Dissolvable microneedle fabrication using piezoelectric

International Journal of Pharmaceutics 500, 1-10 DOI: 10.1016/j.ijpharm.2015.12.052

Citation Report

#	Article	IF	CITATIONS
1	Accuracy and feasibility of piezoelectric inkjet coating technology for applications in microneedle-based transdermal delivery. Microelectronic Engineering, 2017, 172, 19-25.	2.4	18
2	Microneedle, bio-microneedle and bio-inspired microneedle: A review. Journal of Controlled Release, 2017, 251, 11-23.	9.9	285
3	Fabrication of coated polymer microneedles for transdermal drug delivery. Journal of Controlled Release, 2017, 265, 14-21.	9.9	131
4	Engineering Microneedle Patches for Vaccination and Drug Delivery to Skin. Annual Review of Chemical and Biomolecular Engineering, 2017, 8, 177-200.	6.8	284
5	Dissolving Microneedle Patches for Dermal Vaccination. Pharmaceutical Research, 2017, 34, 2223-2240.	3.5	139
6	The numerical and experimental research on injection performance of piezoelectric micro-jet. Ceramics International, 2017, 43, S27-S35.	4.8	3
7	Influences of Excitation on Dynamic Characteristics of Piezoelectric Micro-Jets. Micromachines, 2017, 8, 213.	2.9	7
8	3D printing applications for transdermal drug delivery. International Journal of Pharmaceutics, 2018, 544, 415-424.	5.2	165
9	An update on coating/manufacturing techniques of microneedles. Drug Delivery and Translational Research, 2018, 8, 1828-1843.	5.8	63
10	Controllable printing droplets on demand by piezoelectric inkjet: applications and methods. Microsystem Technologies, 2018, 24, 879-889.	2.0	25
11	A Trace Redundant Lubrication Piezoelectric Microjet for Bearing System. IEEE/ASME Transactions on Mechatronics, 2018, 23, 2263-2272.	5.8	24
12	Individually coated microneedles for co-delivery of multiple compounds with different properties. Drug Delivery and Translational Research, 2018, 8, 1043-1052.	5.8	32
13	Piezoelectric micro-jet devices: A review. Sensors and Actuators A: Physical, 2019, 297, 111552.	4.1	56
14	Application of Micro-Scale 3D Printing in Pharmaceutics. Pharmaceutics, 2019, 11, 390.	4.5	47
15	Piezoelectric inkjet coating of injection moulded, reservoir-tipped microneedle arrays for transdermal delivery. Journal of Micromechanics and Microengineering, 2019, 29, 085004.	2.6	9
16	Kinetics of collagen microneedle drug delivery system. Journal of Drug Delivery Science and Technology, 2019, 52, 618-623.	3.0	21
17	3D Printing of Pharmaceuticals and Transdermal Drug Delivery––An Overview. Minerals, Metals and Materials Series, 2019, , 1563-1573.	0.4	5
18	3D PRINTING IN PHARMACEUTICAL TECHNOLOGY: A REVIEW. International Research Journal of Pharmacy, 2019, 10, 8-17.	0.2	5

#	Article	IF	CITATIONS
19	A fast-dissolving microneedle array loaded with chitosan nanoparticles to evoke systemic immune responses in mice. Journal of Materials Chemistry B, 2020, 8, 216-225.	5.8	45
20	3D printing for drug delivery and biomedical applications. Drug Discovery Today, 2020, 25, 1668-1681.	6.4	119
21	3D Printing Technologies: Recent Development and Emerging Applications in Various Drug Delivery Systems. AAPS PharmSciTech, 2020, 21, 220.	3.3	55
22	Transdermal drug delivery and patches—An overview. Medical Devices & Sensors, 2020, 3, e10069.	2.7	43
23	Biomedical Applications of Polymeric Microneedles for Transdermal Therapeutic Delivery and Diagnosis: Current Status and Future Perspectives. Advanced Therapeutics, 2020, 3, 1900140.	3.2	34
24	Folic acidâ€modified nonionic surfactant vesicles for gambogenic acid targeting: Preparation, characterization, and in vitro and in vivo evaluation. Kaohsiung Journal of Medical Sciences, 2020, 36, 344-353.	1.9	4
25	pH-responsive lipid polymer hybrid nanoparticles (LPHNs) based on poly (β-amino ester) as a promising candidate to resist breast cancers. Journal of Drug Delivery Science and Technology, 2021, 61, 102102.	3.0	10
26	Influence of input signal on injection performance for needle driven piezoelectric micro-jet device. Microsystem Technologies, 2021, 27, 2009-2019.	2.0	2
27	Low Adenovirus Vaccine Doses Administered to Skin Using Microneedle Patches Induce Better Functional Antibody Immunogenicity as Compared to Systemic Injection. Vaccines, 2021, 9, 299.	4.4	10
28	Dissolvable Microneedle Patches to Enable Increased Access to Vaccines against SARS-CoV-2 and Future Pandemic Outbreaks. Vaccines, 2021, 9, 320.	4.4	36
29	2D and 3D inkjet printing of biopharmaceuticals – A review of trends and future perspectives in research and manufacturing. International Journal of Pharmaceutics, 2021, 599, 120443.	5.2	44
30	Advances in Piezoelectric Jet and Atomization Devices. Applied Sciences (Switzerland), 2021, 11, 5093.	2.5	8
31	Inkjet printing of small molecules, biologics, and nanoparticles. International Journal of Pharmaceutics, 2021, 600, 120462.	5.2	32
32	Engineering of an automated nano-droplet dispensing system for fabrication of antigen-loaded dissolving microneedle arrays. International Journal of Pharmaceutics, 2021, 600, 120473.	5.2	10
33	3D Printing—A "Touch-Button―Approach to Manufacture Microneedles for Transdermal Drug Delivery. Pharmaceutics, 2021, 13, 924.	4.5	16
34	Efficient Drug Delivery into Skin Using a Biphasic Dissolvable Microneedle Patch with Waterâ€Insoluble Backing. Advanced Functional Materials, 2021, 31, 2103359.	14.9	21
35	Fabrication, evaluation and applications of dissolving microneedles. International Journal of Pharmaceutics, 2021, 604, 120749.	5.2	57
37	A Review on Solid Microneedles for Biomedical Applications. Journal of Pharmaceutical Innovation, 2022, 17, 1464-1483.	2.4	23

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
38	3D Printing in medicine: Technology overview and drug delivery applications. Annals of 3D Printed Medicine, 2021, 4, 100037.	3.1	28
39	Fabrication of microneedles. , 2022, , 21-48.		0
40	Trends in drug- and vaccine-based dissolvable microneedle materials and methods of fabrication. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 173, 54-72.	4.3	38
41	Microneedles in Action: Microneedling and Microneedles-Assisted Transdermal Delivery. Polymers, 2022, 14, 1608.	4.5	16
42	Potential of Microneedle Systems for COVID-19 Vaccination: Current Trends and Challenges. Pharmaceutics, 2022, 14, 1066.	4.5	11
43	Microneedle patch tattoos. IScience, 2022, 25, 105014.	4.1	12
44	Research progress on detachable microneedles for advanced applications. Expert Opinion on Drug Delivery, 2022, 19, 1115-1131.	5.0	3
45	Expanding Quality by Design Principles to Support 3D Printed Medical Device Development Following the Renewed Regulatory Framework in Europe. Biomedicines, 2022, 10, 2947.	3.2	3
46	Recent Advances in Multifunctional Microneedle Patches for Wound Healing and Health Monitoring. Advanced NanoBiomed Research, 2023, 3, .	3.6	12
47	Technical evaluation of precisely manufacturing customized microneedle array patches via inkjet drug printing. International Journal of Pharmaceutics, 2023, 642, 123173.	5.2	3
48	Control strategy and mechanism for satellite droplet reduction. International Journal of Pharmaceutics, 2023, 643, 123228.	5.2	0
49	Dissolving and Swelling Hydrogel-Based Microneedles: An Overview of Their Materials, Fabrication, Characterization Methods, and Challenges. Gels, 2023, 9, 806.	4.5	3
50	The Progress in the Application of Dissolving Microneedles in Biomedicine. Polymers, 2023, 15, 4059.	4.5	1
51	Design and fabrication of customizable microneedles enabled by 3D printing for biomedical applications. Bioactive Materials, 2024, 32, 222-241.	15.6	0
52	3D printing of biologics—what has been accomplished to date?. Drug Discovery Today, 2024, 29, 103823.	6.4	0
53	Inkjet Printing of Pharmaceuticals. Advanced Materials, 0, , .	21.0	2
54	Additive manufacturing methods for pharmaceutical and medical applications. , 2024, , 345-390.		0
55	3D Printing in pharmaceutical manufacturing: Current status and future prospects. Materials Today Communications, 2024, 38, 107987.	1.9	0