Enzyme-Instructed Self-Assembly of Small <scp>d</scp for Selectively Killing Cancer Cells

Journal of the American Chemical Society 138, 3813-3823 DOI: 10.1021/jacs.5b13541

Citation Report

#	Article	IF	CITATIONS
1	Negatively Charged Lipid Membranes Catalyze Supramolecular Hydrogel Formation. Journal of the American Chemical Society, 2016, 138, 8670-8673.	6.6	32
2	Nanocomputed Tomography Imaging of Bacterial Alkaline Phosphatase Activity with an Iodinated Hydrogelator. Analytical Chemistry, 2016, 88, 11982-11985.	3.2	27
3	Minimal C-terminal modification boosts peptide self-assembling ability for necroptosis of cancer cells. Chemical Communications, 2016, 52, 6332-6335.	2.2	30
4	Mitochondria-Targeted Chimeric Peptide for Trinitarian Overcoming of Drug Resistance. ACS Applied Materials & Interfaces, 2016, 8, 25060-25068.	4.0	61
5	Switching the Immunogenicity of Peptide Assemblies Using Surface Properties. ACS Nano, 2016, 10, 9274-9286.	7.3	121
6	Enzyme-Instructed Self-Assembly for Spatiotemporal Profiling of the Activities of Alkaline Phosphatases on Live Cells. CheM, 2016, 1, 246-263.	5.8	143
7	Controlling the width of nanosheets by peptide length in peptoid–peptide biohybrid hydrogels. RSC Advances, 2016, 6, 67025-67028.	1.7	7
8	Enzyme-Regulated Supramolecular Assemblies of Cholesterol Conjugates against Drug-Resistant Ovarian Cancer Cells. Journal of the American Chemical Society, 2016, 138, 10758-10761.	6.6	102
9	Cell Environment-Differentiated Self-Assembly of Nanofibers. Journal of the American Chemical Society, 2016, 138, 11128-11131.	6.6	155
10	Galactose-decorated light-responsive hydrogelator precursors for selectively killing cancer cells. Chemical Communications, 2016, 52, 12574-12577.	2.2	28
11	Effect of Peptide Sequences on Supramolecular Interactions of Naphthaleneimide/Tripeptide Conjugates. Langmuir, 2016, 32, 7630-7638.	1.6	31
12	Integrating Enzymatic Self-Assembly and Mitochondria Targeting for Selectively Killing Cancer Cells without Acquired Drug Resistance. Journal of the American Chemical Society, 2016, 138, 16046-16055.	6.6	254
13	D-amino acid-containing supramolecular nanofibers for potential cancer therapeutics. Advanced Drug Delivery Reviews, 2017, 110-111, 102-111.	6.6	74
14	Peptide–drug conjugates as effective prodrug strategies for targeted delivery. Advanced Drug Delivery Reviews, 2017, 110-111, 112-126.	6.6	366
15	Enzyme-instructed self-assembly of peptides containing phosphoserine to form supramolecular hydrogels as potential soft biomaterials. Frontiers of Chemical Science and Engineering, 2017, 11, 509-515.	2.3	24
16	Amino Acids and Peptideâ€Based Supramolecular Hydrogels for Threeâ€Dimensional Cell Culture. Advanced Materials, 2017, 29, 1604062.	11.1	260
17	Ultrashort selfâ€assembling Fmocâ€peptide gelators for antiâ€infective biomaterial applications. Journal of Peptide Science, 2017, 23, 131-140.	0.8	57
18	One-Component Supramolecular Filament Hydrogels as Theranostic Label-Free Magnetic Resonance Imaging Agents. ACS Nano, 2017, 11, 797-805.	7.3	95

#	Article	IF	CITATIONS
19	Dual Fluorescent―and Isotopicâ€Labelled Selfâ€Assembling Vancomycin for inâ€vivo Imaging of Bacterial Infections. Angewandte Chemie - International Edition, 2017, 56, 2356-2360.	7.2	98
20	Dual Fluorescent―and Isotopicâ€Labelled Selfâ€Assembling Vancomycin for inâ€vivo Imaging of Bacterial Infections. Angewandte Chemie, 2017, 129, 2396-2400.	1.6	14
21	Selectively Inducing Cancer Cell Death by Intracellular Enzymeâ€Instructed Selfâ€Assembly (EISA) of Dipeptide Derivatives. Advanced Healthcare Materials, 2017, 6, 1601400.	3.9	56
22	In situ generated Dâ€peptidic nanofibrils as multifaceted apoptotic inducers to target cancer cells. Cell Death and Disease, 2017, 8, e2614-e2614.	2.7	40
23	A photo-degradable supramolecular hydrogel for selective delivery of microRNA into 3D-cultured cells. Organic and Biomolecular Chemistry, 2017, 15, 2191-2198.	1.5	16
24	Phosphatase-triggered cell-selective release of a Pt(<scp>iv</scp>)-backboned prodrug-like polymer for an improved therapeutic index. Biomaterials Science, 2017, 5, 1558-1566.	2.6	11
25	Patching of Lipid Rafts by Molecular Self-Assembled Nanofibrils Suppresses Cancer Cell Migration. CheM, 2017, 2, 283-298.	5.8	40
26	Intracellular enzyme-activatable prodrug for real-time monitoring of chlorambucil delivery and imaging. Chinese Chemical Letters, 2017, 28, 1345-1351.	4.8	19
27	Biocatalytic Selfâ€Assembly Cascades. Angewandte Chemie - International Edition, 2017, 56, 6828-6832.	7.2	65
28	Protease-Sensitive Nanomaterials for Cancer Therapeutics and Imaging. Industrial & Engineering Chemistry Research, 2017, 56, 5761-5777.	1.8	55
29	Alkaline Phosphatase-Instructed Self-Assembly of Gadolinium Nanofibers for Enhanced T ₂ -Weighted Magnetic Resonance Imaging of Tumor. Analytical Chemistry, 2017, 89, 6922-6925.	3.2	66
30	Molecular, Local, and Network-Level Basis for the Enhanced Stiffness of Hydrogel Networks Formed from Coassembled Racemic Peptides: Predictions from Pauling and Corey. ACS Central Science, 2017, 3, 586-597.	5.3	107
31	Dual-targeting peptide probe for sequence- and structure-sensitive sensing of serum albumin. Biosensors and Bioelectronics, 2017, 94, 657-662.	5.3	15
32	Bioinspired assembly of small molecules in cell milieu. Chemical Society Reviews, 2017, 46, 2421-2436.	18.7	188
33	Supramolecular biofunctional materials. Biomaterials, 2017, 129, 1-27.	5.7	196
34	Aromatic–Aromatic Interactions Enable α-Helix to β-Sheet Transition of Peptides to Form Supramolecular Hydrogels. Journal of the American Chemical Society, 2017, 139, 71-74.	6.6	124
35	Peptide Logic Circuits Based on Chemoenzymatic Ligation for Programmable Cell Apoptosis. Angewandte Chemie - International Edition, 2017, 56, 14888-14892.	7.2	26
36	Enzymatically crosslinked hydrogels based on linear poly(ethylene glycol) polymer: performance and mechanism. Polymer Chemistry, 2017, 8, 7017-7024.	1.9	20

#	Article	IF	CITATIONS
37	Fabrication of self-assembling nanofibers with optimal cell uptake and therapeutic delivery efficacy. Bioactive Materials, 2017, 2, 260-268.	8.6	22
38	Self-Assembling Ability Determines the Activity of Enzyme-Instructed Self-Assembly for Inhibiting Cancer Cells. Journal of the American Chemical Society, 2017, 139, 15377-15384.	6.6	108
39	Peptide-Based Supramolecular Chemistry. , 2017, , 135-163.		0
40	Recent progress in exploiting small molecule peptides as supramolecular hydrogelators. Chinese Journal of Polymer Science (English Edition), 2017, 35, 1194-1211.	2.0	7
41	An amino acid-based gelator for injectable and multi-responsive hydrogel. Chinese Chemical Letters, 2017, 28, 2125-2128.	4.8	25
42	Cancer vaccines using supramolecular hydrogels of NSAID-modified peptides as adjuvants abolish tumorigenesis. Nanoscale, 2017, 9, 14058-14064.	2.8	61
43	Selective inhibition of cancer cells by enzyme-induced gain of function of phosphorylated melittin analogues. Chemical Science, 2017, 8, 7675-7681.	3.7	14
44	Hydrogelation of a Naphthalene Diimide Appended Peptide Amphiphile and Its Application in Cell Imaging and Intracellular pH Sensing. Biomacromolecules, 2017, 18, 3630-3641.	2.6	42
45	Enzyme-instructed self-assembly with photo-responses for the photo-regulation of cancer cells. Organic and Biomolecular Chemistry, 2017, 15, 6892-6895.	1.5	13
46	Bacteriaâ€Assisted Activation of Antimicrobial Polypeptides by a Randomâ€Coil to Helix Transition. Angewandte Chemie, 2017, 129, 10966-10969.	1.6	8
47	Enzyme-assisted peptide folding, assembly and anti-cancer properties. Nanoscale, 2017, 9, 11987-11993.	2.8	56
48	Sequentially Programmable and Cellularly Selective Assembly of Fluorescent Polymerized Vesicles for Monitoring Cell Apoptosis. Advanced Science, 2017, 4, 1700310.	5.6	19
49	Supramolecular Chemistry of Biomimetic Systems. , 2017, , .		3
50	Intracellular construction of topology-controlled polypeptide nanostructures with diverse biological functions. Nature Communications, 2017, 8, 1276.	5.8	104
51	Biocatalytic Selfâ€Assembly Cascades. Angewandte Chemie, 2017, 129, 6932-6936.	1.6	26
52	Bacteriaâ€Assisted Activation of Antimicrobial Polypeptides by a Randomâ€Coil to Helix Transition. Angewandte Chemie - International Edition, 2017, 56, 10826-10829.	7.2	108
53	Drug self-delivery systems for cancer therapy. Biomaterials, 2017, 112, 234-247.	5.7	443
54	Chirality Controls Reactionâ€Diffusion of Nanoparticles for Inhibiting Cancer Cells. ChemNanoMat, 2017, 3, 17-21.	1.5	23

#	Article	IF	CITATIONS
55	Drug-Bearing Supramolecular Filament Hydrogels as Anti-Inflammatory Agents. Theranostics, 2017, 7, 2003-2014.	4.6	52
56	Bioinspired supramolecular engineering of self-assembling immunofibers for high affinity binding of immunoglobulin G. Biomaterials, 2018, 178, 448-457.	5.7	14
57	Regulating Higherâ€Order Organization through the Synergy of Two Selfâ€Sorted Assemblies. Angewandte Chemie, 2018, 130, 3698-3702.	1.6	1
58	In Vivo Self-Assembly Nanotechnology for Biomedical Applications. Nanomedicine and Nanotoxicology, 2018, , .	0.1	1
59	Directed Nanoscale Selfâ€Assembly of Low Molecular Weight Hydrogelators Using Catalytic Nanoparticles. Advanced Materials, 2018, 30, e1707408.	11.1	20
60	Propagation of Enzymeâ€Induced Surface Events inside Polymer Nanoassemblies for a Fast and Tunable Response. Angewandte Chemie, 2018, 130, 7229-7233.	1.6	0
61	Propagation of Enzymeâ€Induced Surface Events inside Polymer Nanoassemblies for a Fast and Tunable Response. Angewandte Chemie - International Edition, 2018, 57, 7111-7115.	7.2	13
62	Recent Advances in Supramolecular Gels and Catalysis. Chemistry - an Asian Journal, 2018, 13, 712-729.	1.7	112
63	Enzymatic Self-Assembly Confers Exceptionally Strong Synergism with NF-κB Targeting for Selective Necroptosis of Cancer Cells. Journal of the American Chemical Society, 2018, 140, 2301-2308.	6.6	63
64	Artemisinin-Loaded Mesoporous Nanoplatform for pH-Responsive Radical Generation Synergistic Tumor Theranostics. ACS Applied Materials & Interfaces, 2018, 10, 6155-6167.	4.0	22
65	Tandem Molecular Selfâ€Assembly in Liver Cancer Cells. Angewandte Chemie, 2018, 130, 1831-1834.	1.6	44
66	Regulating Higherâ€Order Organization through the Synergy of Two Selfâ€ S orted Assemblies. Angewandte Chemie - International Edition, 2018, 57, 3636-3640.	7.2	25
67	Tandem Molecular Selfâ€Assembly in Liver Cancer Cells. Angewandte Chemie - International Edition, 2018, 57, 1813-1816.	7.2	199
68	Kinetic control over supramolecular hydrogelation and anticancer properties of taxol. Chemical Communications, 2018, 54, 755-758.	2.2	14
69	Intracellular Peptide Self-Assembly: A Biomimetic Approach for <i>in Situ</i> Nanodrug Preparation. Bioconjugate Chemistry, 2018, 29, 826-837.	1.8	37
70	A Transformable Chimeric Peptide for Cell Encapsulation to Overcome Multidrug Resistance. Small, 2018, 14, e1703321.	5.2	70
71	Enzyme-Instructed Self-assembly of Small Peptides In Vivo for Biomedical Application. Nanomedicine and Nanotoxicology, 2018, , 89-114.	0.1	1
72	Tuning Optoelectronic and Chiroptic Properties of Peptideâ€Based Materials by Controlling the Pathway Complexity. Chemistry - A European Journal, 2018, 24, 7755-7760.	1.7	10

#	Article	IF	CITATIONS
73	Kinetic Analysis of Nanostructures Formed by Enzyme-Instructed Intracellular Assemblies against Cancer Cells. ACS Nano, 2018, 12, 3804-3815.	7.3	38
74	Protein-mimetic peptide nanofibers: Motif design, self-assembly synthesis, and sequence-specific biomedical applications. Progress in Polymer Science, 2018, 80, 94-124.	11.8	145
75	A supramolecular peptide polymer from hydrogen-bond and coordination-driven self-assembly. Polymer Chemistry, 2018, 9, 69-76.	1.9	15
76	Enzyme-instructed self-assembly leads to the activation of optical properties for selective fluorescence detection and photodynamic ablation of cancer cells. Journal of Materials Chemistry B, 2018, 6, 2566-2573.	2.9	47
77	Synergistic enzymatic and bioorthogonal reactions for selective prodrug activation in living systems. Nature Communications, 2018, 9, 5032.	5.8	141
78	Precise nanomedicine for intelligent therapy of cancer. Science China Chemistry, 2018, 61, 1503-1552.	4.2	336
79	Near-Infrared Laser-Driven in Situ Self-Assembly as a General Strategy for Deep Tumor Therapy. Nano Letters, 2018, 18, 6577-6584.	4.5	71
80	A supramolecular hydrogel for spatial-temporal release of auxin to promote plant root growth. Chemical Communications, 2018, 54, 11721-11724.	2.2	10
81	Selfâ€Assembled Nanomedicines for Anticancer and Antibacterial Applications. Advanced Healthcare Materials, 2018, 7, e1800670.	3.9	63
82	Stimuli-responsive peptide-based biomaterials as drug delivery systems. Chemical Engineering Journal, 2018, 353, 559-583.	6.6	96
83	An "In Vivo Self-assembly―Strategy for Constructing Superstructures for Biomedical Applications. Chinese Journal of Polymer Science (English Edition), 2018, 36, 1103-1113.	2.0	12
84	Peptides containing d -amino acids and retro-inverso peptides. , 2018, , 131-155.		14
85	Impact of Secondary Structure of Polypeptides on Glucose Concentration Sensitivity of Nanocarriers for Insulin Delivery. ACS Applied Bio Materials, 2018, 1, 328-339.	2.3	2
86	Remineralization Efficacy of an Amelogenin-Based Synthetic Peptide on Carious Lesions. Frontiers in Physiology, 2018, 9, 842.	1.3	23
87	Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging. Chemical Society Reviews, 2018, 47, 7140-7180.	18.7	689
88	Enzyme-mediated self-assembly. , 2018, , 399-417.		1
89	A Peptideâ€Based Supramolecular Hydrogel for Controlled Delivery of Amine Drugs. Chemistry - an Asian Journal, 2018, 13, 3460-3463.	1.7	21
90	Self-Assembly-Directed Cancer Cell Membrane Insertion of Synthetic Analogues for Permeability Alteration. Langmuir, 2019, 35, 7376-7382.	1.6	8

#	Article	IF	CITATIONS
91	Inâ€Situ Selfâ€Assembled Nanofibers Precisely Target Cancerâ€Associated Fibroblasts for Improved Tumor Imaging. Angewandte Chemie - International Edition, 2019, 58, 15287-15294.	7.2	107
92	Inâ€Situ Selfâ€Assembled Nanofibers Precisely Target Cancerâ€Associated Fibroblasts for Improved Tumor Imaging. Angewandte Chemie, 2019, 131, 15431-15438.	1.6	24
93	Protamineâ€induced condensation of peptide nanofilaments into twisted bundles with controlled helical geometry. Journal of Peptide Science, 2019, 25, e3176.	0.8	1
94	Enzyme-Instructed Peptide Assemblies Selectively Inhibit Bone Tumors. CheM, 2019, 5, 2442-2449.	5.8	118
95	Enzymatic Noncovalent Synthesis of Supramolecular Soft Matter for Biomedical Applications. Matter, 2019, 1, 1127-1147.	5.0	54
96	Polymer-Mediated Penetration-Independent Cancer Therapy. Biomacromolecules, 2019, 20, 4258-4271.	2.6	38
97	Drug Delivery with Designed Peptide Assemblies. Trends in Pharmacological Sciences, 2019, 40, 747-762.	4.0	79
98	Customizing Morphology, Size, and Response Kinetics of Matrix Metalloproteinase-Responsive Nanostructures by Systematic Peptide Design. ACS Nano, 2019, 13, 1555-1562.	7.3	34
99	Controlled Fabrication of Micropatterned Supramolecular Gels by Directed Selfâ€Assembly of Small Molecular Gelators. Small, 2019, 15, e1804154.	5.2	11
100	Instructed Assembly as Contextâ€Dependent Signaling for the Death and Morphogenesis of Cells. Angewandte Chemie, 2019, 131, 5623-5627.	1.6	7
101	Activatable NIR Fluorescence/MRI Bimodal Probes for in Vivo Imaging by Enzyme-Mediated Fluorogenic Reaction and Self-Assembly. Journal of the American Chemical Society, 2019, 141, 10331-10341.	6.6	268
102	β-Galactosidase instructed supramolecular hydrogelation for selective identification and removal of senescent cells. Chemical Communications, 2019, 55, 7175-7178.	2.2	44
103	Peptide-modulated self-assembly as a versatile strategy for tumor supramolecular nanotheranostics. Theranostics, 2019, 9, 3249-3261.	4.6	60
104	Enzyme-Triggered Morphological Transition of Peptide Nanostructures for Tumor-Targeted Drug Delivery and Enhanced Cancer Therapy. ACS Applied Materials & Interfaces, 2019, 11, 16357-16366.	4.0	61
105	A Tripeptide-Stabilized Nanoemulsion of Oleic Acid. Journal of Visualized Experiments, 2019, , .	0.2	0
106	Spatiotemporal Control of Enzymeâ€Induced Crystallization Under Lyotropic Liquid Crystal Nanoconfinement. Angewandte Chemie, 2019, 131, 7367-7371.	1.6	2
107	Spatiotemporal Control of Enzymeâ€Induced Crystallization Under Lyotropic Liquid Crystal Nanoconfinement. Angewandte Chemie - International Edition, 2019, 58, 7289-7293.	7.2	11
108	Instructed Assembly as Contextâ€Dependent Signaling for the Death and Morphogenesis of Cells. Angewandte Chemie - International Edition, 2019, 58, 5567-5571.	7.2	45

#	Article	IF	CITATIONS
109	Programmable Construction of Peptideâ€Based Materials in Living Subjects: From Modular Design and Morphological Control to Theranostics. Advanced Materials, 2019, 31, e1804971.	11.1	81
110	Enzymeâ€Instructed Supramolecular Selfâ€Assembly with Anticancer Activity. Advanced Materials, 2019, 31, e1804814.	11.1	75
111	Stimuliâ€Responsive Supramolecular Hydrogels and Their Applications in Regenerative Medicine. Macromolecular Bioscience, 2019, 19, e1800259.	2.1	133
112	Recent progress in supramolecular peptide assemblies as virus mimics for cancer immunotherapy. Biomaterials Science, 2020, 8, 1045-1057.	2.6	20
113	Enhanced cellular uptake and nuclear accumulation of drug-peptide nanomedicines prepared by enzyme-instructed self-assembly. Journal of Controlled Release, 2020, 317, 109-117.	4.8	65
114	Desuccinylation-Triggered Peptide Self-Assembly: Live Cell Imaging of SIRT5 Activity and Mitochondrial Activity Modulation. Journal of the American Chemical Society, 2020, 142, 18150-18159.	6.6	84
115	Enzyme Instructed Selfâ€assembly of Naphthalimideâ€dipeptide: Spontaneous Transformation from Nanosphere to Nanotubular Structures that Induces Hydrogelation. Chemistry - an Asian Journal, 2020, 15, 2696-2705.	1.7	10
116	Enzyme-instructed morphological transition of the supramolecular assemblies of branched peptides. Beilstein Journal of Organic Chemistry, 2020, 16, 2709-2718.	1.3	0
117	Supramolecular Tubustecan Hydrogel as Chemotherapeutic Carrier to Improve Tumor Penetration and Local Treatment Efficacy. ACS Nano, 2020, 14, 10083-10094.	7.3	55
118	Characterization techniques of protein and peptide nanofibers: Self-assembly kinetics. , 2020, , 99-118.		1
119	Proton-driven transformable nanovaccine for cancer immunotherapy. Nature Nanotechnology, 2020, 15, 1053-1064.	15.6	194
120	Unravelling the Enzymatic Degradation Mechanism of Supramolecular Peptide Nanofibers and Its Correlation with Their Internal Viscosity. Nano Letters, 2020, 20, 7375-7381.	4.5	12
121	Combined Tumor Environment Triggered Selfâ€Assembling Peptide Nanofibers and Inducible Multivalent Ligand Display for Cancer Cell Targeting with Enhanced Sensitivity and Specificity. Small, 2020, 16, e2002780.	5.2	13
122	Aromatic carbohydrate amphiphile disrupts cancer spheroids and prevents relapse. Nanoscale, 2020, 12, 19088-19092.	2.8	8
123	Enzymatic Noncovalent Synthesis. Chemical Reviews, 2020, 120, 9994-10078.	23.0	143
124	Controlled Supramolecular Assembly Inside Living Cells by Sequential Multistaged Chemical Reactions. Journal of the American Chemical Society, 2020, 142, 15780-15789.	6.6	59
125	Constructing Cross-Linked Nanofibrous Scaffold via Dual-Enzyme-Instructed Hierarchical Assembly. Langmuir, 2020, 36, 6261-6267.	1.6	6
126	Preorganization Increases the Self-Assembling Ability and Antitumor Efficacy of Peptide Nanomedicine. ACS Applied Materials & Interfaces, 2020, 12, 22492-22498.	4.0	17

#	Article	IF	CITATIONS
127	Advances in aggregatable nanoparticles for tumor-targeted drug delivery. Chinese Chemical Letters, 2020, 31, 1366-1374.	4.8	105
128	Inhibiting cancer metabolism by aromatic carbohydrate amphiphiles that act as antagonists of the glucose transporter GLUT1. Chemical Science, 2020, 11, 3737-3744.	3.7	21
129	Synthetic Supramolecular Systems in Life-like Materials and Protocell Models. CheM, 2020, 6, 1652-1682.	5.8	35
130	Enzyme-instructed assembly of a cholesterol conjugate promotes pro-inflammatory macrophages and induces apoptosis of cancer cells. Biomaterials Science, 2020, 8, 2007-2017.	2.6	10
131	Size-Tunable Strategies for a Tumor Targeted Drug Delivery System. ACS Central Science, 2020, 6, 100-116.	5.3	281
132	Enzyme-Instructed Self-Assembly for Cancer Therapy and Imaging. Bioconjugate Chemistry, 2020, 31, 492-500.	1.8	61
133	Amplified Selfâ€Immolative Release of Small Molecules by Spatial Isolation of Reactive Groups on DNAâ€Minimal Architectures. Angewandte Chemie, 2020, 132, 13000-13008.	1.6	1
134	Amplified Selfâ€Immolative Release of Small Molecules by Spatial Isolation of Reactive Groups on DNAâ€Minimal Architectures. Angewandte Chemie - International Edition, 2020, 59, 12900-12908.	7.2	32
135	Intracellular self-assembly of supramolecular gelators to selectively kill cells of interest. Polymer Journal, 2020, 52, 883-889.	1.3	17
136	The substitution of a single amino acid with its enantiomer for control over the adjuvant activity of self-assembling peptides. RSC Advances, 2020, 10, 13900-13906.	1.7	6
137	A glutathione-depleted prodrug platform of MnO ₂ -coated hollow polydopamine nanospheres for effective cancer diagnosis and therapy. New Journal of Chemistry, 2020, 44, 7838-7848.	1.4	9
138	Enzymatically forming cell compatible supramolecular assemblies of tryptophanâ€rich short peptides. Peptide Science, 2021, 113, e24173.	1.0	8
139	Modulation of physical properties of organic cocrystals by amino acid chirality. Materials Today, 2021, 42, 29-40.	8.3	25
140	Say no to drugs: Bioactive macromolecular therapeutics without conventional drugs. Journal of Controlled Release, 2021, 330, 1191-1207.	4.8	10
141	Implantable HDAC-inhibiting chemotherapeutics derived from hydrophobic amino acids for localized anticancer therapy. Biomaterials Science, 2021, 9, 261-271.	2.6	4
142	Novel therapeutic interventions in cancer treatment using protein and peptide-based targeted smart systems. Seminars in Cancer Biology, 2021, 69, 249-267.	4.3	26
143	Naphthalene-facilitated self-assembly of a Gd-chelate as a novel <i>T</i> ₂ MRI contrast agent for visualization of stem cell transplants. Journal of Materials Chemistry B, 2021, 9, 5729-5737.	2.9	1
144	Dynamic supramolecular self-assembly of platinum(<scp>ii</scp>) complexes perturbs an autophagy–lysosomal system and triggers cancer cell death. Chemical Science, 2021, 12, 15229-15238.	3.7	20

#	Article	IF	CITATIONS
145	Optically superior fluorescent probes for selective imaging of cells, tumors, and reactive chemical species. Organic and Biomolecular Chemistry, 2021, 19, 5208-5236.	1.5	4
146	Peptide Assemblies Mimicking Chaperones for Protein Trafficking. Bioconjugate Chemistry, 2021, 32, 502-506.	1.8	5
147	Lysosome-Instructed Self-Assembly of Amino-Acid-Functionalized Perylene Diimide for Multidrug-Resistant Cancer Cells. ACS Applied Materials & Interfaces, 2021, 13, 14866-14874.	4.0	19
148	Biological-stimuli-responsive Supramolecular Hydrogels toward Medicinal and Pharmaceutical Applications. Chemistry Letters, 2021, 50, 459-466.	0.7	5
149	In Situ Supramolecular Selfâ€Assembly of Pt(IV) Prodrug to Conquer Cisplatin Resistance. Advanced Functional Materials, 2021, 31, 2101826.	7.8	37
150	Microscopic Imaging Techniques for Molecular Assemblies: Electron, Atomic Force, and Confocal Microscopies. Chemical Reviews, 2021, 121, 14281-14347.	23.0	34
151	Emerging self-assembling peptide nanomaterial for anti-cancer therapy. Journal of Biomaterials Applications, 2021, 36, 882-901.	1.2	5
152	Triple Enzymeâ€Regulated Molecular Hydrogels for Carrierâ€Free Delivery of Lonidamine. Advanced Functional Materials, 2021, 31, 2104418.	7.8	22
153	Selective Degradation of PDâ€L1 in Cancer Cells by Enzymeâ€Instructed Selfâ€Assembly. Advanced Functional Materials, 2021, 31, 2102505.	7.8	34
154	From structure to application: Progress and opportunities in peptide materials development. Current Opinion in Chemical Biology, 2021, 64, 131-144.	2.8	18
155	Enzymatic non-covalent synthesis of supramolecular assemblies as a general platform for bioorthogonal prodrugs activation to combat drug resistance. Biomaterials, 2021, 277, 121119.	5.7	11
156	Cancer-microenvironment triggered self-assembling therapy with molecular blocks. Materials Horizons, 2021, 8, 1216-1221.	6.4	12
157	NBD-based synthetic probes for sensing small molecules and proteins: design, sensing mechanisms and biological applications. Chemical Society Reviews, 2021, 50, 7436-7495.	18.7	94
158	Stimuli-controlled peptide self-assembly with secondary structure transitions and its application in drug release. Materials Chemistry Frontiers, 2021, 5, 4664-4671.	3.2	5
159	Modification Methods and Applications of Self-Assembly Peptides. Chinese Journal of Organic Chemistry, 2021, 41, 3983.	0.6	1
160	Peptide Logic Circuits Based on Chemoenzymatic Ligation for Programmable Cell Apoptosis. Angewandte Chemie, 2017, 129, 15084-15088.	1.6	5
161	Dual-responsive self-assembly in lysosomes enables cell cycle arrest for locking glioma cell growth. Chemical Communications, 2020, 56, 6957-6960.	2.2	13
162	Enzyme-Instructed Self-assembly in Biological Milieu for Theranostics Purpose. Current Medicinal Chemistry, 2019, 26, 1351-1365.	1.2	6

#	Article	IF	CITATIONS
163	Self-assembling Peptides in Current Nanomedicine: Versatile Nanomaterials for Drug Delivery. Current Medicinal Chemistry, 2020, 27, 4855-4881.	1.2	15
164	Targeted Enrichment of Enzymeâ€Instructed Assemblies in Cancer Cell Lysosomes Turns Immunologically Cold Tumors Hot. Angewandte Chemie, 0, , .	1.6	2
165	Targeted Enrichment of Enzymeâ€Instructed Assemblies in Cancer Cell Lysosomes Turns Immunologically Cold Tumors Hot. Angewandte Chemie - International Edition, 2021, 60, 26994-27004.	7.2	47
166	Therapeutic supramolecular tubustecan hydrogel combined with checkpoint inhibitor elicits immunity to combat cancer. Biomaterials, 2021, 279, 121182.	5.7	22
167	Enzyme-instructed self-assembly of peptides: Process, dynamics, nanostructures, and biomedical applications. AIMS Biophysics, 2020, 7, 411-428.	0.3	4
168	The Use of <scp>d</scp> -Amino Acids for Peptide Self-assembled Systems. RSC Soft Matter, 2020, , 174-216.	0.2	0
169	Dynamic nano-assemblies based on two-dimensional inorganic nanoparticles: Construction and preclinical demonstration. Advanced Drug Delivery Reviews, 2022, 180, 114031.	6.6	14
170	Bioorthogonal Disassembly of Tetrazine Bearing Supramolecular Assemblies Inside Living Cells. Small, 2022, 18, e2104772.	5.2	3
171	Alkaline Phosphatase: A Reliable Endogenous Partner for Drug Delivery and Diagnostics. Advanced Therapeutics, 2022, 5, .	1.6	34
172	Synthesis and bioactivity of pyrrole-conjugated phosphopeptides. Beilstein Journal of Organic Chemistry, 2022, 18, 159-166.	1.3	1
173	Peptide Self-assembly into stable Capsid-Like nanospheres and Co-assembly with DNA to produce smart artificial viruses. Journal of Colloid and Interface Science, 2022, 615, 395-407.	5.0	9
174	Smart transformable nanoparticles for enhanced tumor theranostics. Applied Physics Reviews, 2021, 8,	5.5	99
175	Investigating the role of peptides in effective therapies against cancer. Cancer Cell International, 2022, 22, 139.	1.8	13
176	Lightâ€Fueled Organic Photoelectrochemical Transistor for Probing Membrane Protein in an Hâ€Cell. Advanced Materials Interfaces, 2022, 9, .	1.9	6
179	Robust drug bioavailability and safety for rheumatoid arthritis therapy using D-amino acids-based supramolecular hydrogels. Materials Today Bio, 2022, 15, 100296.	2.6	4
180	Progress of Enzyme-Manipulated Hydrogelation of Small Molecules for Biomedical Applications. SSRN Electronic Journal, 0, , .	0.4	0
181	Interactions Between Peptide Assemblies and Proteins for Medicine. Israel Journal of Chemistry, 2022, 62, .	1.0	5
182	Peptide-based supramolecular assembly drugs toward cancer theranostics. Expert Opinion on Drug Delivery, 2022, 19, 847-860.	2.4	6

#	Article	IF	CITATIONS
183	Enzyme Responsive Rigid-Rod Aromatics Target "Undruggable―Phosphatases to Kill Cancer Cells in a Mimetic Bone Microenvironment. Journal of the American Chemical Society, 2022, 144, 13055-13059.	6.6	28
184	The RGD-modified self-assembling D-form peptide hydrogel enhances the therapeutic effects of mesenchymal stem cells (MSC) for hindlimb ischemia by promoting angiogenesis. Chemical Engineering Journal, 2022, 450, 138004.	6.6	10
185	Controlling Intracellular Enzymatic Self-Assembly of Peptide by Host–Guest Complexation for Programming Cancer Cell Death. Nano Letters, 2022, 22, 7588-7596.	4.5	21
186	Enzyme-manipulated hydrogelation of small molecules for biomedical applications. Acta Biomaterialia, 2022, 151, 88-105.	4.1	3
187	Mitochondria-targeted cancer therapy based on functional peptides. Chinese Chemical Letters, 2023, 34, 107817.	4.8	3
188	Enzymatic Nanosphereâ€toâ€Nanofiber Transition and Autophagy Inducer Release Promote Tumor Chemotherapy. Advanced Healthcare Materials, 2022, 11, .	3.9	4
189	Tuning the Kinetic Trapping in Chemically Fueled Selfâ€Assembly**. ChemSystemsChem, 2023, 5, .	1.1	7
190	Intracellular Enzyme-Instructed Self-Assembly of Peptides (IEISAP) for Biomedical Applications. Molecules, 2022, 27, 6557.	1.7	5
191	Peptide Self-Assemblies from Unusual α-Sheet Conformations Based on Alternation of <scp>d</scp> / <scp>l</scp> Amino Acids. Journal of the American Chemical Society, 2022, 144, 21544-21554.	6.6	16
192	In situ detection of alkaline phosphatase in a cisplatin-induced acute kidney injury model with a fluorescent/photoacoustic bimodal molecular probe. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	2
193	Encapsulation of Gold-Based Anticancer Agents in Protease-Degradable Peptide Nanofilaments Enhances Their Potency. Journal of the American Chemical Society, 2023, 145, 234-246.	6.6	15
194	In Vitro Self-Assembly of a Modified Diphenylalanine Peptide to Nanofibers Induced by the Eye Absent Enzyme and Alkaline Phosphatase and Its Activity against Breast Cancer Cell Proliferation. ACS Applied Bio Materials, 2023, 6, 164-170.	2.3	2
195	Cancer-Responsive Multifunctional Nanoplatform Based on Peptide Self-Assembly for Highly Efficient Combined Cancer Therapy by Alleviating Hypoxia and Improving the Immunosuppressive Microenvironment. ACS Applied Materials & Interfaces, 2023, 15, 5667-5678.	4.0	7
196	Amyloid-like aggregates of short self-assembly peptide selectively induce melanoma cell apoptosis. Journal of Colloid and Interface Science, 2023, 640, 498-509.	5.0	0
197	A Cascadeâ€Targeted Enzymeâ€Instructed Peptide Selfâ€Assembly Strategy for Cancer Immunotherapy through Boosting Immunogenic Cell Death. Small Methods, 2023, 7, .	4.6	6
198	Controlled sequential in situ self-assembly and disassembly of a fluorogenic cisplatin prodrug for cancer theranostics. Nature Communications, 2023, 14, .	5.8	38
199	Designing supramolecular self-assembly nanomaterials as stimuli-responsive drug delivery platforms for cancer therapy. IScience, 2023, 26, 106279.	1.9	4
200	Enzymeâ€Triggered <scp>l</scp> â€ <i>α</i> / <scp>d</scp> â€Peptide Hydrogels as a Longâ€Acting Injectable Platform for Systemic Delivery of HIV/AIDS Drugs. Advanced Healthcare Materials, 2023, 12, .	3.9	5

#	Article	IF	CITATIONS
201	Enzymatically cross-linked peptide hydrogels for enhanced self-assembling capability and controlled drug release. New Journal of Chemistry, 2023, 47, 9451-9458.	1.4	1