , 35, 11089-11117	6
348	Linear-PEI-Derived Hierarchical Porous Carbon Nanonet Flakes Decorated with MoS2 as Efficient Polysulfides Stabilization Interlayers for LithiumBulfur Battery. 2021 , 35, 10303-10314	5
347	Nonpolar Solvent-based Electrolytes with a Quasi-Solid-State Redox Reaction for Lithium-Sulfur Batteries. 2021 , 8, 2321-2328	
346	New insights into the relationship between capacity fading and sulfur loading and electrolyte/sulfur ratio obtained from LiB pouch cell. 2021 , 27, 3347	3
345	Self-Assembled Polyoxometalate Nanodots as Bidirectional Cluster Catalysts for Polysulfide/Sulfide Redox Conversion in Lithium-Sulfur Batteries. 2021 ,	19

344	Bio-assisted engineering of hierarchical porous carbon nanofiber host in-situ embedded with iron carbide nanocatalysts toward high-performance LiB batteries. 2021 , 177, 60-70	15
343	Macroporous Multichannel Carbon Nanofibers Embedded with Co/Fe-N Electrocatalyst as the Sulfur Host for Boosting Polysulfides Conversion in Lithium-Sulfur Batteries. 2021 , 6, 5932-5940	1
342	Catalytic Hexadecachlorophthalocyanine Cobalt-Coated Host Materials for Liß Batteries. 2021, 4, 7743-7750	О
341	Construction of multifunctional and flame retardant separator towards stable lithium-sulfur batteries with high safety. 2021 , 416, 129087	19
340	Nanoconfined Topochemical Conversion from MXene to Ultrathin Non-Layered TiN Nanomesh toward Superior Electrocatalysts for Lithium-Sulfur Batteries. 2021 , 17, e2101360	7
339	Cobalt sulfide quantum dot embedded in nitrogen/sulfur-doped carbon nanosheets as a polysulfide barrier in Li-S batteries. 2021 , 870, 159341	16
338	Enhancing Catalytic Conversion of Polysulfides by Hollow Bimetallic Oxide-Based Heterostructure Nanocages for Lithium-Sulfur Batteries. 2021 , 9, 10392-10402	2
337	Carbon fiber supported two-dimensional ZIF-7 interlayer for durable lithium-sulfur battery. 2021 , 870, 159412	9
336	Heterogeneous Mediator Enabling Three-Dimensional Growth of Lithium Sulfide for High-Performance LithiumBulfur Batteries.	5
335	Recent advance on Co-based materials for polysulfide catalysis toward promoted lithium-sulfur batteries.	O
334	Electrospun assisted antimony phosphate (SbPO4) anode for elevated performance in sodium and lithium ion charge storage application. 2021 , 870, 159317	1
333	Synthesis of pompon-like ZnO microspheres as host materials and the catalytic effects of nonconductive metal oxides for lithium-sulfur batteries. 2021 , 99, 309-316	4
332	Lightweight Free-Standing 3D Nitrogen-Doped Graphene/TiN Aerogels with Ultrahigh Sulfur Loading for High Energy Density Liß Batteries. 2021 , 4, 7599-7610	5
331	Synergistic regulation of polysulfides immobilization and conversion by MOF-derived CoP-HNC nanocages for high-performance lithium-sulfur batteries. 2021 , 85, 106011	24
330	DFT study of chemical reactivity parameters of lithium polysulfide molecules Li2Sn(1🖬 B) in gas and solvent phase. 2021 , 1202, 113323	3
329	Defect-Rich Amorphous Iron-Based Oxide/Graphene Hybrid-Modified Separator toward the Efficient Capture and Catalysis of Polysulfides. 2021 , 13, 41698-41706	9
328	Realizing High-Performance Li-S Batteries through Additive Manufactured and Chemically Enhanced Cathodes 2021 , 5, e2100176	5
327	SnS2 monolayer and SnS2/graphene heterostructure as promising anchoring materials for lithium-sulfur batteries: A computational study. 2021 , 548, 111220	6

326	Incorporating Cobalt Nanoparticles in Nitrogen-Doped Mesoporous Carbon Spheres through Composite Micelle Assembly for High-Performance Lithium-Sulfur Batteries. 2021 , 13, 38604-38612	7
325	Recent Advances and Applications Towards Emerging Lithium-Sulfur Batteries: Working Principles and Opportunities.	8
324	Facet-Engineered Tungsten Disulfide for Promoting Polysulfide Electrocatalysis in Lithium-Sulfur Batteries. 2021 , 60, 12883-12892	3
323	NbSe2 Meets C2N: A 2D-2D Heterostructure Catalysts as Multifunctional Polysulfide Mediator in Ultra-Long-Life LithiumBulfur Batteries. 2021 , 11, 2101250	18
322	Hollow Spherical MoO3: An Effective Electrocatalyst of Polyselenides for LithiumBelenium Batteries. 2021 , 4, 10203-10212	1
321	Three-dimensional architectures based on carbon nanotube bridged Ti2C MXene nanosheets for LiB batteries. 2021 , 57, 139-145	9
320	3D CoS2/rGO aerogel as trapping-catalyst sulfur host to promote polysulfide conversion for stable Li-S batteries. 2021 , 873, 159780	14
319	Hierarchical nMOF-867/MXene Nanocomposite for Chemical Adsorption of Polysulfides in LithiumBulfur Batteries. 2021 , 4, 8231-8241	2
318	Embedding Cobalt Atom Clusters in CNT-Wired MoS Tube-in-Tube Nanostructures with Enhanced Sulfur Immobilization and Catalyzation for Li-S Batteries. 2021 , 17, e2102710	14
317	Facile Ilotus Blooming Istrategy to Synthesize a 3D Carbon Nanosheet/Carbon Nanotube Framework with Embedded Co Nanocrystals for High-Performance Lithium Bulfur Batteries.	1
316	MoC Electrocatalysts for Kinetically Boosting Polysulfide Conversion in Quasi-Solid-State Lithium-Sulfur Batteries. 2021 , 13, 45651-45660	2
315	Basal-Plane-Activated Molybdenum Sulfide Nanosheets with Suitable Orbital Orientation as Efficient Electrocatalysts for Lithium-Sulfur Batteries. 2021 , 15, 16515-16524	7
314	A saccharide-based binder for efficient polysulfide regulations in Li-S batteries. 2021 , 12, 5375	16
313	Recent advances in flexible batteries: From materials to applications. 1	8
312	A 3D Graphene/WO3 nanowire composite with enhanced capture and polysulfides conversion catalysis for high-performance LiB batteries. 2021 , 182, 335-347	5
311	Cooperative catalytic interface accelerates redox kinetics of sulfur species for high-performance Li-S batteries. 2021 , 40, 139-149	14
310	Efficient Polysulfide Trapping and Conversion on N-Doped CoTe via Enhanced Dual-Anchoring Effect. 2021 , 17, e2102962	1
309	Plasma-Engineered Organic Dyes as Efficient Polysulfide-Mediating Layers for High Performance Lithium-Sulfur Batteries. 2021 , 132679	1

308	Increasing sulfur utilization in lithium-sulfur batteries by a Co-MOF-74@MWCNT interlayer. 2021 , 60, 186-193	7
307	Defect-engineered bilayer MOFs separator for high stability lithium-sulfur batteries. 2021 , 874, 159917	6
306	Sulfur-Rich Polymers Based Cathode with Epoxy/Ally Dual-Sulfur-Fixing Mechanism for High Stability Lithium-Sulfur Battery. 2021 , 15, 15027-15038	11
305	Promoting electrochemical kinetics of Li-S batteries with C@SnS2 modified separator via synergic effect between porous carbon matrix and polar SnS2. 2021 , 390, 138829	2
304	Be waterIstrategy of liquid lithium sulfide enables 0.2 V potential barrier for high-performance lithiumBulfur batteries. 2021 , 21, 100793	4
303	Array-Structured Double-Ion Cooperative Adsorption Sites as Multifunctional Sulfur Hosts for Lithium-Sulfur Batteries with Low Electrolyte/Sulfur Ratio. 2021 , 15, 16322-16334	2
302	Fabrication of ultrafine ZnFe2O4 nanoparticles decorated on nitrogen doped carbon nanofibers composite for efficient adsorption/electrocatalysis effect of lithium-sulfur batteries. 2021 , 394, 139126	10
301	Recent progress in sulfur cathodes for application to lithiumBulfur batteries. 2021 , 58, 1-15	9
300	A Cost- and Energy Density-Competitive Lithium-Sulfur Battery. 2021 , 41, 588-598	9
299	Hybrid cathode composed of pyrite-structure CoS2 hollow polyhedron and Ketjen black@sulfur materials propelling polysulfide conversion in lithium sulfur batteries. 2021 , 47, 27122-27131	9
298	Rechargeable metal (Li, Na, Mg, Al)-sulfur batteries: Materials and advances. 2021 , 61, 104-134	22
297	Large-scale synthesis of Fe9S10/Fe3O4@C heterostructure as integrated trapping-catalyzing interlayer for highly efficient lithium-sulfur batteries. 2021 , 422, 130049	7
296	Maximizing catalytically active surface gallium for electrocatalysis of lithium polysulfides in lithium-sulfur batteries by silica@gallium coreBhell particles. 2021 , 563, 150381	3
295	Improving poisoning resistance of electrocatalysts via alloying strategy for high-performance lithium-sulfur batteries. 2021 , 41, 248-254	19
294	Modified polysulfides conversion catalysis and confinement by employing La2O3 nanorods in high performance lithium-sulfur batteries. 2021 , 47, 27012-27021	9
293	Multi-scale uniform Li regulation triggered by tunable electric field distribution on oxygen-functionalized porous framework for flexible Li-S full batteries. 2021 , 42, 68-77	14
292	Contribution to the understanding of the performance differences between commercial current collectors in LiB batteries. 2021 , 62, 295-306	6
291	Porous N-doped carbon nanofibers assembled with nickel ferrite nanoparticles as efficient chemical anchors and polysulfide conversion catalyst for lithium-sulfur batteries. 2021 , 601, 209-219	29

290	Appreciating the role of polysulfides in lithium-sulfur batteries and regulation strategies by electrolytes engineering. 2021 , 42, 645-678	5
289	First-Principle study of lithium polysulfide adsorption on heteroatom doped graphitic carbon nitride for Lithium-Sulfur batteries. 2021 , 565, 150378	6
288	Graphene oxide-wrapped cobalt-doped oxygen-deficient titanium dioxide hollow spheres clusters as efficient sulfur immobilizers for lithium-sulfur batteries. 2021 , 397, 139264	4
287	Entrapping polysulfides via S, N-coordinated supermolecule towards enhanced Li-S kinetics. 2021 , 426, 131355	2
286	Immobilizing Polysulfide via Multiple Active Sites in W18O49 for Li-S batteries by Oxygen Vacancy Engineering. 2021 , 43, 422-429	7
285	Nano storage-boxes constructed by the vertical growth of MoS2 on graphene for high-performance Li-S batteries. 2022 , 66, 91-99	3
284	CoS-TiO@C Core-Shell fibers as cathode host material for High-Performance Lithium-Sulfur batteries. 2022 , 607, 655-661	6
283	Co nanoparticles anchored on the Co-Nx active centers grafted nitrogen-doped graphene with enhanced performance for lithium-sulfur battery. 2022 , 890, 161552	2
282	The formation of crystalline lithium sulfide on electrocatalytic surfaces in lithiumBulfur batteries. 2022 , 64, 568-573	10
281	YF/CoF co-doped 1D carbon nanofibers with dual functions of lithium polysulfudes adsorption and efficient catalytic activity as a cathode for high-performance Li-S batteries. 2022 , 607, 922-932	2
280	Porous 3D nitrogen-doped rGO/Co-Ni-S composite modified separator for high-capacity and stable lithium-sulfur batteries. 2022 , 145, 111550	1
279	Yttrium oxide nanorods as electrocatalytic polysulfides traps for curbing shuttle effect in lithium-sulfur batteries. 2022 , 891, 162074	9
278	Templated spherical coassembly strategy to fabricate MoS2/C hollow spheres with physical/chemical polysulfides trapping for lithium-sulfur batteries. 2022 , 98, 136-142	2
277	An integrated flexible film as cathode for High-Performance Lithium-Sulfur battery. 2022 , 606, 1627-1635	3
276	Cotton-like CNTs/(Ni-P)/S composites with enhanced electrochemical performance of lithium-sulfur battery. 2022 , 145, 111529	2
275	In situ N-doped CoS2 anchored on MXene toward an efficient bifunctional catalyst for enhanced lithium-sulfur batteries. 2022 , 427, 131792	5
274	Interfacial design of thick sulfur cathodes to achieve high energy density and stability. 2021 , 9, 17129-17142	3
273	A review of size engineering-enabled electrocatalysts for LiB chemistry.	2

272	Polar NiFe layered double hydroxide nanosheets for enhancing the performance of lithiumBulfur batteries. 2021 , 5, 5780-5789	О
271	V2C/VO2 nanoribbon intertwined nanosheet dual heterostructure for highly flexible and robust lithiumBulfur batteries. 2021 , 9, 21429-21439	8
270	Emerging Catalysts to Promote Kinetics of LithiumBulfur Batteries. 2021 , 11, 2002893	85
269	High-performance lithium-sulfur batteries enabled by regulating LiS deposition. 2021 , 23, 21385-21398	3
268	Efficient polysulfide trapping in lithium-sulfur batteries using ultrathin and flexible BaTiO/graphene oxide/carbon nanotube layers. 2021 , 13, 6863-6870	1
267	Single Atom Catalysts for Fuel Cells and Rechargeable Batteries: Principles, Advances, and Opportunities. 2021 , 15, 210-239	65
266	Strategy of Enhancing the Volumetric Energy Density for Lithium-Sulfur Batteries. 2021, 33, e2003955	66
265	Highly Dispersed Cobalt Clusters in Nitrogen-Doped Porous Carbon Enable Multiple Effects for High-Performance Liß Battery. 2020 , 10, 1903550	114
264	High-performance Liß battery cathode with catalyst-like carbon nanotube-MoP promoting polysulfide redox. 2017 , 10, 3698-3705	95
263	Accelerated polysulfide redox kinetics revealed by ternary sandwich-type S@Co/N-doped carbon nanosheet for high-performance lithium-sulfur batteries. 2018 , 128, 86-96	73
262	Low temperature performance enhancement of high-safety LithiumBulfur battery enabled by synergetic adsorption and catalysis. 2020 , 353, 136470	6
261	Catalytic Effects in the Cathode of Li-S Batteries: Accelerating polysulfides redox conversion. 2020 , 2, 100036	16
260	Research Progress on Improving the Sulfur Conversion Efficiency on the Sulfur Cathode Side in LithiumBulfur Batteries. 2020 , 59, 20979-21000	4
259	Enhanced Sulfur Redox and Polysulfide Regulation via Porous VN-Modified Separator for Li-S Batteries. 2019 , 11, 5687-5694	80
258	Electrocatalyzing S Cathodes Multisulfiphilic Sites for Superior Room-Temperature Sodium-Sulfur Batteries. 2020 , 14, 7259-7268	61
257	In situ optical spectroscopy characterization for optimal design of lithium-sulfur batteries. 2019 , 48, 5432-545	5363
256	Revisiting the positive roles of liquid polysulfides in alkali metal-sulfur electrochemistry: from electrolyte additives to active catholyte. 2019 , 11, 21595-21621	4
255	An efficient polysulfide trapper of an nitrogen and nickel-decorating amylum scaffold-coated separator for ultrahigh performance in lithium fulfur batteries. 2020 , 8, 1238-1246	16

254	Recent advances of hollow-structured sulfur cathodes for lithium Bulfur batteries. 2020, 4, 2517-2547	7
253	Complete encapsulation of sulfur through interfacial energy control of sulfur solutions for high-performance Li-S batteries. 2020 , 117, 12686-12692	46
252	Supercooled liquid sulfur maintained in three-dimensional current collector for high-performance Li-S batteries. 2020 , 6, eaay5098	52
251	Polysulfide Electrocatalysis on Framework Porphyrin in High-Capacity and High-Stable LithiumBulfur Batteries. 128-137	96
250	Selective Adsorption and Electrocatalysis of Polysulfides through Hexatomic Nickel Clusters Embedded in N-Doped Graphene toward High-Performance Li-S Batteries. 2020 , 2020, 5714349	11
249	Revamping Lithium-Sulfur Batteries for High Cell-Level Energy Density by Synergistic Utilization of Polysulfide Additives and Artificial Solid-Electrolyte Interphase Layers. 2021 , 33, e2104246	2
248	Flower-like heterostructured MoPMoS2 hierarchical nanoreactor enabling effective anchoring for LiPS and enhanced kinetics for high performance LiB batteries. 2022 , 642, 120003	3
247	Bifunctional Catalytic Effect of CoSe2 for Lithium-Sulfur Batteries: Single Doping versus Dual Doping. 2107838	12
246	Ni2P/carbon nanotube nanocomposite as host material for high performance lithium-sulfur battery cathode. 2021 , 553, 111383	1
245	Multisize CoS Particles Intercalated/Coated-Montmorillonite as Efficient Sulfur Host for High-Performance Lithium-Sulfur Batteries. 2021 ,	2
244	Supercritical CO2 Deposition of Cathode Materials for Lithium-Sulfur Battery. 2017, 06, 52-59	
243	Rechargeable Lithium Metal Batteries. 2019 , 147-203	
242	CNTs decorated Cu-BTC with catalytic effect for high-stability lithium-sulfur batteries. 2021,	О
241	Boosting polysulfides immobilization and conversion through CoS catalytic sites loaded carbon fiber for robust lithium sulfur batteries. 2022 , 608, 963-972	6
240	WN0.67-Embedded N-doped Graphene-Nanosheet interlayer as Efficient Polysulfide Catalyst and Absorbant for High-Performance Lithium-Sulfur Batteries. 2021 , 133439	4
239	Crystal Facet Engineering Induced Active Tin Dioxide Nanocatalysts for Highly Stable LithiumBulfur Batteries. 2102995	11
238	Valence mediation of samarium towards polysulfides as a redox mediator for high performance LiB batteries. 2020 , 17, 100484	1
237	An individual sandwich hybrid nanostructure of cobalt disulfide in-situ grown on N doped carbon layer wrapped on multi-walled carbon nanotubes for high-efficiency lithium sulfur batteries. 2021 ,	2

236	Sulfur Compensation: A Promising Strategy against Capacity Decay in Li-S Batteries. 2021,	1
235	The enhanced confinement effect of double shell hollow mesoporous spheres assembled with nitrogen-doped copper cobaltate nanoparticles for enhancing lithium fulfur batteries. 2021 , 404, 139597	1
234	Catalytic materials for lithium-sulfur batteries: mechanisms, design strategies and future perspective. 2021 ,	14
233	Catalytic Mo2C decorated N-doped honeycomb-like carbon network for high stable lithium-sulfur batteries. 2021 , 133683	5
232	An Electrochemically Switched Ion Exchange ⊠rP/PPy Film as a Synergistically Catalytic and Anchoring Material towards Lithium-Sulfur Battery Design. 2021 , 139609	1
231	Interlinked Carbon Nanocages-Coated Separator as an Efficient Trap for Soluble Polysulfides in a LithiumBulfur Battery. 2021 , 35, 19843-19848	1
230	Polysulfide Catalytic Materials for Fast-Kinetic Metal-Sulfur Batteries: Principles and Active Centers. 2021 , 9, e2102217	7
229	Accelerating Sulfur Redox Reactions by Topological Insulator Bi 2 Te 3 for High-Performance Li-S Batteries. 2109413	6
228	An integrated approach to configure rGO/VS4/S composites with improved catalysis of polysulfides for advanced lithiumBulfur batteries. 2021 ,	1
227	Construction of KB@ZIF-8/PP Composite Separator for Lithium-Sulfur Batteries with Enhanced Electrochemical Performance. 2021 , 13,	1
226	MOF-derived Cobalt Disulfide/Nitrogen-doped Carbon Composite Polyhedrons Linked with Multi-walled Carbon Nanotubes as Sulfur Hosts for Lithium-Sulfur Batteries. 2021 , 133924	0
225	A Perspective on Li/S Battery Design: Modeling and Development Approaches. 2021 , 7, 82	2
224	Efficient capture and conversion of polysulfides by zinc protoporphyrin framework-embedded triple-layer nanofiber separator for advanced Li-S batteries. 2021 , 609, 43-53	1
223	Lithium-Sulfur Battery Discharge Optimization using a Thermally-Coupled Equivalent Circuit Model. 2021 , 54, 399-405	
222	N, S-doped graphene derived from graphene oxide and thiourea-formaldehyde resin for high stability lithium-sulfur batteries 2022 ,	1
221	Synthesis of Titanium Molybdenum Nitride-Decorated Electrospun Carbon Nanofiber Membranes as Interlayers to Suppress Polysulfide Shuttling in LithiumBulfur Batteries.	3
220	A facile synthesis of stable titanium carbide-decorated carbon nanofibers as electrocatalytic membrane for high-performance lithium-sulfur batteries. 1	1
219	In-situ constructed accordion-like Nb2C/Nb2O5 heterostructure as efficient catalyzer towards high-performance lithium-sulfur batteries. 2022 , 520, 230902	4

218	Polaron hopping-mediated dynamic interactive sites boost sulfur chemistry for flexible lithium-sulfur batteries. 2022 , 45, 840-850	6
217	Elastic three-dimensional Fe-doped polypyrrole aerogel current collector for high-loading and high-energy-density lithium-sulfur batteries. 2022 , 899, 163298	2
216	Titanium dioxide nanotube arrays (TNTAs) as an effective electrocatalyst interlayer for sustainable high-energy density lithium-sulfur batteries. 2022 , 899, 163268	1
215	Double-layered hollow carbon sphere with large interlayer space combined with Co-SnS cat. as efficient sulfur hosts for Li-S batteries. 2022 , 901, 163608	O
214	Addressing the Prominent Li + Intercalation Process of Metal Sulfide Catalyst in Li-S Batteries. 2101699	1
213	MXene-based materials for lithiumBulfur and multivalent rechargeable batteries. 2022, 343-369	1
212	An encapsulating lithium-polysulfide electrolyte for practical lithium ulfur batteries. 2022,	13
211	Covalently Grafting Sulfur-Containing Polymers to Carbon Nanotubes Enhances the Electrochemical Performance of Sulfur Cathodes. 2022 , 4, 939-949	2
21 0	A flame-retardant polyimide interlayer with polysulfide lithium traps and fast redox conversion towards safety and high sulfur utilization Li-S batteries 2021 ,	2
209	In situ tailored strategy to remove capping agents from copper sulfide for building better lithiumBulfur batteries.	2
208	Designing principles of advanced sulfur cathodes toward practical lithium-sulfur batteries. e42	6
207	Functional catalysts for polysulfide conversion in LiB batteries: from micro/nanoscale to single atom. 2022 , 41, 1080	2
206	Single-dispersed polyoxometalate clusters embedded on multilayer graphene as a bifunctional electrocatalyst for efficient Li-S batteries 2022 , 13, 202	16
205	Uniformly Controlled Treble Boundary Using Enriched Adsorption Sites and Accelerated Catalyst Cathode for Robust LithiumBulfur Batteries. 2102805	9
204	Functionalized Carbon-Based Composite Materials for Cathode Application of Lithium-Sulfur Batteries. 2022 , 80, 89	
203	Engineering Pt heterogeneous catalysts for accelerated liquid-solid redox conversion in Li-S batteries. 2022 ,	3
202	In situ preparation of chromium carbidelhodified carbon nanofibers as functional electrocatalyst for polysulfide reduction in lithium/sulfur batteries. 1	3
201	Physical and Chemical Adsorption of Polysulfides. 2022 , 111-163	

200 Catalytic Conversion of Polysulfides in Liß Batteries. **2022**, 165-223

199	Application and research of current collector for lithium-sulfur battery. 2022 , 28, 1713	O
198	Customized Structure Design and Functional Mechanism Analysis of Carbon Spheres for Advanced Lithium-Sulfur Batteries 2022 , e2104469	4
197	TiH Nanodots Exfoliated via Facile Sonication as Bifunctional Electrocatalysts for Li-S Batteries 2022 ,	1
196	A High Conductivity One-Dimensional & Conjugated Metal-Organic Framework with Efficient Polysulfide Trapping-Diffusion-Catalysis in Lithium-Sulfur Batteries 2022 , e2108835	12
195	Oxygen-defective MnO2 decorated carbon nanotube as an effective sulfur host for high performance lithium sulfur battery. 2022 , 33, 103396	2
194	Highly catalytic porous MoN nanosheets anchored carbon microtubes interlayer for lithium-sulfur batteries. 2022 , 24, 100941	2
193	Designing thermotolerant and flame-resistant PAN-based separator via surface engineering with heteroatoms doped carbon framework encapsulated with CoS2 nanocatalysts towards safe lithium-sulfur batteries. 2022 , 233, 109644	1
192	Exploring the Janus structure to improve kinetics in sulfur conversion of Li-S batteries. 2022 , 95, 106980	5
191	The effect of NiO-Ni3N interfaces in in-situ formed heterostructure ultrafine nanoparticles on enhanced polysulfide regulation in lithium-sulfur batteries. 2022 , 68, 762-770	2
190	Separator engineering toward practical Li-S batteries: Targeted electrocatalytic sulfur conversion, lithium plating regulation, and thermal tolerance. 2022 , 95, 106982	7
189	High sulfur-doped hard carbon anode from polystyrene with enhanced capacity and stability for potassium-ion storage. 2022 , 68, 688-698	1
188	Implanting Single Zn Atoms Coupled with Metallic Co Nanoparticles into Porous Carbon Nanosheets Grafted with Carbon Nanotubes for High-Performance Lithium-Sulfur Batteries. 2200424	15
187	Low-Cost Biomass-Gel-Induced Conductive Polymer Networks for High-Efficiency Polysulfide Immobilization and Catalytic Conversion in LiB Batteries.	1
186	Catalytic polysulfide conversion in lithium-sulfur batteries by platinum nanoparticles supported on carbonized microspheres. 2022 , 435, 135112	1
185	Ternary Transition Metal Sulfide as High Real Energy Cathode for Lithium-Sulfur Pouch Cell Under Lean Electrolyte Conditions 2022 , 6, e2101402	4
184	High-Index Faceted Nanocrystals as Highly Efficient Bifunctional Electrocatalysts for High-Performance Lithium-Sulfur Batteries 2021 , 14, 40	9
183	The Presolvation Strategy of Li2S Cathodes for Lithium-Sulfur Batteries: A Review.	1

182	Computational screening of functionalized MXenes to catalyze the solid and non-solid conversion reactions in cathodes of lithium-sulfur batteries 2022 ,	O
181	Dispersing Single-Layered Ti3c2tx Nanosheets in Hierarchically-Porous Membrane for High-Efficiency Li+ Transporting and Polysulfide Anchoring in Li-S Batteries.	
180	Understanding the interactions between lithium polysulfides and anchoring materials in advanced lithium-sulfur batteries using density functional theory 2022 ,	3
179	Enhanced Electrochemical Kinetics on Ni 2 P Polar Mediators Integrated with Graphene for LithiumBulfur Batteries. 2102142	О
178	In-situ constructed three-dimensional MoS2MoN heterostructure as the cathode of lithiumBulfur battery. 2022 , 41, 1743-1752	3
177	A Highly Efficient Sulfur Host Enabled by Nitrogen/Oxygen Dual-Doped Honeycomb-Like Carbon for Advanced Lithium-Sulfur Batteries 2022 , e2107380	4
176	Robust LithiumBulfur Batteries Enabled by Highly Conductive WSe 2 -Based Superlattices with Tunable Interlayer Space. 2201322	5
175	Recent Advances and Strategies toward Polysulfides Shuttle Inhibition for High-Performance Li-S Batteries 2022 , e2106004	14
174	In Situ UVIVis Analysis of Polysulfide Shuttling in Ionic Liquid-Based Li-FeS2 Batteries. 2022 , 126, 5101-5111	1
173	Encapsulating sulphur inside Magnli phase Ti 4 O 7 nanotube array for high performance lithium sulphur battery cathode.	
172	Role of Ferroelectric InSe in Polysulfide Shuttling and Charging/Discharging Kinetics in Lithium/Sodium-Sulfur Batteries 2022 ,	1
171	ReviewAdvances in Rechargeable Li-S Full Cells.	O
170	High electrochemical activity of Li2S2 linking two-dimensional tungsten boride nanosheet enables high-loading and long-lasting lithium-sulfur batteries. 2022 , 25, 100970	1
169	ZnFe2O4 hollow rods enabling accelerated polysulfide conversion for advanced lithium-sulfur batteries. 2022 , 414, 140231	1
168	Configurational and structural design of separators toward shuttling-free and dendrite-free lithium-sulfur batteries: A review. 2022 , 47, 629-648	7
167	Selective ion transport of catalytic hybrid aerofilm interlayer for long-stable Li-S batteries. 2022 , 47, 472-481	4
166	Accelerating conversion of LiPSs on strain-induced MXene for high-performance Li-S battery. 2022 , 439, 135679	1
165	VC@NCNTs: Bidirectional catalyst for fast charging Lithium-sulfur batteries. 2022 , 442, 135940	1

164	Enhanced Electrochemical Performance of MOF-Derived Nitrogen-Enriched Porous Carbon Coated with Ag as the Cathode for Lithium-Sulfur Batteries. 2021 , 16,	
163	Engineering a TiNbO-Based Electrocatalyst on a Flexible Self-Supporting Sulfur Cathode for Promoting Li-S Battery Performance 2021 ,	1
162	A Highly Efficient Ion and Electron Conductive Interlayer To Achieve Low Self-Discharge of Lithium-Sulfur Batteries 2021 ,	4
161	Surface Gelation on Disulfide Electrocatalysts in LithiumBulfur Batteries. 2022 , 134,	
160	CoNiO /Co N Heterostructure Nanowires Assisted Polysulfide Reaction Kinetics for Improved Lithium-Sulfur Batteries. 2021 , e2104375	8
159	WSe 2 Flakelets on N-Doped Graphene for Accelerating Polysulfide Redox and Regulating Li Plating. 2022 , 134,	О
158	Surface Gelation on Disulfide Electrocatalysts in Lithium-Sulfur Batteries. 2021,	7
157	WSe2 'Flakelets on N-doped Graphene for Accelerating Polysulfide Redox and Regulating Li Plating. 2021 ,	9
156	In situ enhance lithium polysulfides redox kinetics by carbon cloth/MoO3 self-standing electrode for lithiumBulfur battery. 1	О
155	High-Density Oxygen Doping of Conductive Metal Sulfides for Better Polysulfide Trapping and Li S-S Redox Kinetics in High Areal Capacity Lithium-Sulfur Batteries 2022 , e2200840	2
154	Highly active CeO2-x/Fe interfaces enable fast redox conversion of polysulfides for high-performance lithium-sulfur batteries. 2022 , 140402	0
153	Data_Sheet_1.docx. 2020 ,	
152	The Study on the Electrochemical Performance of Lithium-Sulfur Battery Cathode Based on Vanadium Sulfide/Reduced Graphene Oxide. 2022 , 12, 352-361	
151	Nanostructured additives and binders for sulfur cathodes. 2022 , 453-485	
150	Enhanced Catalysis of LIS3©Radical-to-Polysulfide Interconversion via Increased Sulfur Vacancies in LithiumBulfur Batteries.	3
149	Design of nanostructured sulfur cathodes for high-performance lithiumBulfur batteries. 2022 , 425-452	
148	A High-Efficiency Ws2 Nanosheets on N-Doped Graphene Electrocatalyst with Dual-Function of Preventing Shuttling and Accelerating Polysulfides Conversion in Li-S Batteries.	
147	GrapheneBulfur composite cathodes. 2022 , 271-288	

Polymeric nanocomposites for lithium Bulfur batteries. 2022, 389-424

145	???????????. 2022,	O
144	Towards Practical High-Energy-Density Lithium-Sulfur Pouch Cells: A Review 2022 , e2201555	12
143	Flexible NiCo2S4-Hollow Carbon Nanofibers Electrocatalytic Membrane as an Advanced Interlayer for Lithium-Sulfur Batteries. 2022 , 129179	O
142	Tetrathiafulvalene as a multifunctional electrolyte additive for simultaneous interface amelioration, electron conduction, and polysulfide redox regulation in lithium-sulfur batteries. 2022 , 536, 231482	О
141	Dimension-controlled N-doped graphitic carbon nanostructures through low-temperature metal-catalyzed transformation from C3N4 for high-performance electrochemical barrier in lithium-sulfur batteries. 2022, 196, 304-312	O
140	V-Substitution Function on Polyoxometalate Catalyst for Rapid Conversion of Polyselenides in Li-Se Batteries.	
139	Effects of catalysis and separator functionalization on high energy lithium sulfur batteries: A complete review.	1
138	ZnFeO-NiP Mott-Schottky Heterojunctions to Promote Kinetics for Advanced Li-S Batteries 2022,	1
137	CoS2@montmorillonite as an efficient separator coating for high-performance lithium-sulfur batteries.	1
136	Nanotechnology and recycling, remanufacturing, and reusing battery. 2022 , 53-78	O
135	N/O dual-doped hierarchical porous carbon boosting cathode performance of lithiumBulfur batteries. 2022 , 12, 337-346	
134	Hollow Ni3Se4 with High Tap Density as a Carbon-Free Sulfur Immobilizer to Realize High Volumetric and Gravimetric Capacity for LithiumBulfur Batteries.	1
133	Design Strategies of High-Performance Positive Materials for Nonaqueous Rechargeable Aluminum Batteries: From Crystal Control to Battery Configuration. 2201362	1
132	The Effect of Compaction Density of Sulfur/Carbon Cathodes on the Practical Application of Li-S Pouch Cells.	
131	Mo-O-C Between MoS 2 and Graphene Toward Accelerated Polysulfide Catalytic Conversion for Advanced Lithium-Sulfur Batteries. 2201579	3
130	Discovery of Dual-Functional Amorphous Titanium Suboxide to Promote Polysulfide Adsorption and Regulate Sulfide Growth in Liß Batteries. 2200958	О
129	Iron (Fe, Ni, Co)-based transition metal compounds for lithium-sulfur batteries: mechanism, progress and prospects. 2022 ,	2

Kinetics of polysulfide on metal-sulfur batteries. **2022**, 679-713

127	Intermolecular Adsorption-Pairing Synergy for Accelerated Polysulfide Redox Reactions Towards Lithium-Sulfur Battery with High Stability.	
126	Function-directed design of battery separators based on microporous polyolefin membranes.	4
125	Engineering the interface between separators and cathodes to suppress polysulfide shuttling in lithium-sulfur batteries. 2022 , 37, 527-543	1
124	Achieving job-synergistic polysulfides adsorption-conversion within hollow structured MoS2/Co4S3/C heterojunction host for long-life lithiumBulfur batteries. 2022 ,	O
123	Electrocatalyst Modulation toward Bidirectional Sulfur Redox in LiB Batteries: From Strategic Probing to Mechanistic Understanding. 2201056	8
122	Two-dimensional host materials for lithium-sulfur batteries: A review and perspective. 2022 , 50, 696-717	1
121	A high-efficiency WS2 nanosheets on N-doped graphene electrocatalyst with dual-function of preventing shuttling and accelerating polysulfides conversion in Li-S batteries. 2022 , 599, 154022	O
120	Phosphorus modulated porous CeO2 nanocrystallines for accelerated polysulfide catalysis in advanced Li-S batteries. 2022 , 131, 212-220	0
119	Dynamic IntercalationII onversion Site Supported Ultrathin 2D Mesoporous SnO2/SnSe2 Hybrid as Bifunctional Polysulfide Immobilizer and Lithium Regulator for LithiumBulfur Chemistry.	4
118	In Situ Construction of CeO2-Incorporated Hybrid Covalent Organic Frameworks for Highly Efficient LithiumBulfur Batteries.	1
117	Poly(ionic liquid) Nanovesicle-Templated Carbon Nanocapsules Functionalized with Uniform Iron Nitride Nanoparticles as Catalytic Sulfur Host for Liß Batteries.	2
116	Electronic structure adjustment of lithium sulfide by a single-atom copper catalyst toward high-rate lithium-sulfur batteries. 2022 ,	8
115	Double-active-site enables 2D B2S and B2S3 catalyst with suppressed shuttle effect and improved polysulfides redox kinetics in lithium-sulfur batteries: A first-principles study. 2022 , 154295	O
114	Graphene-Based Materials for Li 🖪 Batteries. 2022 , 189-213	
113	Engineering MOFs-Derived Nanoarchitectures with Efficient Polysulfides Catalytic Sites for Advanced LiB Batteries. 2200238	2
112	Highly Selective Recovery of Phosphorus from Wastewater via Capacitive Deionization Enabled by Ferrocene-polyaniline-Functionalized Carbon Nanotube Electrodes.	O
111	Yolk-double shells hierarchical N-doped carbon nanosphere as an electrochemical nanoreactor for high performance lithium-sulfur batteries. 2022 , 198, 80-90	2

110	Efficient polysulfide conversion by Fe-N/C active sites anchored in N, P- doped carbon for high-performance lithium-sulfur batteries. 2022 , 922, 166132	O
109	V-substitution function on polyoxometalate catalyst for rapid conversion of polyselenides in Li-Se batteries. 2022 , 449, 137819	3
108	Ultrahigh Sulfur Loading Tolerant Cathode Architecture with Extended Cycle Life for High Energy Density LithiumBulfur Batteries. 2201494	4
107	Design of CoP-CoO heterostructure to enhance the polysulfide redox conversion for lithium-sulfur batteries. 2022 , 920, 116644	O
106	Materials and Technologies for Metal-Sulfur Batteries. 2022 , 1-26	
105	Catalytic Effects of Electrodes and Electrolytes in Metal-Sulfur Batteries: Progress and Prospective. 2204636	O
104	Regulating Lithium Salt to Inhibit Surface Gelation on an Electrocatalyst for High-Energy-Density Lithium Bulfur Batteries. 2022 , 144, 14638-14646	2
103	Synergistic Restriction to Polysulfides by a Carbon Nanotube/Manganese Sulfide-Decorated Separator for Advanced LithiumBulfur Batteries. 2022 , 36, 8460-8470	1
102	Intrinsic regularity of catalytic cobalt chalcogenides in lithium-sulfur battery: Theoretical study delivers new insights.	
101	Catalytic hosts with strong adsorption strength for long shelf-life lithium-sulfur batteries under lean electrolyte.	
100	In situ induced cation-vacancies in metal sulfides as dynamic electrocatalyst accelerating polysulfides conversion for Li-S battery. 2022 ,	1
99	Selective sulfur conversion with surface engineering of electrocatalysts in a lithiumBulfur battery.	O
98	Achieving Sustainable and Stable Potassium-Ion Battery by Leaf-Bioinspired Nanofluidic Flow. 2204370	3
97	Demystifying Activity Origin of MNII Single-Atomic Mediators Toward Expedited Rate-Determining Step in LiB Electrochemistry. 2200059	2
96	Targeted Catalysis of the Sulfur Evolution Reaction for High-Performance Lithium-Sulfur Batteries. 2202232	3
95	Modulating Bond Interactions and Interface Microenvironments between Polysulfide and Catalysts toward Advanced MetalBulfur Batteries. 2207021	2
94	Designing a double-coated cathode with high entropy oxides by microwave-assisted hydrothermal synthesis for highly stable LiB batteries.	1
93	Catalytic Disproportionation for Suppressing Polysulfide Shuttle in Liß Pouch Cells: Beyond Adsorption Interactions. 2201912	2

92	Oxygen heteroatom enhanced sulfur-rich polymers synthesized by inverse vulcanization for high-performance lithium-sulfur batteries. 2022 , 545, 231921	О
91	Synthesis of hollow S/FeS2@carbon nanotubes microspheres and their long-term cycling performances as cathode material for lithium-sulfur batteries. 2022 , 922, 116724	O
90	A flexible design strategy to modify Ti3C2T MXene surface terminations via nucleophilic substitution for long-life Li-S batteries. 2022 , 74, 349-358	0
89	Tunable MOFs derivatives for stable and fast sulfur electrodes in Li-S batteries. 2022 , 450, 138287	1
88	A hierarchically porous TiN/N-C electrocatalyst with high interface utilization for lithium-sulfur batteries. 2022 , 605, 154682	О
87	Dispersing single-layered Ti3C2TX nanosheets in hierarchically-porous membrane for high-efficiency Li+ transporting and polysulfide anchoring in Li-S batteries. 2022 , 53, 32-41	3
86	Multi-function hollow nanorod as an efficient sulfur host accelerates sulfur redox reactions for high-performance Li-S batteries. 2023 , 629, 65-75	1
85	MOF-derived MoP nanorods decorated with a N-doped thin carbon layer as a robust lithiophilic and sulfiphilic nanoreactor for high-performance LiB batteries. 2022 , 6, 3989-4000	Ο
84	A review on modified polymer composite electrolytes for solid-state lithium batteries.	0
83	Recent advances in novel graphene: new horizons in renewable energy storage technologies. 2022 , 10, 11472-11531	1
82	Advances of graphene-based aerogels and their modifications in lithium-sulfur batteries. 2023 , 201, 679-702	0
81	Wide-Temperature-Range Liß Batteries Enabled by Thiodimolybdate [Mo2S12]2las a Dual-Function Molecular Catalyst for Polysulfide Redox and Lithium Intercalation. 2022 , 16, 14569-14581	O
80	Cobalt Nanoparticles Loaded on MXene for Li-S Batteries: Anchoring Polysulfides and Accelerating Redox Reactions. 2204005	1
79	Review on recent advances in two-dimensional nanomaterials-based cathodes for lithium-sulfur batteries.	O
78	Crystallinity Regulated Functional Separator Based on Bimetallic Ni x Fe y Alloy Nanoparticles for Facilitated Redox Kinetics of LithiumBulfur Batteries. 2207094	0
77	Sulfur Reduction Reaction in LithiumBulfur Batteries: Mechanisms, Catalysts, and Characterization. 2202094	1
76	Synergistic Catalysis on Dual-Atom Sites for High-Performance LithiumBulfur Batteries. 2200205	2
75	Synergistic effect of adsorption and electrocatalysis of CoO/NiO heterostructure nanosheet assembled nanocages for high-performance lithiumBulfur batteries.	О

74	Spherical Templating of CoSe2 Nanoparticle-Decorated MXenes for LithiumBulfur Batteries.	1
73	Zinc-assisted Cobalt-ditelluride Polyhedra Inducing Lattice Strain to Endow Efficient Adsorption-catalysis for High-energy Lithium-sulfur Batteries. 2204403	O
72	A Zn8 Double-Cavity Metallacalix[8]arene as Molecular Sieve to Realize Self-Cleaning Intramolecular Tandem Transformation of LiB Chemistry. 2207689	1
71	Carbon Coated Metal-Based Composite Electrode Materials for Lithium Sulfur Batteries: A Review. 2022 , 22,	O
70	Spin Effect to Promote Reaction Kinetics and Overall Performance of Lithium-Sulfur Batteries under External Magnetic Field.	0
69	Recent advancement in rechargeable battery technologies.	O
68	Contribution of different metal nodes on stepwise electrocatalysis in lithium-sulfur batteries. 2022,	2
67	Spin Effect to Promote Reaction Kinetics and Overall Performance of Lithium-Sulfur Batteries under External Magnetic Field.	4
66	Porous-crystalline C/Fe3O4 microspheres with highly accessible adsorptive/catalytic and conductive interfaces to manipulate polysulfide shuttling in Li-S batteries. 2022 , 435, 141385	0
65	Multifunctional Ni/NiO heterostructure nanoparticles doped carbon nanorods modified separator for enhancing LiB battery performance. 2022 , 435, 141396	1
64	Encapsulate lithium sulfide cathodes with carbon-doped MoS2 for fast kinetics in lithium-sulfur batteries, a theoretical study. 2023 , 242, 118441	O
63	A synergistic effect on a ternary Co-S-Se catalytic material for simultaneous enhancement of the kinetics and stability in a lithium-sulfur battery. 2023 , 609, 155333	0
62	Flexible 2D Boron Imidazolate Framework for Polysulfide Adsorption in LithiumBulfur Batteries.	2
61	Phase Evolution of VC-VO Heterogeneous Particles to Facilitate Sulfur Species Conversion in LiB Batteries. 2210987	3
60	Core-shell hollow nanostructures as highly efficient polysulfide conversion and adsorption cathode for shuttle-free lithium-sulfur batteries. 2022 , 140338	1
59	Controllable Catalysis Behavior for High Performance Lithium Sulfur Batteries: From Kinetics to Strategies. 2022 , 100096	О
58	Tuning the Surface Structure of CeO2 Nanoparticles by Chlorine-doped Strategy to Improve the Polysulfide Reaction Kinetic for Lithium Sulfur Battery. 2022 , 130571	О
57	Co-doped g-C3N4 nanotube decorated separators mediate polysulfide redox for high performance lithium sulfur batteries.	O

56	Dual additive of lithium titanate and sulfurized pyrolyzed polyacrylonitrile in sulfur cathode for high rate performance in lithium ulfur battery. 2022 , 25, 351-358	O
55	A tandem electrocatalyst with dense heterointerfaces enabling the stepwise conversion of polysulfide in lithium-sulfur batteries. 2023 , 55, 445-454	O
54	Intermolecular adsorption-pairing synergy for accelerated polysulfide redox reactions towards lithium-sulfur battery with high stability. 2023 , 55, 21-32	O
53	High-performance MoS2 quantum dots/graphene functionalized separator and its failure analysis under high sulfur loading. 2023 , 456, 140972	O
52	Entrapment of polysulfides by a BiFeO3/TiO2 heterogeneous structure on separator for high-performance LiB batteries. 2023 , 556, 232501	O
51	A rational design of titanium-based heterostructures as electrocatalyst for boosted conversion kinetics of polysulfides in Li-S batteries. 2023 , 633, 432-440	O
50	Oxygen defect-rich MnOOH nanorod as an effective modulator to boost polysulfide reaction kinetic for high-performance lithium sulfur battery. 2023 , 614, 155869	O
49	Phosphorus-Functionalized Organic Linkers Promote Polysulfide Retention in MOF-Based Liß Batteries. 2022 , 5, 15302-15309	O
48	Fabrication of electrospun bilayer separators for lithium-sulfur batteries: A surface and structure dual modification strategy. 2022 , 65, 3029-3038	1
47	Tuning the Architecture of Hierarchical Porous CoNiO2 Nanosheet for Enhanced Performance of Li-S Batteries. 2022 , 8, 262	O
46	A High-Performance Tellurium-Sulfur Cathode in Carbonate-Based Electrolytes. 2022, 108141	1
45	Advanced Nanostructured Materials for Electrocatalysis in LithiumBulfur Batteries. 2022 , 12, 4341	O
44	Recent advances and perspectives of CeO2-based catalysts: Electronic properties and applications for energy storage and conversion. 10,	O
43	Application and Progress of Confinement Synthesis Strategy in Electrochemical Energy Storage.	O
42	Oxygen-modulated metal nitride clusters with moderate binding ability to insoluble Li 2 S \times for reversible polysulfide electrocatalysis.	O
41	Anchoring and Catalytic Effects of rGO Supported VS 2 Nanosheets Enable High-Performance LiDrganosulfur Battery. 2207047	1
40	Protecting lithium metal anodes in lithiumBulfur batteries: A review. 2023 , 4,	O
39	Highly crinkled and interconnected N, O and S co-doped carbon nanosheets modified separator for efficient Li-S batteries.	O

38	Electrocatalysts in lithium-sulfur batteries.	1
37	A Comparison Study of the Electrocatalytic Sulfur Reduction Activity on Heteroatom-Doped Graphene for Liß Battery. 2200244	O
36	Low temperature ensures FeS2 cathode a superior cycling stability in Li7P3S11-based all-solid-state lithium batteries. 10,	1
35	Defect Engineering in Carbon Materials for Electrochemical Energy Storage and Catalytic Conversion.	Ο
34	Core-shell polyoxometalate-based zeolite imidazole framework-derived multi-interfacial MoSe2/CoSe2@NC enabling multi-functional polysulfide anchoring and conversion in lithium-sulfur batteries.	O
33	Adsorption-catalysis design with cerium oxide nanorods supported nickel-cobalt-oxide with multifunctional reaction interfaces for anchoring polysulfides and accelerating redox reactions in lithium sulfur battery. 2023 , 635, 466-480	O
32	Isolated Fe-Co heteronuclear diatomic sites as efficient bifunctional catalysts for high-performance lithium-sulfur batteries. 2023 , 14,	1
31	Cathode materials for lithium-sulfur battery: a review.	1
30	The Dual-Site Adsorption and High Redox Activity Enabled by Hybrid Organic-Inorganic Vanadyl Ethylene Glycolate for High-Rate and Long-Durability LithiumBulfur Batteries. 2206750	0
29	Catalytic performance of binary transition metal sulfide FeCoS2/rGO for lithiumBulfur batteries. 2023 , 27, 1045-1053	O
28	Rational design of the cathode catalysts for high performance lithium ulfur batteries. 2023, 4, 011308	0
27	Supercritical carbon dioxide technology in synthesis, modification, and recycling of battery materials. 2023 , 2, 169-185	O
26	Review and Perspectives on Advanced Binder Designs Incorporating Multifunctionalities for LithiumBulfur Batteries.	0
25	Toward high-sulfur-content, high-performance lithium-sulfur batteries: Review of materials and technologies. 2023 , 80, 625-657	1
24	Highly electrocatalytic active amorphous Al2O3 in porous carbon assembled on carbon cloth as an independent multifunctional interlayer for advanced lithium-sulfur batteries. 2023 , 618, 156689	О
23	Regulating the d-p band center of FeP/Fe2P heterostructure host with built-in electric field enabled efficient bidirectional electrocatalyst toward advanced lithium-sulfur batteries. 2023 , 463, 142397	O
22	Deep dive into anionic metal@rganic frameworks based quasi-solid-state electrolytes. 2023 , 81, 313-320	О
21	A Honeycomb-Structured CoF 2 -Modified Separator Enabling High-Performance LithiumBulfur Batteries.	O

20	Optimizing the p charge of S in p-block metal sulfides for sulfur reduction electrocatalysis. 2023 , 6, 174-184	O
19	Multiple Effects of High Surface Area Hollow Nanospheres Assembled by Nickel Cobaltate Nanosheets on Soluble Lithium Polysulfides. 2023 , 28, 1539	O
18	Dual Single-Atom Moieties Anchored on N-Doped Multilayer Graphene As a Catalytic Host for LithiumBulfur Batteries.	0
17	A short review of the recent developments in functional separators for lithium-sulfur batteries. 2023 , 40, 473-487	O
16	Advanced two-dimensional materials toward polysulfides regulation of metalBulfur batteries.	О
15	Insights into the electrochemical properties of Li2FeS2 after FeS2 discharging. 2023 , 25, 8515-8523	O
14	Hollow Co3S4 Nanocubes Interconnected with Carbon Nanotubes as Nanoreactors to Accelerate Polysulfide Conversion for High-Performance LithiumBulfur Batteries. 2023 , 62, 4364-4372	О
13	In Situ Transformation of LDH into NiCo2S4-NiS2 Nano-heterostructures on Hollow Carbon Boxes to Promote Sulfur Electrochemistry for High-Performance LithiumBulfur Batteries. 2023 , 37, 4711-4719	Ο
12	Integrating the multiple functionalities in metalloporphyrin porous organic polymers enabling strong polysulfide anchoring and rapid electrochemical kinetics in LiB batteries.	О
11	Dual-Functional Lithiophilic/Sulfiphilic Binary-Metal Selenide Quantum Dots Toward High-Performance Liß Full Batteries. 2023 , 15,	O
10	Petal-like Mn-doped ENi(OH)2 nanosheets for high-performance LiB cathode material. 2023 , 13, 8706-8717	О
9	Space-Confined Electrochemical Reactions and Materials for High-Energy-Density Batteries.	O
8	Identification and Catalysis of the Potential-Limiting Step in Lithium-Sulfur Batteries. 2023, 145, 7390-7396	О
7	Molten salt etched Ti3C2Tx MXene for ameliorated electrochemical performances of lithium-sulfur batteries. 2023 , 34,	Ο
6	Metal Coordinated Polymer as Three-Dimensional Network Binder for High Sulfur Loading Cathode of LithiumBulfur Battery.	О
5	Ultrathin Carbon-Shell-Encapsulated Cobalt Nanoparticles with Balanced Activity and Stability for LithiumBulfur Batteries. 2023 , 15, 19002-19010	O
4	Engineering Peculiar Cathode Electrolyte Interphase toward Sustainable and High-Rate Liß Batteries.	О
3	Structural and Redox Interconversions of Sulfur Ligands of Transition Metal Complexes. 1-43	O

Built-in ultrafine CoS2 catalysis in confined ordered micro-mesoporous carbon nanoreactors for high-performance LiB batteries. **2023**, 573, 233136

Ο

Ultra-small TiO2 truncated octahedron nanocrystals with exposed index {1 0 1} facets modified separator for High-Performance Li-S batteries. **2023**, 344, 134470

О