Gold nanoparticle size and shape influence on osteogen

Nanoscale 8, 7992-8007 DOI: 10.1039/c5nr08808a

Citation Report

#	Article	IF	CITATIONS
1	Discriminating the Independent Influence of Cell Adhesion and Spreading Area on Stem Cell Fate Determination Using Micropatterned Surfaces. Scientific Reports, 2016, 6, 28708.	1.6	53
2	Influence of cell size on cellular uptake of gold nanoparticles. Biomaterials Science, 2016, 4, 970-978.	2.6	70
3	Cold Nanoparticles as a Potential Cellular Probe for Tracking of Stem Cells in Bone Regeneration Using Dual-Energy Computed Tomography. ACS Applied Materials & Interfaces, 2016, 8, 32241-32249.	4.0	29
4	Negatively charged gold nanoparticles as a dexamethasone carrier: stability in biological media and bioactivity assessment in vitro. RSC Advances, 2016, 6, 99016-99022.	1.7	39
5	Sub-10 nm gold nanoparticles promote adipogenesis and inhibit osteogenesis of mesenchymal stem cells. Journal of Materials Chemistry B, 2017, 5, 1353-1362.	2.9	36
6	Direct Imaging of Single Plasmonic Metal Nanoparticles in Capillary with Laser Light-Sheet Scattering Imaging. Analytical Chemistry, 2017, 89, 2692-2697.	3.2	14
7	Induction of Chondrogenic Differentiation of Human Mesenchymal Stem Cells by Biomimetic Gold Nanoparticles with Tunable RGD Density. Advanced Healthcare Materials, 2017, 6, 1700317.	3.9	26
8	Carbon dots for tracking and promoting the osteogenic differentiation of mesenchymal stem cells. Biomaterials Science, 2017, 5, 1820-1827.	2.6	97
9	The Effect of shape on Cellular Uptake of Gold Nanoparticles in the forms of Stars, Rods, and Triangles. Scientific Reports, 2017, 7, 3827.	1.6	280
10	Multifunctional Nanocomposite Films for Synergistic Delivery of bFGF and BMP-2. ACS Omega, 2017, 2, 899-909.	1.6	11
11	Shape-Dependent Radiosensitization Effect of Gold Nanostructures in Cancer Radiotherapy: Comparison of Gold Nanoparticles, Nanospikes, and Nanorods. ACS Applied Materials & Interfaces, 2017, 9, 13037-13048.	4.0	175
12	Assumption-free morphological quantification of single anisotropic nanoparticles and aggregates. Nanoscale, 2017, 9, 4918-4927.	2.8	6
13	Nanomaterial-based bone regeneration. Nanoscale, 2017, 9, 4862-4874.	2.8	97
14	Size-controlled growth and antibacterial mechanism for Cu:C nanocomposite thin films. Physical Chemistry Chemical Physics, 2017, 19, 237-244.	1.3	39
15	Insight into the interactions between nanoparticles and cells. Biomaterials Science, 2017, 5, 173-189.	2.6	78
16	Composite scaffolds of gelatin and gold nanoparticles with tunable size and shape for photothermal cancer therapy. Journal of Materials Chemistry B, 2017, 5, 245-253.	2.9	58
17	TEMPO-Conjugated Gold Nanoparticles for Reactive Oxygen Species Scavenging and Regulation of Stem Cell Differentiation. ACS Applied Materials & amp; Interfaces, 2017, 9, 35683-35692.	4.0	66
18	The effects of colorimetric detection of heavy metal ions based on Au nanoparticles (NPs): size and shape—a case of Co2+. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	11

#	Article	IF	CITATIONS
19	Anti-proliferative effects of gold nanoparticles functionalized with Semaphorin 3F. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	7
20	Action of Gold Nanospikes-Based Nanoradiosensitizers: Cellular Internalization, Radiotherapy, and Autophagy. ACS Applied Materials & amp; Interfaces, 2017, 9, 31526-31542.	4.0	92
21	Polyhedral gold nanocrystals/polyelectrolyte composite film: One-pot synthesis via interfacial liquid plasma polymerization. Composites Science and Technology, 2017, 153, 198-208.	3.8	2
22	Recent progress in nanotechnology for stem cell differentiation, labeling, tracking and therapy. Journal of Materials Chemistry B, 2017, 5, 9429-9451.	2.9	49
23	A facile synthesis of size- and shape-controlled Gd(OH) ₃ nanoparticles and Gd(OH) ₃ @Au core/shell nanostars. New Journal of Chemistry, 2017, 41, 15136-15143.	1.4	3
24	The effect of PEGylated hollow gold nanoparticles on stem cell migration: potential application in tissue regeneration. Nanoscale, 2017, 9, 9848-9858.	2.8	35
25	Finding a facile way for the bacterial DNA transformation by biosynthesized gold nanoparticles. FEMS Microbiology Letters, 2017, 364, .	0.7	12
26	Size-dependent Effects of Gold Nanoparticles on Osteogenic Differentiation of Human Periodontal Ligament Progenitor Cells. Theranostics, 2017, 7, 1214-1224.	4.6	81
27	Micro-Computed Tomography Detection of Gold Nanoparticle-Labelled Mesenchymal Stem Cells in the Rat Subretinal Layer. International Journal of Molecular Sciences, 2017, 18, 345.	1.8	24
28	Gold nanoparticles enhance TRAIL sensitivity through Drp1-mediated apoptotic and autophagic mitochondrial fission in NSCLC cells. International Journal of Nanomedicine, 2017, Volume 12, 2531-2551.	3.3	66
29	Nanomaterials modulate stem cell differentiation: biological interaction and underlying mechanisms. Journal of Nanobiotechnology, 2017, 15, 75.	4.2	83
30	Evaluation techniques. , 2017, , 211-232.		10
31	Gold nanoparticles promote osteogenic differentiation of human periodontal ligament stem cells via the p38 MAPK signaling pathway. Molecular Medicine Reports, 2017, 16, 4879-4886.	1.1	49
32	Shape and aspect ratio analysis of anisotropic magnetic nanochains based on TEM micrographs. Ceramics International, 2018, 44, 12340-12351.	2.3	14
33	Two-dimensional material-based bionano platforms to control mesenchymal stem cell differentiation. Biomaterials Research, 2018, 22, 10.	3.2	25
34	The influence of carbon-encapsulated iron nanoparticles on elastic modulus of living human mesenchymal stem cells examined by atomic force microscopy. Micron, 2018, 108, 41-48.	1.1	21
35	Materials-Directed Differentiation of Mesenchymal Stem Cells for Tissue Engineering and Regeneration. ACS Biomaterials Science and Engineering, 2018, 4, 1115-1127.	2.6	105
36	Gold nanoparticles in injectable calcium phosphate cement enhance osteogenic differentiation of human dental pulp stem cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 35-45.	1.7	61

#	ARTICLE	IF	CITATIONS
37	Fixed-diameter upconversion nanorods with controllable length and their interaction with cells. Journal of Colloid and Interface Science, 2018, 512, 591-599.	5.0	5
38	Cold Nanoparticles Inducing Osteogenic Differentiation of Stem Cells: A Review. Journal of Cluster Science, 2018, 29, 1-7.	1.7	26
39	Ligand density-dependent influence of arginine–glycine–aspartate functionalized gold nanoparticles on osteogenic and adipogenic differentiation of mesenchymal stem cells. Nano Research, 2018, 11, 1247-1261.	5.8	36
40	Bifunctional scaffolds for the photothermal therapy of breast tumor cells and adipose tissue regeneration. Journal of Materials Chemistry B, 2018, 6, 7728-7736.	2.9	33
41	The Impact of Metallic Nanoparticles on Stem Cell Proliferation and Differentiation. Nanomaterials, 2018, 8, 761.	1.9	65
42	Cellular Uptake and Radio-sensitization Effect of Small Gold Nanoparticles in MCF-7 Breast Cancer Cells. Journal of Nanomedicine & Nanotechnology, 2018, 09, .	1.1	7
43	Human β-defensin 3-combined gold nanoparticles for enhancement of osteogenic differentiation of human periodontal ligament cells in inflammatory microenvironments. International Journal of Nanomedicine, 2018, Volume 13, 555-567.	3.3	39
44	Recent review of the effect of nanomaterials on stem cells. RSC Advances, 2018, 8, 17656-17676.	1.7	37
45	<i>In situ</i> gold nanoparticle growth on polydopamine-coated 3D-printed scaffolds improves osteogenic differentiation for bone tissue engineering applications: <i>in vitro</i> and <i>in vivo</i> studies. Nanoscale, 2018, 10, 15447-15453.	2.8	72
46	The effect of different hydroxyapatite microparticles on the osteogenic differentiation of MC3T3-E1 preosteoblasts. Journal of Materials Chemistry B, 2018, 6, 5234-5242.	2.9	18
47	Intracellular Transport of Silver and Gold Nanoparticles and Biological Responses: An Update. International Journal of Molecular Sciences, 2018, 19, 1305.	1.8	90
48	Exploring the Mechanism of Inhibition of Au Nanoparticles on the Aggregation of Amyloid-β(16-22) Peptides at the Atom Level by All-Atom Molecular Dynamics. International Journal of Molecular Sciences, 2018, 19, 1815.	1.8	35
49	The impact of photofunctionalized gold nanoparticles on osseointegration. Heliyon, 2018, 4, e00662.	1.4	7
50	<p>Gold nanoparticles-loaded hydroxyapatite composites guide osteogenic differentiation of human mesenchymal stem cells through Wnt/Î2-catenin signaling pathway</p> . International Journal of Nanomedicine, 2019, Volume 14, 6151-6163.	3.3	44
51	Multifunctionality of gold nanoparticles: Plausible and convincing properties. Advances in Colloid and Interface Science, 2019, 271, 101989.	7.0	85
52	Accelerated Bone Regeneration by Gold-Nanoparticle-Loaded Mesoporous Silica through Stimulating Immunomodulation. ACS Applied Materials & Interfaces, 2019, 11, 41758-41769.	4.0	73
53	Artificial transformation methodologies for improving the efficiency of plasmid DNA transformation and simplifying its use. Applied Microbiology and Biotechnology, 2019, 103, 9205-9215.	1.7	10
54	The Story of Nanoparticles in Differentiation of Stem Cells into Neural Cells. Neurochemical Research, 2019, 44, 2695-2707.	1.6	9

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
55	Nanotechnology in regenerative ophthalmology. Advanced Drug Delivery Reviews, 2019, 148, 290-307.	6.6	34
56	3D printing of biopolymer nanocomposites for tissue engineering: Nanomaterials, processing and structure-function relation. European Polymer Journal, 2019, 121, 109340.	2.6	89
57	Molecular-Level Interactions between Engineered Materials and Cells. International Journal of Molecular Sciences, 2019, 20, 4142.	1.8	12
58	Effects of gold nanostructures on differentiation of mesenchymal stem cells. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110494.	2.5	13
59	Interaction of Immune Cells and Tumor Cells in Gold Nanorod–Gelatin Composite Porous Scaffolds. Nanomaterials, 2019, 9, 1367.	1.9	6
60	A Precautionary Approach to Guide the Use of Transition Metal-Based Nanotechnology to Prevent Orthopedic Infections. Materials, 2019, 12, 314.	1.3	12
61	Integration of Technologies for Bone Tissue Engineering. , 2019, , .		3
62	Gold nanoparticles modulate the crosstalk between macrophages and periodontal ligament cells for periodontitis treatment. Biomaterials, 2019, 206, 115-132.	5.7	139
63	A Metabolomic Approach for the In Vivo Study of Gold Nanospheres and Nanostars after a Single-Dose Intravenous Administration to Wistar Rats. Nanomaterials, 2019, 9, 1606.	1.9	15
64	Advanced platelet-rich fibrin plus gold nanoparticles enhanced the osteogenic capacity of human mesenchymal stem cells. BMC Research Notes, 2019, 12, 721.	0.6	11
65	AP2a enhanced the osteogenic differentiation of mesenchymal stem cells by inhibiting the formation of YAP/RUNX2 complex and BARX1 transcription. Cell Proliferation, 2019, 52, e12522.	2.4	37
66	Photothermal Ablation of Cancer Cells by Albumin-Modified Gold Nanorods and Activation of Dendritic Cells. Materials, 2019, 12, 31.	1.3	25
67	Influence of chitosan coating on the oral bioavailability of gold nanoparticles in rats. Saudi Pharmaceutical Journal, 2019, 27, 171-175.	1.2	26
68	Role of nanoparticles in osteogenic differentiation of bone marrow mesenchymal stem cells. Cytotechnology, 2020, 72, 1-22.	0.7	20
69	Nanostructured biomaterials for regenerative medicine: Clinical perspectives. , 2020, , 47-80.		0
70	Ligand-free upconversion nanoparticles for cell labeling and their effects on stem cell differentiation. Nanotechnology, 2020, 31, 145101.	1.3	15
71	Double layers of gold nanoparticles immobilized titanium implants improve the osseointegration in rabbit models. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102129.	1.7	20
72	Au, Pd and maghemite nanofunctionalized hydroxyapatite scaffolds for bone regeneration. International Journal of Energy Production and Management, 2020, 7, 461-469.	1.9	28

#	Article	IF	CITATIONS
73	Regulation of substrate surface topography on differentiation of mesenchymal stem cells. Acta Mechanica Sinica/Lixue Xuebao, 2020, 36, 1158-1169.	1.5	2
74	A glance on the role of actin in osteogenic and adipogenic differentiation of mesenchymal stem cells. Stem Cell Research and Therapy, 2020, 11, 283.	2.4	64
75	Dendritic polyglycerol-conjugated gold nanostars with different densities of functional groups to regulate osteogenesis in human mesenchymal stem cells. Nanoscale, 2020, 12, 24006-24019.	2.8	8
76	<p>Gold Nanoparticles as Radiosensitizers in Cancer Radiotherapy</p> . International Journal of Nanomedicine, 2020, Volume 15, 9407-9430.	3.3	145
77	Redox-Sensitive Glyoxalase 1 Up-Regulation Is Crucial for Protecting Human Lung Cells from Gold Nanoparticles Toxicity. Antioxidants, 2020, 9, 697.	2.2	10
78	Electrophoretic extraction of highly monodispersed graphene quantum dots from widely polydispersed bulk and its cytotoxicity effect against cancer cells. Microchemical Journal, 2020, 159, 105391.	2.3	5
79	Application of Nanotechnology in Stem-Cell-Based Therapy of Neurodegenerative Diseases. Applied Sciences (Switzerland), 2020, 10, 4852.	1.3	17
80	The Intersection of Mechanotransduction and Regenerative Osteogenic Materials. Advanced Healthcare Materials, 2020, 9, e2000709.	3.9	17
81	Synthesis and Characterization of Graphene Oxide and Reduced Graphene Oxide Composites with Inorganic Nanoparticles for Biomedical Applications. Nanomaterials, 2020, 10, 1846.	1.9	41
82	Topographical regulation of stem cell differentiation by plant-derived micro/nanostructures. Nanoscale, 2020, 12, 18305-18312.	2.8	7
83	Size, shape, charge and "stealthy―surface: Carrier properties affect the drug circulation time in vivo. Asian Journal of Pharmaceutical Sciences, 2021, 16, 444-458.	4.3	110
84	Surface-decorated nanoparticles clicked into nanoparticle clusters for oligonucleotide encapsulation. RSC Advances, 2020, 10, 37040-37049.	1.7	0
85	Advances in the application of gold nanoparticles in bone tissue engineering. Journal of Biological Engineering, 2020, 14, 14.	2.0	43
86	Polyethylenimine-Assisted Generation of Optical Nanoprobes for Biosensing Applications. ACS Applied Bio Materials, 2020, 3, 3935-3955.	2.3	16
87	Multifaceted application of nanoparticle-based labeling strategies for stem cell therapy. Nano Today, 2020, 34, 100897.	6.2	13
88	Photothermal Fenton Nanocatalysts for Synergetic Cancer Therapy in the Second Near-Infrared Window. ACS Applied Materials & amp; Interfaces, 2020, 12, 30145-30154.	4.0	72
89	Gold nanoparticles biosynthesized by Nocardiopsis dassonvillei NCIM 5124 enhance osteogenesis in gingival mesenchymal stem cells. Applied Microbiology and Biotechnology, 2020, 104, 4081-4092.	1.7	14
90	Covalent Surface Functionalization of Bovine Serum Albumin to Magnesium Surface to Provide Robust Corrosion Inhibition and Enhance In Vitro Osteo-Inductivity. Polymers, 2020, 12, 439.	2.0	10

#	Article	IF	CITATIONS
91	Controllable Preparation of Plasmonic Gold Nanostars for Enhanced Photothermal and SERS Effects. Chemical Research in Chinese Universities, 2020, 36, 1284-1291.	1.3	20
92	<p>Ultra-Small Lysozyme-Protected Gold Nanoclusters as Nanomedicines Inducing Osteogenic Differentiation</p> . International Journal of Nanomedicine, 2020, Volume 15, 4705-4716.	3.3	11
93	Role of gold- and silver-based nanoparticles in stem cells differentiation. , 2020, , 99-118.		1
94	PLGA-collagen-ECM hybrid meshes mimicking stepwise osteogenesis and their influence on the osteogenic differentiation of hMSCs. Biofabrication, 2020, 12, 025027.	3.7	24
95	Rapid evaluation of gold nanoparticle–lipid membrane interactions using a lipid/polydiacetylene vesicle sensor. Analyst, The, 2020, 145, 3049-3055.	1.7	3
96	Bone Regeneration, Reconstruction and Use of Osteogenic Cells; from Basic Knowledge, Animal Models to Clinical Trials. Journal of Clinical Medicine, 2020, 9, 139.	1.0	53
97	<i>In vitro</i> and <i>in vivo</i> osteogenesis up-regulated by two-dimensional nanosheets through a macrophage-mediated pathway. Biomaterials Science, 2021, 9, 780-794.	2.6	4
98	Ultra-small nanodots coated with oligopeptides providing highly negative charges to enhance osteogenic differentiation of hBMSCs better than osteogenic induction medium. Chinese Chemical Letters, 2021, 32, 266-270.	4.8	5
99	PEGylated gold nanoparticles promote osteogenic differentiation in in vitro and in vivo systems. Materials and Design, 2021, 197, 109231.	3.3	38
100	Advances in Dental Implantology using Nanomaterials and Allied Technology Applications. , 2021, , .		4
101	Gold Nanoparticles Combined Human β-Defensin 3 Gene-Modified Human Periodontal Ligament Cells Alleviate Periodontal Destruction via the p38 MAPK Pathway. Frontiers in Bioengineering and Biotechnology, 2021, 9, 631191.	2.0	6
102	Application of nanoparticles in bone tissue engineering; a review on the molecular mechanisms driving osteogenesis. Biomaterials Science, 2021, 9, 4541-4567.	2.6	24
103	Challenges and Innovations in Osteochondral Regeneration: Insights from Biology and Inputs from Bioengineering toward the Optimization of Tissue Engineering Strategies. Journal of Functional Biomaterials, 2021, 12, 17.	1.8	18
104	Quantitative Analysis of the UV–Vis Spectra for Gold Nanoparticles Powered by Supervised Machine Learning. Journal of Physical Chemistry C, 2021, 125, 8656-8666.	1.5	19
105	Citrate-Stabilized Gold Nanorods-Directed Osteogenic Differentiation of Multiple Cells. International Journal of Nanomedicine, 2021, Volume 16, 2789-2801.	3.3	12
106	Involvement of ABC transporters in the detoxification of non-substrate nanoparticles in lung and cervical cancer cells. Toxicology, 2021, 455, 152762.	2.0	12
107	Current advances and challenges of mesenchymal stem cells-based drug delivery system and their improvements. International Journal of Pharmaceutics, 2021, 600, 120477.	2.6	26
108	Nanomaterial Shape Influence on Cell Behavior. International Journal of Molecular Sciences, 2021, 22, 5266.	1.8	27

#	Article	IF	CITATIONS
109	A Focus on "Bio―in Bio–Nanoscience: The Impact of Biological Factors on Nanomaterial Interactions. Advanced Healthcare Materials, 2021, 10, e2100574.	3.9	23
110	Nanomaterials and Stem Cell Differentiation Potential: An Overview of Biological Aspects and Biomedical Efficacy. Current Medicinal Chemistry, 2022, 29, 1804-1823.	1.2	5
111	Gold Nanomaterials and Bone/Cartilage Tissue Engineering: Biomedical Applications and Molecular Mechanisms. Frontiers in Chemistry, 2021, 9, 724188.	1.8	13
112	The application prospect of metal/metal oxide nanoparticles in the treatment of osteoarthritis. Naunyn-Schmiedeberg's Archives of Pharmacology, 2021, 394, 1991-2002.	1.4	19
113	Production of Au/phosphonium polymer nanoparticles. European Polymer Journal, 2021, 156, 110599.	2.6	3
114	Non-spherical nanostructures in nanomedicine: From noble metal nanorods to transition metal dichalcogenide nanosheets. Applied Materials Today, 2021, 24, 101107.	2.3	16
115	Mussel-Inspired Gold Nanoparticle and PLGA/L-Lysine-g-Graphene Oxide Composite Scaffolds for Bone Defect Repair. International Journal of Nanomedicine, 2021, Volume 16, 6693-6718.	3.3	15
116	Regulation of Stem Cell Differentiation by Inorganic Nanomaterials: Recent Advances in Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, 2021, 9, 721581.	2.0	5
117	Porous Nanomaterials Targeting Autophagy in Bone Regeneration. Pharmaceutics, 2021, 13, 1572.	2.0	9
118	3D printed nanocomposites for tailored cardiovascular tissue constructs: A minireview. Materialia, 2021, 19, 101184.	1.3	8
119	The Application of Nanomaterials in Cell Autophagy. Current Stem Cell Research and Therapy, 2021, 16, 23-35.	0.6	7
120	Nanomaterials-based Cell Osteogenic Differentiation and Bone Regeneration. Current Stem Cell Research and Therapy, 2021, 16, 36-47.	0.6	9
121	Nanomaterials modulating stem cell behavior towards cardiovascular cell lineage. Materials Advances, 2021, 2, 2231-2262.	2.6	25
122	The Research Advances of Nanomaterials Inducing Osteogenic and Chondrogenic Differentiation of Stem Cells. Pancreatic Islet Biology, 2017, , 77-95.	0.1	1
123	Nanomaterial integration into the scaffolding materials for nerve tissue engineering: a review. Reviews in the Neurosciences, 2020, 31, 843-872.	1.4	16
124	Gallium ions promote osteoinduction of human and mouse osteoblasts via the TRPM7/Akt signaling pathway. Molecular Medicine Reports, 2020, 22, 2741-2752.	1.1	7
125	Gold nanoparticle DNA damage in radiotherapy: A Monte Carlo study. AIMS Bioengineering, 2016, 3, 352-361.	0.6	43
126	Gold nanotheranostics: future emblem of cancer nanomedicine. Nanobiomedicine, 2021, 8, 184954352110539.	4.4	6

#	Article	IF	Citations
127	Visible Light-Mediated Sustainable Antibacterial Activity and Osteogenic Functionality of Au and Pt Multi-Coated TiO2 Nanotubes. Materials, 2021, 14, 5976.	1.3	7
128	Nanoparticles as Cell Tracking Agents in Human Ocular Cell Transplantation Therapy. Current Ophthalmology Reports, 2021, 9, 133-145.	0.5	0
129	Nanobiomaterials: Stem Cell Interaction and Role in Tissue Engineering. , 2021, , 153-168.		1
131	Engineering of Extracellular Matrixâ€Like Biomaterials at Nano―and Macroscale toward Fabrication of Hierarchical Scaffolds for Bone Tissue Engineering. Advanced NanoBiomed Research, 2022, 2, 2100116.	1.7	7
132	Advantages and prospects of stem cells in nanotoxicology. Chemosphere, 2022, 291, 132861.	4.2	3
133	Selective Detection of an Infection Biomarker by an Osteo-Friend Scaffold: Development of a Multifunctional Artificial Bone Substitute. Biosensors, 2021, 11, 473.	2.3	2
134	Mesenchymal stem cell-based nanoparticles and scaffolds in regenerative medicine. European Journal of Pharmacology, 2022, 918, 174657.	1.7	32
135	Self-assembled gel tubes, filaments and 3D-printing with <i>in situ</i> metal nanoparticle formation and enhanced stem cell growth. Chemical Science, 2022, 13, 1972-1981.	3.7	12
136	Osteoimmunomodulatory Potential of 3D Printed Submicron Patterns Assessed in a Direct Co-Culture Model. SSRN Electronic Journal, 0, , .	0.4	0
137	Synthesis, properties, and biomedical applications of inorganic bionanomaterials. , 2022, , 139-174.		9
139	GMT8 aptamer conjugated PEGylated Ag@Au core-shell nanoparticles as a novel radiosensitizer for targeted radiotherapy of glioma. Colloids and Surfaces B: Biointerfaces, 2022, 211, 112330.	2.5	13
140	Trends in Using Gold Nanoparticles for Inducing Cell Differentiation: A Review. ACS Applied Nano Materials, 2022, 5, 3110-3120.	2.4	2
141	From hurdle to springboard: The macrophage as target in biomaterial-based bone regeneration strategies. Bone, 2022, 159, 116389.	1.4	17
142	Biocompatible polymer-modified gold nanocomposites of different shapes as radiation sensitizers. Biomaterials Science, 2022, 10, 2665-2672.	2.6	2
144	Research progress on the application of framework nucleic acid in bone regeneration. Hua Xi Kou Qiang Yi Xue Za Zhi = Huaxi Kouqiang Yixue Zazhi = West China Journal of Stomatology, 2021, 39, 624-632.	0.1	0
145	Cell penetrating peptide (CPP) gold(<scp>iii</scp>) – complex – bioconjugates: from chemical design to interaction with cancer cells for nanomedicine applications. Nanoscale Advances, 2022, 4, 3010-3022.	2.2	11
146	Inflammation-associated ectopic mineralization. Fundamental Research, 2023, 3, 1025-1038.	1.6	1
147	Preparation of composite scaffolds composed of gelatin and Au nanostar-deposited black phosphorus nanosheets for the photothermal ablation of cancer cells and adipogenic differentiation of stem cells. , 2022, 138, 212938.		4

#	Article	IF	CITATIONS
148	Doxorubicin-encapsulated thermosensitive liposome-functionalized photothermal composite scaffolds for synergistic photothermal therapy and chemotherapy. Journal of Materials Chemistry B, 2022, 10, 4771-4782.	2.9	12
149	Inorganic Nanomaterials in Tissue Engineering. Pharmaceutics, 2022, 14, 1127.	2.0	26
151	Impact of Nanotechnology on the Realm of Stem Cells and Regenerative Medicine. ChemNanoMat, 2022, 8, .	1.5	0
152	Estimation of the lifespan distribution of gold nanoparticles stabilized with lipoic acid by accelerated degradation tests and wiener process. Nano Express, 2022, 3, 035002.	1.2	0
153	Enhancing Stem Cell-Based Therapeutic Potential by Combining Various Bioengineering Technologies. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	10
154	Metal nanoparticles: biomedical applications and their molecular mechanisms of toxicity. Chemical Papers, 2022, 76, 6073-6095.	1.0	7
155	Cold nanoparticles targeting the autophagy–lysosome system to combat the inflammation-compromised osteogenic potential of periodontal ligament stem cells: From mechanism to therapy. Biomaterials, 2022, 288, 121743.	5.7	19
156	The response of RAW264.7 cells to dicalcium silicate nanoparticles and the effect of the nanoparticle-regulated immune environment on osteogenesis. Journal of Materials Research, 0, , .	1.2	0
157	Smartphone-based colorimetric sensor array using gold nanoparticles for rapid distinguishment of multiple pesticides in real samples. Food Chemistry, 2023, 404, 134768.	4.2	17
158	Cellulose nanocrystals vs. cellulose nanospheres: A comparative study of cytotoxicity and macrophage polarization potential. Carbohydrate Polymers, 2023, 303, 120464.	5.1	8
159	Injectable Bone Cement Reinforced with Gold Nanodots Decorated rGOâ€Hydroxyapatite Nanocomposites, Augment Bone Regeneration. Small, 2023, 19, .	5.2	11
160	Inorganic Nanoparticles-Based Systems in Biomedical Applications of Stem Cells: Opportunities and Challenges. International Journal of Nanomedicine, 0, Volume 18, 143-182.	3.3	7
161	Orthopedical Nanotechnology. Micro/Nano Technologies, 2023, , 501-523.	0.1	0
162	Gold nanoparticles: promising biomaterials for osteogenic/adipogenic regulation in bone repair. Journal of Materials Chemistry B, 2023, 11, 2307-2333.	2.9	4
163	Design and testing of nanobiomaterials for orthopedic implants. , 2023, , 227-271.		3
164	Carbon dots as a new class of multifunctional nanomaterial in mesenchymal stem cells: opportunities and challenges. Journal of Materials Chemistry B, 2023, 11, 3511-3536.	2.9	6
165	Laser Ablated Albumin Functionalized Spherical Gold Nanoparticles Indicated for Stem Cell Tracking. Materials, 2023, 16, 1034.	1.3	0
166	Advances in Bone Grafting Technology. , 2023, , 1-16.		0

#	Article	IF	CITATIONS
167	Intra-articular nanoparticles based therapies for osteoarthritis and rheumatoid arthritis management. Materials Today Bio, 2023, 19, 100597.	2.6	13
168	Nanoengineering/technology for tissue engineering and organ printing. , 2023, , 35-54.		3
169	Bioceramics: from bone substitutes to nanoparticles for bone drug delivery. , 2023, , 389-405.		0
170	Critical parameters to translate gold nanoparticles as radiosensitizing agents into the clinic. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2023, 15, .	3.3	3
171	Advances in Bone Grafting Technology. , 2023, , 1-16.		0
172	Impact of nanotechnology on differentiation and augmentation of stem cells for liver therapy. Critical Reviews in Therapeutic Drug Carrier Systems, 2023, , .	1.2	Ο
175	Biomaterials and MSCs composites in regenerative medicine. , 2023, , 69-99.		0
177	Engineered Nano–Bio Interfaces for Stem Cell Therapy. , 2023, 1, 341-356.		1
184	Advances in Bone Grafting Technology. , 2023, , 423-438.		0
188	Recent advances of nanoparticles on bone tissue engineering and bone cells. Nanoscale Advances, 0, , .	2.2	0