Engineering Cellular Metabolism

Cell 164, 1185-1197

DOI: 10.1016/j.cell.2016.02.004

Citation Report

#	Article	IF	CITATIONS
1	The application of microfluidic-based technologies in the cycle of metabolic engineering. Synthetic and Systems Biotechnology, 2016 , 1 , $137-142$.	1.8	7
2	Bioinformatics for the synthetic biology of natural products: integrating across the Design–Build–Test cycle. Natural Product Reports, 2016, 33, 925-932.	5.2	58
3	Upgrading biomaterials with synthetic biological modules for advanced medical applications. Advanced Drug Delivery Reviews, 2016, 105, 77-95.	6.6	22
4	The metabolome 18 years on: a concept comes of age. Metabolomics, 2016, 12, 148.	1.4	95
5	Modular cell design for rapid, efficient strain engineering toward industrialization of biology. Current Opinion in Chemical Engineering, 2016, 14, 18-25.	3.8	25
6	Cell-Free Mixing of <i>Escherichia coli</i> Crude Extracts to Prototype and Rationally Engineer High-Titer Mevalonate Synthesis. ACS Synthetic Biology, 2016, 5, 1578-1588.	1.9	130
7	Cascade Biocatalysis for Sustainable Asymmetric Synthesis: From Biobased <scp>l</scp> â€Phenylalanine to Highâ€Value Chiral Chemicals. Angewandte Chemie - International Edition, 2016, 55, 11647-11650.	7.2	69
8	Mapping the patent landscape of synthetic biology for fine chemical production pathways. Microbial Biotechnology, 2016, 9, 687-695.	2.0	11
9	Cascade Biocatalysis for Sustainable Asymmetric Synthesis: From Biobased <scp>l</scp> â€Phenylalanine to Highâ€Value Chiral Chemicals. Angewandte Chemie, 2016, 128, 11819-11822.	1.6	30
10	Exploiting members of the BAHD acyltransferase family to synthesize multiple hydroxycinnamate and benzoate conjugates in yeast. Microbial Cell Factories, 2016, 15, 198.	1.9	32
11	Systematic engineering of TCA cycle for optimal production of a four-carbon platform chemical 4-hydroxybutyric acid in Escherichia coli. Metabolic Engineering, 2016, 38, 264-273.	3.6	25
12	Cell Surface Display Fungal Laccase as a Renewable Biocatalyst for Degradation of Persistent Micropollutants Bisphenol A and Sulfamethoxazole. Environmental Science & Environ	4.6	76
13	Functional expression and evaluation of heterologous phosphoketolases in Saccharomyces cerevisiae. AMB Express, 2016, 6, 115.	1.4	39
14	Engineering yeast for high-level production of stilbenoid antioxidants. Scientific Reports, 2016, 6, 36827.	1.6	122
16	High-yield chemical synthesis by reprogramming central metabolism. Nature Biotechnology, 2016, 34, 1129-1129.	9.4	4
17	Flux control through protein phosphorylation in yeast. FEMS Yeast Research, 2016, 16, fow096.	1.1	29
18	Nutraceuticals in Cardiovascular Diseases. , 2016, , 49-59.		0
19	Resource Reallocation in Bacteria by Reengineering the Gene Expression Machinery. Trends in Microbiology, 2017, 25, 480-493.	3.5	19

#	Article	IF	CITATIONS
20	Engineering glucose metabolism of Escherichia coli under nitrogen starvation. Npj Systems Biology and Applications, 2017, 3, 16035.	1.4	34
21	Strain Development by Whole-Cell Directed Evolution. , 2017, , 173-200.		2
22	Cocoa butter-like lipid production ability of non-oleaginous and oleaginous yeasts under nitrogen-limited culture conditions. Applied Microbiology and Biotechnology, 2017, 101, 3577-3585.	1.7	60
23	Development of fungal cell factories for the production of secondary metabolites: Linking genomics and metabolism. Synthetic and Systems Biotechnology, 2017, 2, 5-12.	1.8	91
24	Coupling gene regulatory patterns to bioprocess conditions to optimize synthetic metabolic modules for improved sesquiterpene production in yeast. Biotechnology for Biofuels, 2017, 10, 43.	6.2	53
25	Directed Enzyme Evolution: Advances and Applications. , 2017, , .		18
26	Enhancing coupled enzymatic activity by conjugating one enzyme to a nanoparticle. Nanoscale, 2017, 9, 5172-5187.	2.8	41
27	Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production. Biotechnology for Biofuels, 2017, 10, 78.	6.2	78
28	Identifying the structural and kinetic elements in protein large-amplitude conformational motions. International Reviews in Physical Chemistry, 2017, 36, 185-227.	0.9	7
29	Introduction: Unusual Enzymology in Natural Product Synthesis. Chemical Reviews, 2017, 117, 5223-5225.	23.0	10
30	Building a bio-based industry in the Middle East through harnessing the potential of the Red Sea biodiversity. Applied Microbiology and Biotechnology, 2017, 101, 4837-4851.	1.7	10
31	Harnessing plant metabolic diversity. Current Opinion in Chemical Biology, 2017, 40, 24-30.	2.8	56
32	Plant-Derived Transcription Factors for Orthologous Regulation of Gene Expression in the Yeast <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2017, 6, 1742-1756.	1.9	35
33	The Genome of Medicinal Plant Macleaya cordata Provides New Insights into Benzylisoquinoline Alkaloids Metabolism. Molecular Plant, 2017, 10, 975-989.	3.9	116
34	Metabolic engineering strategies to bio-adipic acid production. Current Opinion in Biotechnology, 2017, 45, 136-143.	3.3	90
35	Metabolic systems modeling for cell factories improvement. Current Opinion in Biotechnology, 2017, 46, 114-119.	3.3	18
36	A Novel Biocontainment Strategy Makes Bacterial Growth and Survival Dependent on Phosphite. Scientific Reports, 2017, 7, 44748.	1.6	42
37	Systems Biology of Metabolism. Annual Review of Biochemistry, 2017, 86, 245-275.	5.0	173

#	ARTICLE	IF	CITATIONS
38	Dynamic regulation of fatty acid pools for improved production of fatty alcohols in Saccharomyces cerevisiae. Microbial Cell Factories, 2017, 16, 45.	1.9	38
39	Engineering central metabolism – a grand challenge for plant biologists. Plant Journal, 2017, 90, 749-763.	2.8	78
40	Engineering Yarrowia lipolytica for arachidonic acid production through rapid assembly of metabolic pathway. Biochemical Engineering Journal, 2017, 119, 52-58.	1.8	49
41	Synthetic Biology—The Synthesis of Biology. Angewandte Chemie - International Edition, 2017, 56, 6396-6419.	7.2	141
42	Synthetische Biologie – die Synthese der Biologie. Angewandte Chemie, 2017, 129, 6494-6519.	1.6	11
43	Biotin-independent strains of Escherichia coli for enhanced streptavidin production. Metabolic Engineering, 2017, 40, 33-40.	3.6	27
44	Metabolic engineering of Schizosaccharomyces pombe via CRISPR-Cas9 genome editing for lactic acid production from glucose and cellobiose. Metabolic Engineering Communications, 2017, 5, 60-67.	1.9	24
45	Comparison of the metabolic response to over-production of p-coumaric acid in two yeast strains. Metabolic Engineering, 2017, 44, 265-272.	3.6	51
46	The Impact of Systems Biology on Bioprocessing. Trends in Biotechnology, 2017, 35, 1156-1168.	4.9	67
47	Learning from quantitative data to understand central carbon metabolism. Biotechnology Advances, 2017, 35, 971-980.	6.0	23
48	Harnessing the respiration machinery for high-yield production of chemicals in metabolically engineered Lactococcus lactis. Metabolic Engineering, 2017, 44, 22-29.	3.6	30
49	High Substrate Uptake Rates Empower Vibrio natriegens as Production Host for Industrial Biotechnology. Applied and Environmental Microbiology, 2017, 83, .	1.4	112
50	Formulation, construction and analysis of kinetic models of metabolism: A review of modelling frameworks. Biotechnology Advances, 2017, 35, 981-1003.	6.0	128
51	Engineering Microbial Metabolite Dynamics and Heterogeneity. Biotechnology Journal, 2017, 12, 1700422.	1.8	35
52	Cascades in Compartments: Enâ€Route to Machineâ€Assisted Biotechnology. Angewandte Chemie - International Edition, 2017, 56, 13574-13589.	7.2	145
53	Kaskaden in Kompartimenten: auf dem Weg zu maschinengest $\tilde{A}^{1}\!\!/\!\!4$ tzter Biotechnologie. Angewandte Chemie, 2017, 129, 13760-13777.	1.6	27
54	Metabolic modeling to identify engineering targets for <i>Komagataella phaffii</i> : The effect of biomass composition on gene target identification. Biotechnology and Bioengineering, 2017, 114, 2605-2615.	1.7	16
55	Elimination of the last reactions in ergosterol biosynthesis alters the resistance of Saccharomyces cerevisiae to multiple stresses. FEMS Yeast Research, 2017, 17, .	1.1	34

#	Article	IF	CITATIONS
56	Combinatorial pathway optimization for streamlined metabolic engineering. Current Opinion in Biotechnology, 2017, 47, 142-151.	3.3	78
57	The future of biologically inspired nextâ€generation factories for chemicals. Microbial Biotechnology, 2017, 10, 1164-1166.	2.0	11
58	Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system. Nature Communications, 2017, 8, 1688.	5.8	244
59	Performance and mechanism analysis of succinate production under different transporters in Escherichia coli. Biotechnology and Bioprocess Engineering, 2017, 22, 529-538.	1.4	5
60	Discovery and engineering of a 1-butanol biosensor in Saccharomyces cerevisiae. Bioresource Technology, 2017, 245, 1343-1351.	4.8	36
61	Evolutionary algorithms and synthetic biology for directed evolution: commentary on "on the mapping of genotype to phenotype in evolutionary algorithmsâ€-by Peter A. Whigham, Grant Dick, and James Maclaurin. Genetic Programming and Evolvable Machines, 2017, 18, 373-378.	1.5	6
62	The self-inhibitory nature of metabolic networks and its alleviation through compartmentalization. Nature Communications, 2017, 8, 16018.	5.8	95
63	The JBEI quantitative metabolic modeling library (jQMM): a python library for modeling microbial metabolism. BMC Bioinformatics, 2017, 18, 205.	1.2	19
64	A translational synthetic biology platform for rapid access to gram-scale quantities of novel drug-like molecules. Metabolic Engineering, 2017, 42, 185-193.	3.6	146
65	Metabolism: Built on stable catalysts. Nature Microbiology, 2017, 2, 17085.	5.9	2
66	Functional screening of aldehyde decarbonylases for long-chain alkane production by Saccharomyces cerevisiae. Microbial Cell Factories, 2017, 16, 74.	1.9	32
67	Experimental evolution reveals an effective avenue to release catabolite repression via mutations in XylR. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7349-7354.	3.3	61
68	Tailor-made transcriptional biosensors for optimizing microbial cell factories. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 623-645.	1.4	84
69	Biobased production of alkanes and alkenes through metabolic engineering of microorganisms. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 613-622.	1.4	77
70	Isolating Escherichia coli strains for recombinant protein production. Cellular and Molecular Life Sciences, 2017, 74, 891-908.	2.4	25
71	Challenges at the interface of control engineering and synthetic biology. , 2017, , .		9
72	Bioproduction of Fuels: An Introduction. , 2017, , 3-25.		0
73	Awakening sleeping beauty: production of propionic acid in Escherichia coli through the sbm operon requires the activity of a methylmalonyl-CoA epimerase. Microbial Cell Factories, 2017, 16, 121.	1.9	15

#	ARTICLE	IF	Citations
74	Production of C2–C4 diols from renewable bioresources: new metabolic pathways and metabolic engineering strategies. Biotechnology for Biofuels, 2017, 10, 299.	6.2	77
75	Deciphering cyanobacterial phenotypes for fast photoautotrophic growth via isotopically nonstationary metabolic flux analysis. Biotechnology for Biofuels, 2017, 10, 273.	6.2	92
76	Positive-feedback, ratiometric biosensor expression improves high-throughput metabolite-producer screening efficiency in yeast. Synthetic Biology, 2017, 2, ysw002.	1.2	32
77	Diverse genetic error modes constrain large-scale bio-based production. Nature Communications, 2018, 9, 787.	5 . 8	125
78	Engineered CRISPR/Cas9 system for multiplex genome engineering of polyploid industrial yeast strains. Biotechnology and Bioengineering, 2018, 115, 1630-1635.	1.7	52
79	Genome Writing: Current Progress and Related Applications. Genomics, Proteomics and Bioinformatics, 2018, 16, 10-16.	3.0	8
80	Synthetic addiction extends the productive life time of engineered <i>Escherichia coli</i> populations. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2347-2352.	3.3	98
81	Assessing Carbon Source-Dependent Phenotypic Variability in Pseudomonas putida. Methods in Molecular Biology, 2018, 1745, 287-301.	0.4	4
82	Genome-scale biological models for industrial microbial systems. Applied Microbiology and Biotechnology, 2018, 102, 3439-3451.	1.7	14
83	Cell-free protein synthesis enabled rapid prototyping for metabolic engineering and synthetic biology. Synthetic and Systems Biotechnology, 2018, 3, 90-96.	1.8	46
84	Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications. Metabolic Engineering, 2018, 50, 85-108.	3.6	228
85	Metabolic engineering of Pichia pastoris. Metabolic Engineering, 2018, 50, 2-15.	3. 6	163
86	Bio-Based Strategies for Producing Glycosaminoglycans and Their Oligosaccharides. Trends in Biotechnology, 2018, 36, 806-818.	4.9	47
87	An Orthogonal and pH-Tunable Sensor-Selector for Muconic Acid Biosynthesis in Yeast. ACS Synthetic Biology, 2018, 7, 995-1003.	1.9	50
88	Advances and prospects in metabolic engineering of Zymomonas mobilis. Metabolic Engineering, 2018, 50, 57-73.	3.6	114
89	MiYA, an efficient machine-learning workflow in conjunction with the YeastFab assembly strategy for combinatorial optimization of heterologous metabolic pathways in Saccharomyces cerevisiae. Metabolic Engineering, 2018, 47, 294-302.	3.6	76
90	Regulated Expression of sgRNAs Tunes CRISPRi in <i>E. coli</i> . Biotechnology Journal, 2018, 13, e1800069.	1.8	47
91	Enhancing fructosylated chondroitin production in Escherichia coli K4 by balancing the UDP-precursors. Metabolic Engineering, 2018, 47, 314-322.	3.6	42

#	Article	IF	CITATIONS
92	Ribosome engineering and fermentation optimization leads to overproduction of tiancimycin A, a new enediyne natural product from Streptomyces sp. CB03234. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 141-151.	1.4	29
93	Exploiting transcriptomic data for metabolic engineering: toward a systematic strain design. Current Opinion in Biotechnology, 2018, 54, 26-32.	3.3	6
94	Metabolic engineering of Saccharomyces cerevisiae for overproduction of triacylglycerols. Metabolic Engineering Communications, 2018, 6, 22-27.	1.9	63
95	Expanding the boundary of biocatalysis: design and optimization of <i>in vitro</i> tandem catalytic reactions for biochemical production. Critical Reviews in Biochemistry and Molecular Biology, 2018, 53, 115-129.	2.3	37
96	A mathematical framework for yield (vs. rate) optimization in constraint-based modeling and applications in metabolic engineering. Metabolic Engineering, 2018, 47, 153-169.	3.6	37
97	Advancing Metabolic Engineering of <i>Saccharomyces cerevisiae</i> Using the CRISPR/Cas System. Biotechnology Journal, 2018, 13, e1700601.	1.8	41
98	Artificial Cell Fermentation as a Platform for Highly Efficient Cascade Conversion. ACS Synthetic Biology, 2018, 7, 363-370.	1.9	22
99	A synthetic pathway for the production of 2-hydroxyisovaleric acid in Escherichia coli. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 579-588.	1.4	6
100	Horizons of Systems Biocatalysis and Renaissance of Metabolite Synthesis. Biotechnology Journal, 2018, 13, 1700620.	1.8	19
101	Biosynthesis of D-glucaric acid from sucrose with routed carbon distribution in metabolically engineered Escherichia coli. Metabolic Engineering, 2018, 47, 393-400.	3.6	23
102	High-Level dCas9 Expression Induces Abnormal Cell Morphology in <i>Escherichia coli</i> Synthetic Biology, 2018, 7, 1085-1094.	1.9	147
103	Convergent engineering of syntrophic Escherichia coli coculture for efficient production of glycosides. Metabolic Engineering, 2018, 47, 243-253.	3.6	77
104	Understanding Biological Regulation Through Synthetic Biology. Annual Review of Biophysics, 2018, 47, 399-423.	4.5	88
105	DCEO Biotechnology: Tools To Design, Construct, Evaluate, and Optimize the Metabolic Pathway for Biosynthesis of Chemicals. Chemical Reviews, 2018, 118, 4-72.	23.0	141
106	Enhanced guide-RNA design and targeting analysis for precise CRISPR genome editing of single and consortia of industrially relevant and non-model organisms. Bioinformatics, 2018, 34, 16-23.	1.8	36
107	A Prototype for Modular Cell Engineering. ACS Synthetic Biology, 2018, 7, 187-199.	1.9	14
108	Role of Biocatalysis in Sustainable Chemistry. Chemical Reviews, 2018, 118, 801-838.	23.0	1,175
109	Synthetic Metabolic Pathways. Methods in Molecular Biology, 2018, , .	0.4	2

#	Article	IF	CITATIONS
110	High-Throughput Microfluidics for the Screening of Yeast Libraries. Methods in Molecular Biology, 2018, 1671, 307-317.	0.4	8
111	Two-Scale 13C Metabolic Flux Analysis for Metabolic Engineering. Methods in Molecular Biology, 2018, 1671, 333-352.	0.4	11
112	Advances in cellulosic conversion to fuels: engineering yeasts for cellulosic bioethanol and biodiesel production. Current Opinion in Biotechnology, 2018, 50, 72-80.	3.3	71
113	Wholeâ€Cell Cascade Biotransformations for Oneâ€Pot Multistep Organic Synthesis. ChemCatChem, 2018, 10, 2164-2178.	1.8	97
114	Methanol assimilation in Escherichia coli is improved by co-utilization of threonine and deletion of leucine-responsive regulatory protein. Metabolic Engineering, 2018, 45, 67-74.	3.6	59
115	Engineering <i>Escherichia coli</i> for malate production by integrating modular pathway characterization with CRISPRiâ€guided multiplexed metabolic tuning. Biotechnology and Bioengineering, 2018, 115, 661-672.	1.7	77
116	Pursuing the Promise of Enzymatic Enhancement with Nanoparticle Assemblies. Langmuir, 2018, 34, 2901-2925.	1.6	48
117	Controlling cell-free metabolism through physiochemical perturbations. Metabolic Engineering, 2018, 45, 86-94.	3.6	66
118	INRA's research in industrial biotechnology: For food, chemicals, materials and fuels. Innovative Food Science and Emerging Technologies, 2018, 46, 140-152.	2.7	2
119	History, Current State, and Emerging Applications of Industrial Biotechnology. Advances in Biochemical Engineering/Biotechnology, 2018, 173, 13-51.	0.6	2
120	Metabolic engineering of capsular polysaccharides. Emerging Topics in Life Sciences, 2018, 2, 337-348.	1.1	13
121	Self-cloning CRISPR/Cpf1 facilitated genome editing in Saccharomyces cerevisiae. Bioresources and Bioprocessing, 2018, 5, .	2.0	18
123	Engineering stilbene metabolic pathways in microbial cells. Biotechnology Advances, 2018, 36, 2264-2283.	6.0	47
124	Creating an oil yeast from brewing yeast. Synthetic and Systems Biotechnology, 2018, 3, 252-253.	1.8	O
125	Light-driven fine chemical production in yeast biohybrids. Science, 2018, 362, 813-816.	6.0	251
126	How Synthetic Biology and Metabolic Engineering Can Boost the Generation of Artificial Blood Using Microbial Production Hosts. Frontiers in Bioengineering and Biotechnology, 2018, 6, 186.	2.0	5
127	Progress and Prospects of Hairy Root Research. , 2018, , 3-19.		18
128	Deep scanning lysine metabolism in <i>Escherichia coli Nolecular Systems Biology, 2018, 14, e8371.</i>	3.2	34

#	Article	IF	CITATIONS
129	Advancing metabolic engineering of Yarrowia lipolytica using the CRISPR/Cas system. Applied Microbiology and Biotechnology, 2018, 102, 9541-9548.	1.7	43
130	Systematic Analysis of Bottlenecks in a Multibranched and Multilevel Regulated Pathway: The Molecular Fundamentals of <scp>l</scp> -Methionine Biosynthesis in <i>Escherichia coli</i> . ACS Synthetic Biology, 2018, 7, 2577-2589.	1.9	59
131	Microbial Platform for Terpenoid Production: Escherichia coli and Yeast. Frontiers in Microbiology, 2018, 9, 2460.	1.5	78
132	Selecting the Best: Evolutionary Engineering of Chemical Production in Microbes. Genes, 2018, 9, 249.	1.0	29
133	Advancement in technologies for the depolymerization of lignin. Fuel Processing Technology, 2018, 181, 115-132.	3.7	159
134	Harnessing Marine Biocatalytic Reservoirs for Green Chemistry Applications through Metagenomic Technologies. Marine Drugs, 2018, 16, 227.	2.2	22
136	A Highly Characterized Synthetic Landing Pad System for Precise Multicopy Gene Integration in Yeast. ACS Synthetic Biology, 2018, 7, 2675-2685.	1.9	54
137	Enhanced Metabolite Productivity of Escherichia coli Adapted to Glucose M9 Minimal Medium. Frontiers in Bioengineering and Biotechnology, 2018, 6, 166.	2.0	20
138	Rapid, Parallel Identification of Catabolism Pathways of Lignin-Derived Aromatic Compounds in Novosphingobium aromaticivorans. Applied and Environmental Microbiology, 2018, 84, .	1.4	37
139	Repurposing type III polyketide synthase as a malonyl-CoA biosensor for metabolic engineering in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9835-9844.	3.3	107
140	Deciphering bacterial xylose metabolism and metabolic engineering of industrial microorganisms for use as efficient microbial cell factories. Applied Microbiology and Biotechnology, 2018, 102, 9471-9480.	1.7	18
141	Metabolic Engineering of Yeast for the Production of 3-Hydroxypropionic Acid. Frontiers in Microbiology, 2018, 9, 2185.	1.5	29
142	CRISPR/Cpf1 facilitated large fragment deletion in <i>Saccharomyces cerevisiae</i> . Journal of Basic Microbiology, 2018, 58, 1100-1104.	1.8	11
143	Constraining Genome-Scale Models to Represent the Bow Tie Structure of Metabolism for 13C Metabolic Flux Analysis. Metabolites, 2018, 8, 3.	1.3	7
144	Identification of parallel and divergent optimization solutions for homologous metabolic enzymes. Metabolic Engineering Communications, 2018, 6, 56-62.	1.9	7
145	Pseudomonas putida as a functional chassis for industrial biocatalysis: From native biochemistry to trans-metabolism. Metabolic Engineering, 2018, 50, 142-155.	3.6	338
146	Advances and prospects of Bacillus subtilis cellular factories: From rational design to industrial applications. Metabolic Engineering, 2018, 50, 109-121.	3.6	163
147	Ethnobotany and Medicinal Plant Biotechnology: From Tradition to Modern Aspects of Drug Development. Planta Medica, 2018, 84, 834-838.	0.7	19

#	Article	IF	CITATIONS
148	Metabolic Engineering of Saccharomyces cerevisiae Using a Trifunctional CRISPR/Cas System for Simultaneous Gene Activation, Interference, and Deletion. Methods in Enzymology, 2018, 608, 265-276.	0.4	6
149	Cpf1-assisted efficient genomic integration of in vivo assembled DNA parts in Saccharomyces cerevisiae. Biotechnology Letters, 2018, 40, 1253-1261.	1.1	9
150	The role of dynamic enzyme assemblies and substrate channelling in metabolic regulation. Nature Communications, 2018, 9, 2136.	5.8	290
151	Designing cell function: assembly of synthetic gene circuits for cell biology applications. Nature Reviews Molecular Cell Biology, 2018, 19, 507-525.	16.1	205
152	Bioproduction of Benzylamine from Renewable Feedstocks via a Nineâ€Step Artificial Enzyme Cascade and Engineered Metabolic Pathways. ChemSusChem, 2018, 11, 2221-2228.	3.6	28
153	Integrated constraints based analysis of an engineered violacein pathway in Escherichia coli. BioSystems, 2018, 171, 10-19.	0.9	8
154	Cell-Free Synthetic Biology for Pathway Prototyping. Methods in Enzymology, 2018, 608, 31-57.	0.4	45
155	Genome Editing for the Production of Natural Products in <i>Escherichia coli</i> li>. Advanced Biology, 2018, 2, 1800056.	3.0	1
156	Barriers and opportunities in bio-based production of hydrocarbons. Nature Energy, 2018, 3, 925-935.	19.8	146
157	BioBitsâ,,¢ Bright: A fluorescent synthetic biology education kit. Science Advances, 2018, 4, eaat5107.	4.7	90
158	Evolution of the Metabolic Engineering Community. Metabolic Engineering, 2018, 48, A1-A2.	3.6	2
159	Toward multifaceted roles of sucrose in the regulation of stomatal movement. Plant Signaling and Behavior, 2018, 13, 1-8.	1.2	20
160	Approaches and Recent Developments for the Commercial Production of Semi-synthetic Artemisinin. Frontiers in Plant Science, 2018, 9, 87.	1.7	71
161	Traceability, reproducibility and wiki-exploration for "Ã-la-carte―reconstructions of genome-scale metabolic models. PLoS Computational Biology, 2018, 14, e1006146.	1.5	89
162	Biosynthesis and biotechnological application of non-canonical amino acids: Complex and unclear. Biotechnology Advances, 2018, 36, 1917-1927.	6.0	27
163	Modeling Plant Metabolism: Advancements and Future Capabilities. , 2018, , 57-76.		2
164	Metabolic engineering of Saccharomyces cerevisiae by using the CRISPR-Cas9 system for enhanced fatty acid production. Process Biochemistry, 2018, 73, 23-28.	1.8	9
165	Enhancing Coupled Enzymatic Activity by Colocalization on Nanoparticle Surfaces: Kinetic Evidence for Directed Channeling of Intermediates. ACS Nano, 2018, 12, 7911-7926.	7.3	52

#	Article	IF	CITATIONS
166	Global rewiring of cellular metabolism renders Saccharomyces cerevisiae Crabtree negative. Nature Communications, 2018, 9, 3059.	5.8	79
167	Simulation Modeling to Compare High-Throughput, Low-Iteration Optimization Strategies for Metabolic Engineering. Frontiers in Microbiology, 2018, 9, 313.	1.5	1
168	New Insights on Steroid Biotechnology. Frontiers in Microbiology, 2018, 9, 958.	1.5	124
169	The Smell of Synthetic Biology: Engineering Strategies for Aroma Compound Production in Yeast. Fermentation, 2018, 4, 54.	1.4	27
170	Getting Bacteria in Shape: Synthetic Morphology Approaches for the Design of Efficient Microbial Cell Factories. Advanced Biology, 2018, 2, 1800111.	3.0	46
171	Metabolic engineering of E. coli for the production of O-succinyl-l-homoserine with high yield. 3 Biotech, 2018, 8, 310.	1.1	18
172	Automated network generation and analysis of biochemical reaction pathways using RING. Metabolic Engineering, 2018, 49, 84-93.	3.6	14
173	The limits to biocatalysis: pushing the envelope. Chemical Communications, 2018, 54, 6088-6104.	2.2	193
174	Expression of cocoa genes in Saccharomyces cerevisiae improves cocoa butter production. Microbial Cell Factories, 2018, 17, 11.	1.9	21
175	Prospects for engineering dynamic CRISPR–Cas transcriptional circuits to improve bioproduction. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 481-490.	1.4	14
176	Synthetic Biology to Improve the Production of Lipases and Esterases (Review). Methods in Molecular Biology, 2018, 1835, 229-242.	0.4	2
177	Potential of metabolic engineering in bacterial nanosilver synthesis. World Journal of Microbiology and Biotechnology, 2018, 34, 138.	1.7	7
178	Metabolic engineering of Saccharomyces cerevisiae for 7-dehydrocholesterol overproduction. Biotechnology for Biofuels, 2018, 11, 192.	6.2	33
179	Intelligent Image-Activated Cell Sorting. Cell, 2018, 175, 266-276.e13.	13.5	395
180	A GFP-fusion coupling FACS platform for advancing the metabolic engineering of filamentous fungi. Biotechnology for Biofuels, 2018, 11, 232.	6.2	18
181	Modular Pathway Rewiring of Yeast for Amino Acid Production. Methods in Enzymology, 2018, 608, 417-439.	0.4	12
183	Reprogramming Yeast Metabolism from Alcoholic Fermentation to Lipogenesis. Cell, 2018, 174, 1549-1558.e14.	13.5	215
184	Chemicals from renewable biomass: A renaissance in carbohydrate chemistry. Current Opinion in Green and Sustainable Chemistry, 2018, 14, 89-95.	3.2	40

#	Article	IF	Citations
185	Creating life and the media: translations and echoes. Life Sciences, Society and Policy, 2018, 14, 19.	3.1	4
186	Targeted Nucleotide Editing Technologies for Microbial Metabolic Engineering. Biotechnology Journal, 2018, 13, e1700596.	1.8	39
187	The combination of NAD+-dependent deacetylase gene deletion and the interruption of gluconeogenesis causes increased glucose metabolism in budding yeast. PLoS ONE, 2018, 13, e0194942.	1.1	11
188	Engineering lipid droplet assembly mechanisms for improved triacylglycerol accumulation in Saccharomyces cerevisiae. FEMS Yeast Research, 2018, 18, .	1.1	16
189	Synthetic biology advances and applications in the biotechnology industry: a perspective. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 449-461.	1.4	57
190	Chasing bacterial <i>chassis</i> for metabolic engineering: a perspective review from classical to nonâ€traditional microorganisms. Microbial Biotechnology, 2019, 12, 98-124.	2.0	193
191	Microbial cell factories for the sustainable manufacturing of B vitamins. Current Opinion in Biotechnology, 2019, 56, 18-29.	3.3	105
192	Synthetic biology-inspired design of signal-amplifying materials systems. Materials Today, 2019, 22, 25-34.	8.3	21
193	Quantitative Physiology of Non-Energy-Limited Retentostat Cultures of Saccharomyces cerevisiae at Near-Zero Specific Growth Rates. Applied and Environmental Microbiology, 2019, 85, .	1.4	12
194	Metabolic flux analysis for metabolome data validation of naturally xylose-fermenting yeasts. BMC Biotechnology, 2019, 19, 58.	1.7	17
195	Infrastructures of systems biology that facilitate functional genomic study in rice. Rice, 2019, 12, 15.	1.7	21
196	Tailoring of microbes for the production of high value plant-derived compounds: From pathway engineering to fermentative production. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 140262.	1.1	11
197	Synthetic Biology Goes Cell-Free. BMC Biology, 2019, 17, 64.	1.7	79
198	Design and Characterization of Biosensors for the Screening of Modular Assembled Naringenin Biosynthetic Library in <i>Saccharomyces cerevisiae</i>). ACS Synthetic Biology, 2019, 8, 2121-2130.	1.9	46
199	Expanding the Dynamic Range of a Transcription Factor-Based Biosensor in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2019, 8, 1968-1975.	1.9	44
200	Programmable biomolecular switches for rewiring flux in Escherichia coli. Nature Communications, 2019, 10, 3751.	5.8	84
201	FadR-Based Biosensor-Assisted Screening for Genes Enhancing Fatty Acyl-CoA Pools in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2019, 8, 1788-1800.	1.9	44
202	A seamless and iterative DNA assembly method named PS-Brick and its assisted metabolic engineering for threonine and 1-propanol production. Biotechnology for Biofuels, 2019, 12, 180.	6.2	6

#	ARTICLE	IF	CITATIONS
203	Production of Motor Fuel from Lignocellulose in a Three-Stage Process (Review and Experimental) Tj ETQq0 0 0	rgBT_/Over	lock 10 Tf 50
204	Synthetic N-terminal coding sequences for fine-tuning gene expression and metabolic engineering in Bacillus subtilis. Metabolic Engineering, 2019, 55, 131-141.	3.6	48
205	Continuous Adaptive Evolution of a Fast-Growing Corynebacterium glutamicum Strain Independent of Protocatechuate. Frontiers in Microbiology, 2019, 10, 1648.	1.5	29
206	Overcoming genetic heterogeneity in industrial fermentations. Nature Biotechnology, 2019, 37, 869-876.	9.4	116
207	Nanoparticle Size Influences Localized Enzymatic Enhancementâ€"A Case Study with Phosphotriesterase. Bioconjugate Chemistry, 2019, 30, 2060-2074.	1.8	33
208	Transcriptional Regulation of Carotenoid Biosynthesis in Plants: So Many Regulators, So Little Consensus. Frontiers in Plant Science, 2019, 10, 1017.	1.7	150
209	In silico identification of metabolic engineering strategies for improved lipid production in Yarrowia lipolytica by genome-scale metabolic modeling. Biotechnology for Biofuels, 2019, 12, 187.	6.2	34
210	Comparison of Multi-Objective Evolutionary Algorithms to Solve the Modular Cell Design Problem for Novel Biocatalysis. Processes, 2019, 7, 361.	1.3	27
211	Genome-driven cell engineering review: <i>in vivo</i> and <i>in silico</i> metabolic and genome engineering. Essays in Biochemistry, 2019, 63, 267-284.	2.1	13
212	A Photolabile Semiconducting Polymer Nanotransducer for Nearâ€Infrared Regulation of CRISPR/Cas9 Gene Editing. Angewandte Chemie - International Edition, 2019, 58, 18197-18201.	7.2	114
213	Models for DNA Design Tools: The Trouble with Metaphors Is That They Don't Go Away. ACS Synthetic Biology, 2019, 8, 2635-2641.	1.9	10
214	Chemo-enzymatic cascades to produce cycloalkenes from bio-based resources. Nature Communications, 2019, 10, 5060.	5.8	55
215	Lignocellulosic biomass: Hurdles and challenges in its valorization. Applied Microbiology and Biotechnology, 2019, 103, 9305-9320.	1.7	136
216	Bayesian inference of metabolic kinetics from genome-scale multiomics data. PLoS Computational Biology, 2019, 15, e1007424.	1.5	29
217	Towards a fully automated algorithm driven platform for biosystems design. Nature Communications, 2019, 10, 5150.	5.8	95
218	Harnessing evolutionary diversification of primary metabolism for plant synthetic biology. Journal of Biological Chemistry, 2019, 294, 16549-16566.	1.6	27
219	Droplet Microfluidics-Enabled High-Throughput Screening for Protein Engineering. Micromachines, 2019, 10, 734.	1.4	43
220	Horizontal transfer of a pathway for coumarate catabolism unexpectedly inhibits purine nucleotide biosynthesis. Molecular Microbiology, 2019, 112, 1784-1797.	1.2	5

#	ARTICLE	IF	CITATIONS
221	Genetically encoded biosensors for lignocellulose valorization. Biotechnology for Biofuels, 2019, 12, 246.	6.2	21
222	A Photolabile Semiconducting Polymer Nanotransducer for Nearâ€Infrared Regulation of CRISPR/Cas9 Gene Editing. Angewandte Chemie, 2019, 131, 18365-18369.	1.6	15
223	Bacterial microcompartments: catalysis-enhancing metabolic modules for next generation metabolic and biomedical engineering. BMC Biology, 2019, 17, 79.	1.7	32
224	Microbial CRISPRi and CRISPRa Systems for Metabolic Engineering. Biotechnology and Bioprocess Engineering, 2019, 24, 579-591.	1.4	31
225	CRISPRi-Based Downregulation of Transcriptional Feedback Improves Growth and Metabolism of Arginine Overproducing <i>E. coli</i> . ACS Synthetic Biology, 2019, 8, 1983-1990.	1.9	26
226	Understanding xylose isomerase from Burkholderia cenocepacia: insights into structure and functionality for ethanol production. AMB Express, 2019, 9, 73.	1.4	4
227	The Application of Ribosome Engineering to Natural Product Discovery and Yield Improvement in Streptomyces. Antibiotics, 2019, 8, 133.	1.5	34
228	The metabolic network model of primed/naive human embryonic stem cells underlines the importance of oxidation-reduction potential and tryptophan metabolism in primed pluripotency. Cell and Bioscience, 2019, 9, 71.	2.1	6
229	Strategies to improve microbial lipid production: Optimization techniques. Biocatalysis and Agricultural Biotechnology, 2019, 22, 101321.	1.5	5
230	Biocatalysis., 2019,,.		8
231	Emerging Species and Genome Editing Tools: Future Prospects in Cyanobacterial Synthetic Biology. Microorganisms, 2019, 7, 409.	1.6	39
232	Lager-brewing yeasts in the era of modern genetics. FEMS Yeast Research, 2019, 19, .	1.1	23
233	Combined genome editing and transcriptional repression for metabolic pathway engineering in Corynebacterium glutamicum using a catalytically active Cas12a. Applied Microbiology and Biotechnology, 2019, 103, 8911-8922.	1.7	24
234	Model-Assisted Fine-Tuning of Central Carbon Metabolism in Yeast through dCas9-Based Regulation. ACS Synthetic Biology, 2019, 8, 2457-2463.	1.9	39
235	Common principles and best practices for engineering microbiomes. Nature Reviews Microbiology, 2019, 17, 725-741.	13.6	324
236	Simultaneous quantification of multiple bacterial metabolites using surface-enhanced Raman scattering. Analyst, The, 2019, 144, 1600-1607.	1.7	7
237	Laying the Foundation for Crassulacean Acid Metabolism (CAM) Biodesign: Expression of the C4 Metabolism Cycle Genes of CAM in Arabidopsis. Frontiers in Plant Science, 2019, 10, 101.	1.7	45
238	Primary and Secondary Metabolic Effects of a Key Gene Deletion (\hat{l} " <i>YPL062W</i>) in Metabolically Engineered Terpenoid-Producing <i>Saccharomyces cerevisiae</i> . Applied and Environmental Microbiology, 2019, 85, .	1.4	19

#	Article	IF	CITATIONS
239	Design Principles for a Compartmentalized Enzyme Cascade Reaction. ACS Catalysis, 2019, 9, 2432-2439.	5 . 5	63
240	Unraveling the Mechanisms for Low-Level Acetaldehyde Production during Alcoholic Fermentation in <i>Saccharomyces pastorianus</i> Lager Yeast. Journal of Agricultural and Food Chemistry, 2019, 67, 2020-2027.	2.4	12
241	CRISPR–Casâ€Mediated Chemical Control of Transcriptional Dynamics in Yeast. ChemBioChem, 2019, 20, 1519-1523.	1.3	9
242	Cell-free biosynthesis of limonene using enzyme-enriched Escherichia coli lysates. Synthetic Biology, 2019, 4, ysz003.	1.2	63
243	A critical comparison of cellular and cell-free bioproduction systems. Current Opinion in Biotechnology, 2019, 60, 221-229.	3.3	67
244	Assessing Cofactor Usage in Pseudoclostridium thermosuccinogenes via Heterologous Expression of Central Metabolic Enzymes. Frontiers in Microbiology, 2019, 10, 1162.	1.5	7
245	Modular design: Implementing proven engineering principles in biotechnology. Biotechnology Advances, 2019, 37, 107403.	6.0	44
246	Nutraceuticals in Cardiovascular Diseases. , 2019, , 427-435.		1
247	Expanding Metabolic Capabilities Using Novel Pathway Designs: Computational Tools and Case Studies. Biotechnology Journal, 2019, 14, 1800734.	1.8	7
248	Gene expression engineering in fungi. Current Opinion in Biotechnology, 2019, 59, 141-149.	3.3	12
249	Sustainable bioproduction of the blue pigment indigoidine: Expanding the range of heterologous products in <i>R. toruloides</i> to include non-ribosomal peptides. Green Chemistry, 2019, 21, 3394-3406.	4.6	57
250	High-throughput mapping of CoA metabolites by SAMDI-MS to optimize the cell-free biosynthesis of HMG-CoA. Science Advances, 2019, 5, eaaw9180.	4.7	35
251	GREACE-assisted adaptive laboratory evolution in endpoint fermentation broth enhances lysine production by Escherichia coli. Microbial Cell Factories, 2019, 18, 106.	1.9	19
252	Optogenetic switch for controlling the central metabolic flux of Escherichia coli. Metabolic Engineering, 2019, 55, 68-75.	3. 6	38
253	Evolutionary Approaches for Engineering Industrially Relevant Phenotypes in Bacterial Cell Factories. Biotechnology Journal, 2019, 14, e1800439.	1.8	41
254	Engineered ethanol-driven biosynthetic system for improving production of acetyl-CoA derived drugs in Crabtree-negative yeast. Metabolic Engineering, 2019, 54, 275-284.	3.6	31
255	Bioeconomy for Sustainable Development. Biotechnology Journal, 2019, 14, e1800638.	1.8	98
256	Genetic Engineering Applications to Improve Cellulase Production and Efficiency: Part II., 2019, , 227-260.		2

#	Article	IF	Citations
257	Spotlight on biodiversity of microbial cell factories for glycerol conversion. Biotechnology Advances, 2019, 37, 107395.	6.0	30
258	Synthetic biology strategies for microbial biosynthesis of plant natural products. Nature Communications, 2019, 10, 2142.	5.8	254
259	Light-based control of metabolic flux through assembly of synthetic organelles. Nature Chemical Biology, 2019, 15, 589-597.	3.9	176
260	Optimizing the dynamics of protein expression. Scientific Reports, 2019, 9, 7511.	1.6	24
261	In-Cell Synthesis of Bioorthogonal Alkene Tag S-Allyl-Homocysteine and Its Coupling with Reprogrammed Translation. International Journal of Molecular Sciences, 2019, 20, 2299.	1.8	9
262	Expanded synthetic small regulatory RNA expression platforms for rapid and multiplex gene expression knockdown. Metabolic Engineering, 2019, 54, 180-190.	3.6	37
263	WRINKLED1 Is Subject to Evolutionary Conserved Negative Autoregulation. Frontiers in Plant Science, 2019, 10, 387.	1.7	10
264	Production of the plant polyketide curcumin in <i>Aspergillus oryzae</i> supply for yield improvement. Bioscience, Biotechnology and Biochemistry, 2019, 83, 1372-1381.	0.6	21
265	Harnessing Nature's Anaerobes for Biotechnology and Bioprocessing. Annual Review of Chemical and Biomolecular Engineering, 2019, 10, 105-128.	3.3	22
266	Recent trends in integrated bioprocesses: aiding and expanding microbial biofuel/biochemical production. Current Opinion in Biotechnology, 2019, 57, 82-87.	3.3	15
267	Strategies and challenges for metabolic rewiring. Current Opinion in Systems Biology, 2019, 15, 30-38.	1.3	27
268	Phage-Assisted Evolution of <i>Bacillus methanolicus</i> Methanol Dehydrogenase 2. ACS Synthetic Biology, 2019, 8, 796-806.	1.9	61
269	CyanoGate: A Modular Cloning Suite for Engineering Cyanobacteria Based on the Plant MoClo Syntax. Plant Physiology, 2019, 180, 39-55.	2.3	123
270	Approaches to Computational Strain Design in the Multiomics Era. Frontiers in Microbiology, 2019, 10, 597.	1.5	17
271	Yeast Systems Biology: Model Organism and Cell Factory. Biotechnology Journal, 2019, 14, e1800421.	1.8	159
272	Evolutionary engineering of <i>Corynebacterium glutamicum</i> . Biotechnology Journal, 2019, 14, e1800444.	1.8	46
273	Wiring cell growth to product formation. Current Opinion in Biotechnology, 2019, 59, 85-92.	3.3	13
274	Synthetic biology approaches for chromosomal integration of genes and pathways in industrial microbial systems. Biotechnology Advances, 2019, 37, 730-745.	6.0	57

#	Article	lF	CITATIONS
275	Risk-Based Bioengineering Strategies for Reliable Bacterial Vaccine Production. Trends in Biotechnology, 2019, 37, 805-816.	4.9	8
276	High-Performance Biocomputing in Synthetic Biology–Integrated Transcriptional and Metabolic Circuits. Frontiers in Bioengineering and Biotechnology, 2019, 7, 40.	2.0	34
277	Breaking the stateâ€ofâ€theâ€art in the chemical industry with newâ€toâ€Nature products <i>via</i> synthetic microbiology. Microbial Biotechnology, 2019, 12, 187-190.	2.0	22
278	Identification of bioactive metabolites using activity metabolomics. Nature Reviews Molecular Cell Biology, 2019, 20, 353-367.	16.1	602
279	Harnessing xylose pathways for biofuels production. Current Opinion in Biotechnology, 2019, 57, 56-65.	3.3	71
280	Global Lysine Acetylation in <i>Escherichia coli</i> Results from Growth Conditions That Favor Acetate Fermentation. Journal of Bacteriology, 2019, 201, .	1.0	34
281	Introductory Chapter: Yeasts in Biotechnology. , 2019, , .		0
282	Modulating transcription through development of semi-synthetic yeast core promoters. PLoS ONE, 2019, 14, e0224476.	1.1	22
283	Genetic Modification of Cyanobacteria by Conjugation Using the CyanoGate Modular Cloning Toolkit. Journal of Visualized Experiments, 2019, , .	0.2	8
284	Efficient learning in metabolic pathway designs through optimal assembling. IFAC-PapersOnLine, 2019, 52, 7-12.	0.5	5
285	Systems and Synthetic Biotechnology for Production of Nutraceuticals. , 2019, , .		4
286	Beverage and Food Fragrance Biotechnology, Novel Applications, Sensory and Sensor Techniques: An Overview. Foods, 2019, 8, 643.	1.9	22
287	Multi-functional genome-wide CRISPR system for high throughput genotype–phenotype mapping. Nature Communications, 2019, 10, 5794.	5.8	104
288	Conversion of Escherichia coli to Generate All Biomass Carbon from CO2. Cell, 2019, 179, 1255-1263.e12.	13.5	352
289	Harnessing Underground Metabolism for Pathway Development. Trends in Biotechnology, 2019, 37, 29-37.	4.9	29
290	Microfluidics for cell factory and bioprocess development. Current Opinion in Biotechnology, 2019, 55, 95-102.	3.3	28
291	Multiobjective strain design: A framework for modular cell engineering. Metabolic Engineering, 2019, 51, 110-120.	3.6	35
292	Enhanced production of target bioactive metabolites produced by Pseudomonas aeruginosa LV strain. Biocatalysis and Agricultural Biotechnology, 2019, 17, 545-556.	1.5	5

#	Article	IF	Citations
293	Fermentation and purification of microbial monomer 4-amminocinnamic acid to produce ultra-high performance bioplastics. Process Biochemistry, 2019, 77, 100-105.	1.8	7
294	Tackling Cancer with Yeast-Based Technologies. Trends in Biotechnology, 2019, 37, 592-603.	4.9	35
295	Using Synthetic Biology to Engineer Spatial Patterns. Advanced Biology, 2019, 3, e1800280.	3.0	59
296	Microbial Metabolomics. Methods in Molecular Biology, 2019, , .	0.4	8
297	Whole-cell based synthetic enzyme cascadesâ€"light and shadow of a promising technology. Current Opinion in Chemical Biology, 2019, 49, 84-90.	2.8	44
298	Genome-Scale 13C Fluxomics Modeling for Metabolic Engineering of Saccharomyces cerevisiae. Methods in Molecular Biology, 2019, 1859, 317-345.	0.4	5
299	Synthetic Biology Tools to Engineer Microbial Communities for Biotechnology. Trends in Biotechnology, 2019, 37, 181-197.	4.9	309
300	Genetic engineering of Ehrlich pathway modulates production of higher alcohols in engineered <i>Yarrowia lipolytica</i> . FEMS Yeast Research, 2019, 19, .	1.1	16
301	Engineering Plant Secondary Metabolism in Microbial Systems. Plant Physiology, 2019, 179, 844-861.	2.3	125
302	Machine learning framework for assessment of microbial factory performance. PLoS ONE, 2019, 14, e0210558.	1.1	41
303	Experimental evolution: its principles and applications in developing stress-tolerant yeasts. Applied Microbiology and Biotechnology, 2019, 103, 2067-2077.	1.7	19
304	Enhanced production of target bioactive metabolites produced by Pseudomonas Aeruginosa LV strain. Biocatalysis and Agricultural Biotechnology, 2019, 17, 653-664.	1.5	7
305	Real-World Synthetic Biology: Is It Founded on an Engineering Approach, and Should It Be?. Life, 2019, 9, 6.	1.1	10
306	Synthetic redesign of central carbon and redox metabolism for high yield production of N-acetylglucosamine in Bacillus subtilis. Metabolic Engineering, 2019, 51, 59-69.	3.6	66
307	RetroRules: a database of reaction rules for engineering biology. Nucleic Acids Research, 2019, 47, D1229-D1235.	6.5	74
308	A revolutionary tool: CRISPR technology plays an important role in construction of intelligentized gene circuits. Cell Proliferation, 2019, 52, e12552.	2.4	7
309	Metabolic engineering of Escherichia coli for the de novo stereospecific biosynthesis of 1,2-propanediol through lactic acid. Metabolic Engineering Communications, 2019, 8, e00082.	1.9	30
310	Regulatory non-coding sRNAs in bacterial metabolic pathway engineering. Metabolic Engineering, 2019, 52, 190-214.	3.6	53

#	ARTICLE	IF	CITATIONS
311	aMSGE: advanced multiplex site-specific genome engineering with orthogonal modular recombinases in actinomycetes. Metabolic Engineering, 2019, 52, 153-167.	3.6	42
312	Recombination in yeast based on six base pairs of homologous sequences: Structural instability in two sets of isomeric model expression plasmids. Yeast, 2020, 37, 207-216.	0.8	1
313	Advanced CRISPR/Cas-based genome editing tools for microbial biofuels production: A review. Renewable Energy, 2020, 149, 1107-1119.	4.3	59
314	Multimodal Microorganism Development: Integrating Top-Down Biological Engineering with Bottom-Up Rational Design. Trends in Biotechnology, 2020, 38, 241-253.	4.9	11
315	Biosystems design by directed evolution. AICHE Journal, 2020, 66, e16716.	1.8	23
316	Rewiring cellular metabolism for heterologous biosynthesis of Taxol. Natural Product Research, 2020, 34, 110-121.	1.0	22
317	Dynamic Metabolomics for Engineering Biology: Accelerating Learning Cycles for Bioproduction. Trends in Biotechnology, 2020, 38, 68-82.	4.9	20
318	Emerging molecular biology tools and strategies for engineering natural product biosynthesis. Metabolic Engineering Communications, 2020, 10, e00108.	1.9	36
319	Improved bioconversion of lignocellulosic biomass by <i>Saccharomyces cerevisiae</i> engineered for tolerance to acetic acid. GCB Bioenergy, 2020, 12, 90-100.	2.5	52
320	Heterologous production of 3-hydroxyvalerate in engineered Escherichia coli. Metabolic Engineering, 2020, 61, 141-151.	3.6	10
321	Recent advances in genetic engineering tools based on synthetic biology. Journal of Microbiology, 2020, 58, 1-10.	1.3	25
322	Advanced strategy for metabolite exploration in filamentous fungi. Critical Reviews in Biotechnology, 2020, 40, 180-198.	5.1	12
323	Prospect of Polysaccharide-Based Materials as Advanced Food Packaging. Molecules, 2020, 25, 135.	1.7	167
324	Minimal Cells: Design, Construction, Biotechnological Applications. , 2020, , .		1
325	Engineering G protein-coupled receptor signalling in yeast for biotechnological and medical purposes. FEMS Yeast Research, 2020, 20, .	1.1	31
326	Design and tailoring of an artificial DNA scaffolding system for efficient lycopene synthesis using zinc-finger-guided assembly. Journal of Industrial Microbiology and Biotechnology, 2020, 47, 209-222.	1.4	22
327	Coupled metabolicâ€hydrodynamic modeling enabling rational scaleâ€up of industrial bioprocesses. Biotechnology and Bioengineering, 2020, 117, 844-867.	1.7	14
328	From Minimal to Minimized Genomes: Functional Design of Microbial Cell Factories. , 2020, , 177-210.		0

#	Article	IF	CITATIONS
329	Optimizing cultivation of Cordyceps militaris for fast growth and cordycepin overproduction using rational design of synthetic media. Computational and Structural Biotechnology Journal, 2020, 18, 1-8.	1.9	31
330	Immediate, multiplexed and sequential genome engineering facilitated by CRISPR/Cas9 in <i>Saccharomyces cerevisiae </i> . Journal of Industrial Microbiology and Biotechnology, 2020, 47, 83-96.	1.4	14
331	A cell-free system for production of 2,3-butanediol is robust to growth-toxic compounds. Metabolic Engineering Communications, 2020, 10, e00114.	1.9	30
332	Titrating bacterial growth and chemical biosynthesis for efficient N-acetylglucosamine and N-acetylneuraminic acid bioproduction. Nature Communications, 2020, 11, 5078.	5.8	33
333	Engineering endogenous ABC transporter with improving ATP supply and membrane flexibility enhances the secretion of \hat{I}^2 -carotene in Saccharomyces cerevisiae. Biotechnology for Biofuels, 2020, 13, 168.	6.2	42
334	Microbial cell engineering to improve cellular synthetic capacity. Biotechnology Advances, 2020, 45, 107649.	6.0	15
335	Advances in Metabolic Engineering of Saccharomyces cerevisiae for Cocoa Butter Equivalent Production. Frontiers in Bioengineering and Biotechnology, 2020, 8, 594081.	2.0	23
336	Magnetic Field-Mediated Control of Whole-Cell Biocatalysis. Journal of Physical Chemistry Letters, 2020, 11, 8989-8996.	2.1	7
337	Molecularly imprinted polymers for the selective recognition of microorganisms. Biotechnology Advances, 2020, 45, 107640.	6.0	61
338	Novel two-stage processes for optimal chemical production in microbes. Metabolic Engineering, 2020, 62, 186-197.	3.6	18
339	Promiscuous phosphoketolase and metabolic rewiring enables novel non-oxidative glycolysis in yeast for high-yield production of acetyl-CoA derived products. Metabolic Engineering, 2020, 62, 150-160.	3.6	30
340	Engineering and application of a biosensor with focused ligand specificity. Nature Communications, 2020, 11, 4851.	5.8	56
341	Data-driven rational biosynthesis design: from molecules to cell factories. Briefings in Bioinformatics, 2020, 21, 1238-1248.	3.2	9
342	Tailoring cyanobacteria as a new platform for highly efficient synthesis of astaxanthin. Metabolic Engineering, 2020, 61, 275-287.	3.6	43
344	Metabolic Engineering for Glycyrrhetinic Acid Production in Saccharomyces cerevisiae. Frontiers in Bioengineering and Biotechnology, 2020, 8, 588255.	2.0	17
345	Recent Advances in Developing Artificial Autotrophic Microorganism for Reinforcing CO2 Fixation. Frontiers in Microbiology, 2020, 11, 592631.	1.5	21
346	Addicting <i>Escherichia coli</i> to New-to-Nature Reactions. ACS Chemical Biology, 2020, 15, 3093-3098.	1.6	15
347	Novel Prokaryotic CRISPR-Cas12a-Based Tool for Programmable Transcriptional Activation and Repression. ACS Synthetic Biology, 2020, 9, 3353-3363.	1.9	19

#	Article	IF	CITATIONS
348	Transforming yeast peroxisomes into microfactories for the efficient production of high-value isoprenoids. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31789-31799.	3.3	108
349	Exchange of endogenous and heterogeneous yeast terminators in <i>Pichia pastoris</i> to tune mRNA stability and gene expression. Nucleic Acids Research, 2020, 48, 13000-13012.	6.5	37
350	Oneâ€Pot Synthesis of Aromatic Amines from Renewable Feedstocks via Wholeâ€Cell Biocatalysis. ChemistrySelect, 2020, 5, 14292-14295.	0.7	7
351	Deep learning suggests that gene expression is encoded in all parts of a co-evolving interacting gene regulatory structure. Nature Communications, 2020, 11, 6141.	5.8	83
352	Rewiring Central Carbon Metabolism Ensures Increased Provision of Acetyl-CoA and NADPH Required for 3-OH-Propionic Acid Production. ACS Synthetic Biology, 2020, 9, 3236-3244.	1.9	36
353	Glutaric acid production by systems metabolic engineering of an ⟨scp⟩l⟨ scp⟩ -lysine–overproducing ⟨i⟩Corynebacterium glutamicum⟨ i⟩. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30328-30334.	3.3	56
354	You get what you screen for: on the value of fermentation characterization in high-throughput strain improvements in industrial settings. Journal of Industrial Microbiology and Biotechnology, 2020, 47, 913-927.	1.4	13
355	Pichia pastoris expression system: An impending candidate to express protein in industrial and biopharmaceutical domains., 2020,, 223-234.		2
356	Systems and synthetic metabolic engineering: Challenges and prospects. , 2020, , 237-264.		1
357	Regulatory control circuits for stabilizing long-term anabolic product formation in yeast. Metabolic Engineering, 2020, 61, 369-380.	3.6	17
358	Ustilago maydis Serves as a Novel Production Host for the Synthesis of Plant and Fungal Sesquiterpenoids. Frontiers in Microbiology, 2020, 11, 1655.	1.5	12
359	Unlocking nature's biosynthetic potential by directed genome evolution. Current Opinion in Biotechnology, 2020, 66, 95-104.	3.3	25
360	Charting Metabolism Heterogeneity by Nanostructure Imaging Mass Spectrometry: From Biological Systems to Subcellular Functions. Journal of the American Society for Mass Spectrometry, 2020, 31, 2392-2400.	1.2	11
361	Controlling spatiotemporal pattern formation in a concentration gradient with a synthetic toggle switch. Molecular Systems Biology, 2020, 16, e9361.	3.2	42
362	Applications of CRISPR in a Microbial Cell Factory: From Genome Reconstruction to Metabolic Network Reprogramming. ACS Synthetic Biology, 2020, 9, 2228-2238.	1.9	14
363	The future of self-selecting and stable fermentations. Journal of Industrial Microbiology and Biotechnology, 2020, 47, 993-1004.	1.4	18
364	Engineering cofactor metabolism for improved protein and glucoamylase production in Aspergillus niger. Microbial Cell Factories, 2020, 19, 198.	1.9	18
365	Bacterial cellulose: Biosynthesis, production, and applications. Advances in Microbial Physiology, 2020, 77, 89-138.	1.0	22

#	ARTICLE	IF	Citations
366	Integrative Biosynthetic Gene Cluster Mining to Optimize a Metabolic Pathway to Efficiently Produce l-Homophenylalanine in Escherichia coli. ACS Synthetic Biology, 2020, 9, 2943-2954.	1.9	3
367	Towards next-generation model microorganism chassis for biomanufacturing. Applied Microbiology and Biotechnology, 2020, 104, 9095-9108.	1.7	9
368	A machine learning Automated Recommendation Tool for synthetic biology. Nature Communications, 2020, 11, 4879.	5.8	129
369	Dynamic Control of 4-Hydroxyisoleucine Biosynthesis by Modified <scp>l</scp> -lsoleucine Biosensor in Recombinant <i>Corynebacterium glutamicum</i> . ACS Synthetic Biology, 2020, 9, 2378-2389.	1.9	26
370	Investigation of Bar-seq as a method to study population dynamics of Saccharomyces cerevisiae deletion library during bioreactor cultivation. Microbial Cell Factories, 2020, 19, 167.	1.9	9
371	Novel xylose transporter Cs4130 expands the sugar uptake repertoire in recombinant Saccharomyces cerevisiae strains at high xylose concentrations. Biotechnology for Biofuels, 2020, 13, 145.	6.2	19
372	Portable Analytical Techniques for Monitoring Volatile Organic Chemicals in Biomanufacturing Processes: Recent Advances and Limitations. Frontiers in Chemistry, 2020, 8, 837.	1.8	6
373	Streamlining Natural Products Biomanufacturing With Omics and Machine Learning Driven Microbial Engineering. Frontiers in Bioengineering and Biotechnology, 2020, 8, 608918.	2.0	12
374	Genetic Engineering and Synthetic Genomics in Yeast to Understand Life and Boost Biotechnology. Bioengineering, 2020, 7, 137.	1.6	22
376	Stress-induced expression is enriched for evolutionarily young genes in diverse budding yeasts. Nature Communications, 2020, 11, 2144.	5.8	24
377	Efficient Multiplex Gene Repression by CRISPR-dCpf1 in Corynebacterium glutamicum. Frontiers in Bioengineering and Biotechnology, 2020, 8, 357.	2.0	33
378	Light-powered Escherichia coli cell division for chemical production. Nature Communications, 2020, 11, 2262.	5.8	51
379	Synthetic Biology Approaches to Engineer Saccharomyces cerevisiae towards the Industrial Production of Valuable Polyphenolic Compounds. Life, 2020, 10, 56.	1.1	24
380	Valorisation of pectin-rich agro-industrial residues by yeasts: potential and challenges. Applied Microbiology and Biotechnology, 2020, 104, 6527-6547.	1.7	37
381	Biosystems Design by Machine Learning. ACS Synthetic Biology, 2020, 9, 1514-1533.	1.9	76
382	Flux controlling technology for central carbon metabolism for efficient microbial bio-production. Current Opinion in Biotechnology, 2020, 64, 169-174.	3.3	15
383	Rewiring carbon flux in Escherichia coli using a bifunctional molecular switch. Metabolic Engineering, 2020, 61, 47-57.	3.6	34
384	Harnessing Natural Modularity of Metabolism with Goal Attainment Optimization to Design a Modular Chassis Cell for Production of Diverse Chemicals. ACS Synthetic Biology, 2020, 9, 1665-1681.	1.9	14

#	Article	IF	CITATIONS
385	Development of a clostridia-based cell-free system for prototyping genetic parts and metabolic pathways. Metabolic Engineering, 2020, 62, 95-105.	3.6	27
386	In vitro prototyping and rapid optimization of biosynthetic enzymes for cell design. Nature Chemical Biology, 2020, 16, 912-919.	3.9	142
387	Semi-biological approaches to solar-to-chemical conversion. Chemical Society Reviews, 2020, 49, 4926-4952.	18.7	157
388	Tools and strategies of systems metabolic engineering for the development of microbial cell factories for chemical production. Chemical Society Reviews, 2020, 49, 4615-4636.	18.7	246
389	Engineering microbial cell morphology and membrane homeostasis toward industrial applications. Current Opinion in Biotechnology, 2020, 66, 18-26.	3.3	26
390	Engineered dynamic distribution of malonyl-CoA flux for improving polyketide biosynthesis in Komagataella phaffii. Journal of Biotechnology, 2020, 320, 80-85.	1.9	12
391	Engineered citrate synthase improves citramalic acid generation in <i>Escherichia coli</i> Biotechnology and Bioengineering, 2020, 117, 2781-2790.	1.7	18
392	Spatiotemporal monitoring of intracellular metabolic dynamics by resonance Raman microscopy with isotope labeling. RSC Advances, 2020, 10, 16679-16686.	1.7	4
393	Engineered microbes and evolving plastic bioremediation technology., 2020,, 417-443.		14
394	Homologous Recombination: A GRAS Yeast Genome Editing Tool. Fermentation, 2020, 6, 57.	1.4	13
395	A Systems-Based Approach for Cyanide Overproduction by Bacillus megaterium for Gold Bioleaching Enhancement. Frontiers in Bioengineering and Biotechnology, 2020, 8, 528.	2.0	19
396	Substrate promiscuity of polyketide synthase enables production of tsetse fly attractants 3-ethylphenol and 3-propylphenol by engineering precursor supply in yeast. Scientific Reports, 2020, 10, 9962.	1.6	4
397	Multidimensional Metabolic Engineering for Constructing Efficient Cell Factories. Trends in Biotechnology, 2020, 38, 468-469.	4.9	2
398	High rate 2,3-butanediol production with Vibrio natriegens. Bioresource Technology Reports, 2020, 10, 100408.	1.5	27
399	Emerging Technologies in Algal Biotechnology: Toward the Establishment of a Sustainable, Algae-Based Bioeconomy. Frontiers in Plant Science, 2020, 11, 279.	1.7	192
400	Enzyme Assembly for Compartmentalized Metabolic Flux Control. Metabolites, 2020, 10, 125.	1.3	17
401	Towards a widespread adoption of metabolic modeling tools in biopharmaceutical industry: a process systems biology engineering perspective. Npj Systems Biology and Applications, 2020, 6, 6.	1.4	14
402	Metabolic and evolutionary responses of Clostridium thermocellum to genetic interventions aimed at improving ethanol production. Biotechnology for Biofuels, 2020, 13, 40.	6.2	49

#	Article	IF	CITATIONS
403	Refactoring Ehrlich Pathway for High-Yield 2-Phenylethanol Production in <i>Yarrowia lipolytica</i> ACS Synthetic Biology, 2020, 9, 623-633.	1.9	55
404	Cell-free synthesis system-assisted pathway bottleneck diagnosis and engineering in Bacillus subtilis. Synthetic and Systems Biotechnology, 2020, 5, 131-136.	1.8	7
405	$\hat{A}_i \text{Viva la mitochondria!:}$ harnessing yeast mitochondria for chemical production. FEMS Yeast Research, 2020, 20, .	1.1	15
406	Boosting the Synthesis of Pharmaceutically Active Abietane Diterpenes in S. sclarea Hairy Roots by Engineering the GGPPS and CPPS Genes. Frontiers in Plant Science, 2020, 11, 924.	1.7	13
407	Toward Engineering Biosystems With Emergent Collective Functions. Frontiers in Bioengineering and Biotechnology, 2020, 8, 705.	2.0	22
408	Challenges and opportunities with CRISPR activation in bacteria for data-driven metabolic engineering. Current Opinion in Biotechnology, 2020, 64, 190-198.	3.3	29
409	Quorum Sensing System Used as a Tool in Metabolic Engineering. Biotechnology Journal, 2020, 15, e1900360.	1.8	21
410	Tailoring cellular metabolism in lactic acid bacteria through metabolic engineering. Journal of Microbiological Methods, 2020, 170, 105862.	0.7	19
411	An autoinducible trpâ€₹7 expression system for production of proteins and biochemicals in <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2020, 117, 1513-1524.	1.7	5
412	Bioprocess Optimization for the Production of Aromatic Compounds With Metabolically Engineered Hosts: Recent Developments and Future Challenges. Frontiers in Bioengineering and Biotechnology, 2020, 8, 96.	2.0	16
413	A combined experimental and modelling approach for the Weimberg pathway optimisation. Nature Communications, 2020, 11 , 1098 .	5.8	41
414	Improved betulinic acid biosynthesis using synthetic yeast chromosome recombination and semi-automated rapid LC-MS screening. Nature Communications, 2020, 11, 868.	5.8	54
415	Solar activation of fungus coated in photothermal cloth. Journal of Materials Chemistry B, 2020, 8, 2466-2470.	2.9	10
416	MEMO: A Method for Computing Metabolic Modules for Cell-Free Production Systems. ACS Synthetic Biology, 2020, 9, 556-566.	1.9	8
417	Current state of aromatics production using yeast: achievements and challenges. Current Opinion in Biotechnology, 2020, 65, 65-74.	3.3	35
418	A New Biosensor for Stilbenes and a Cannabinoid Enabled by Genome Mining of a Transcriptional Regulator. ACS Synthetic Biology, 2020, 9, 698-705.	1.9	28
419	Synthetic metabolic channel by functional membrane microdomains for compartmentalized flux control. Metabolic Engineering, 2020, 59, 106-118.	3.6	21
420	Advanced Strategies for Production of Natural Products in Yeast. IScience, 2020, 23, 100879.	1.9	107

#	Article	IF	CITATIONS
421	Production of riboflavin and related cofactors by biotechnological processes. Microbial Cell Factories, 2020, 19, 31.	1.9	75
422	Efficient targeted mutation of genomic essential genes in yeast Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2020, 104, 3037-3047.	1.7	14
423	iFLinkC: an iterative functional linker cloning strategy for the combinatorial assembly and recombination of linker peptides with functional domains. Nucleic Acids Research, 2020, 48, e24-e24.	6.5	55
424	Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnology Advances, 2020, 40, 107520.	6.0	97
425	Programmable polyketide biosynthesis platform for production of aromatic compounds in yeast. Synthetic and Systems Biotechnology, 2020, 5, 11-18.	1.8	13
426	Engineering Escherichia coli lifespan for enhancing chemical production. Nature Catalysis, 2020, 3, 307-318.	16.1	61
427	Multidimensional engineering of Saccharomyces cerevisiae for efficient synthesis of medium-chain fatty acids. Nature Catalysis, 2020, 3, 64-74.	16.1	80
428	Harnessing ecological and evolutionary principles to guide the design of microbial production consortia. Current Opinion in Biotechnology, 2020, 62, 228-238.	3.3	33
429	Engineering <i>Yarrowia lipolytica</i> for Enhanced Production of Arbutin. Journal of Agricultural and Food Chemistry, 2020, 68, 1364-1372.	2.4	28
430	High-Resolution Scanning of Optimal Biosensor Reporter Promoters in Yeast. ACS Synthetic Biology, 2020, 9, 218-226.	1.9	26
431	Engineering <i>Pichia pastoris</i> to improve Sâ€adenosylâ€ <scp>l</scp> â€methionine production using systemsÂmetabolic strategies. Biotechnology and Bioengineering, 2020, 117, 1436-1445.	1.7	23
432	Comprehensive understanding of <i>Saccharomyces cerevisiae</i> phenotypes with wholeâ€cell model WM_S288C. Biotechnology and Bioengineering, 2020, 117, 1562-1574.	1.7	23
433	CRISPRi/dCpf1-mediated dynamic metabolic switch to enhance butenoic acid production in Escherichia coli. Applied Microbiology and Biotechnology, 2020, 104, 5385-5393.	1.7	9
434	Systematic identification and elimination of flux bottlenecks in the aldehyde production pathway of Synechococcus elongatus PCC 7942. Metabolic Engineering, 2020, 60, 56-65.	3.6	36
435	Total in vitro biosynthesis of the nonribosomal macrolactone peptide valinomycin. Metabolic Engineering, 2020, 60, 37-44.	3.6	58
436	Effective CRISPRa-mediated control of gene expression in bacteria must overcome strict target site requirements. Nature Communications, 2020, 11, 1618.	5.8	65
437	Beyond natural: synthetic expansions of botanical form and function. New Phytologist, 2020, 227, 295-310.	3.5	23
438	Cannabidiol Discovery and Synthesis—a Targetâ€Oriented Analysis in Drug Production Processes. Chemistry - A European Journal, 2021, 27, 5577-5600.	1.7	9

#	Article	IF	CITATIONS
439	Cell2Chem: mining explored and unexplored biosynthetic chemical spaces. Bioinformatics, 2021, 36, 5269-5270.	1.8	3
440	An ion-pair free LC-MS/MS method for quantitative metabolite profiling of microbial bioproduction systems. Talanta, 2021, 222, 121625.	2.9	10
441	Harnessing in vitro platforms for natural product research: in vitro driven rational engineering and mining (iDREAM). Current Opinion in Biotechnology, 2021, 69, 1-9.	3.3	15
442	The heterologous production of terpenes by the thermophile Parageobacillus thermoglucosidasius in a consolidated bioprocess using waste bread. Metabolic Engineering, 2021, 65, 146-155.	3.6	15
443	Synthetic small regulatory RNAs in microbial metabolic engineering. Applied Microbiology and Biotechnology, 2021, 105, 1-12.	1.7	17
444	Short and long-read ultra-deep sequencing profiles emerging heterogeneity across five platform Escherichia coli strains. Metabolic Engineering, 2021, 65, 197-206.	3.6	13
445	The transition of <i>Rhodobacter sphaeroides</i> into a microbial cell factory. Biotechnology and Bioengineering, 2021, 118, 531-541.	1.7	23
447	Machine learning for metabolic engineering: A review. Metabolic Engineering, 2021, 63, 34-60.	3.6	135
448	Recent advances in the biosynthesis of isoprenoids in engineered Saccharomyces cerevisiae. Advances in Applied Microbiology, 2021, 114, 1-35.	1.3	11
449	Recent advances in constraint and machine learning-based metabolic modeling by leveraging stoichiometric balances, thermodynamic feasibility and kinetic law formalisms. Metabolic Engineering, 2021, 63, 13-33.	3.6	26
450	Toward a Universal Theoretical Framework to Understand Robustness and Resilience: From Cells to Systems. Frontiers in Ecology and Evolution, 2021, 8, .	1.1	8
451	Artificial Enzymes for Dielsâ€Alder Reactions. ChemBioChem, 2021, 22, 443-459.	1.3	11
452	Engineered Methanotrophy: A Sustainable Solution for Methane-Based Industrial Biomanufacturing. Trends in Biotechnology, 2021, 39, 381-396.	4.9	53
453	Cell Biology Diagnostic Test (CBD-Test) portrays pre-service teacher misconceptions about biology cell. Journal of Biological Education, 2021, 55, 82-105.	0.8	9
454	Construction and optimization of a microbial platform for sustainable biosynthesis of poly- <i>N</i> >N>acetyllactosamine glycoprotein in the cytoplasm for detecting tumor biomarker galectin-3. Green Chemistry, 2021, 23, 2668-2684.	4.6	3
455	Setting Up an Automated Biomanufacturing Laboratory. Methods in Molecular Biology, 2021, 2229, 137-155.	0.4	5
456	Addressing Evolutionary Questions with Synthetic Biology. , 2021, , 135-157.		6
457	Increasing glycolysis by deletion of kcs1 and arg82 improved S-adenosyl-l-methionine production in Saccharomyces cerevisiae. AMB Express, 2021, 11, 20.	1.4	7

#	ARTICLE	IF	CITATIONS
458	Recent advances in (chemo)enzymatic cascades for upgrading bio-based resources. Chemical Communications, 2021, 57, 10661-10674.	2.2	28
459	Protein over-expression in Escherichia coli triggers adaptation analogous to antimicrobial resistance. Microbial Cell Factories, 2021, 20, 13.	1.9	10
460	Opportunities at the Interface of Network Science and Metabolic Modeling. Frontiers in Bioengineering and Biotechnology, 2020, 8, 591049.	2.0	15
461	An introduction to microbial cell factories for production of biomolecules. , 2021, , 1-19.		6
462	High-throughput optofluidic screening for improved microbial cell factories <i>via</i> real-time micron-scale productivity monitoring. Lab on A Chip, 2021, 21, 2901-2912.	3.1	8
463	Development of a Pantetheine Force Field Library for Molecular Modeling. Journal of Chemical Information and Modeling, 2021, 61, 856-868.	2.5	11
464	Optimized gene expression from bacterial chromosome by high-throughput integration and screening. Science Advances, 2021, 7, .	4.7	35
465	Multiomics Data Collection, Visualization, and Utilization for Guiding Metabolic Engineering. Frontiers in Bioengineering and Biotechnology, 2021, 9, 612893.	2.0	7
466	Microbial physiological engineering increases the efficiency of microbial cell factories. Critical Reviews in Biotechnology, 2021, 41, 339-354.	5.1	14
467	Redirection of metabolic flux in Shewanella oneidensis MR-1 by CRISPRi and modular design for 5-aminolevulinic acid production. Bioresources and Bioprocessing, 2021, 8, .	2.0	17
469	A Reporter System for Cytosolic Protein Aggregates in Yeast. ACS Synthetic Biology, 2021, 10, 466-477.	1.9	9
470	Implementation of dCas9-mediated CRISPRi in the fission yeast <i>Schizosaccharomyces pombe</i> Genes, Genomes, Genetics, 2021, 11 , .	0.8	10
473	Microbial engineering to produce fatty alcohols and alkanes. Journal of Industrial Microbiology and Biotechnology, 2021, 48, .	1.4	8
474	Integrating continuous hypermutation with highâ€throughput screening for optimization of <i>cis,cis,cis,cis,i>â€muconic acid production in yeast. Microbial Biotechnology, 2021, 14, 2617-2626.</i>	2.0	22
475	Active Delivery of CRISPR System Using Targetable or Controllable Nanocarriers. Small, 2021, 17, e2005222.	5.2	12
477	Adaptation of central metabolite pools to variations in growth rate and cultivation conditions in Saccharomyces cerevisiae. Microbial Cell Factories, 2021, 20, 64.	1.9	19
478	Genetically Encodable Scaffolds for Optimizing Enzyme Function. Molecules, 2021, 26, 1389.	1.7	3
479	Whole-Cell Biosensors Aid Exploration of Vanillin Transmembrane Transport. Journal of Agricultural and Food Chemistry, 2021, 69, 3114-3123.	2.4	10

#	Article	IF	CITATIONS
480	Efficient bioconversion of raspberry ketone in Escherichia coli using fatty acids feedstocks. Microbial Cell Factories, 2021, 20, 68.	1.9	8
481	Production of (R)-mandelic acid from styrene, L-phenylalanine, glycerol, or glucose via cascade biotransformations. Bioresources and Bioprocessing, 2021, 8, .	2.0	14
482	Poly(3-hydroxypropionate): Biosynthesis Pathways and Malonyl-CoA Biosensor Material Properties. Frontiers in Bioengineering and Biotechnology, 2021, 9, 646995.	2.0	8
483	Principles and practice of designing microbial biocatalysts for fuel and chemical production. Journal of Industrial Microbiology and Biotechnology, 2022, 49, .	1.4	3
484	Interfacing Iodineâ€Doped Hydrothermally Carbonized Carbon with <i>Escherichia coli</i> through an "Addâ€on―Mode for Enhanced Lightâ€Driven Hydrogen Production. Advanced Energy Materials, 2021, 11, 2100291.	10.2	34
485	Harnessing the nutritional potential of concentrated whey for enhanced galactose flux in fermentative yeast. LWT - Food Science and Technology, 2021, 141, 110840.	2.5	7
486	Dynamic Control of Gene Expression with Riboregulated Switchable Feedback Promoters. ACS Synthetic Biology, 2021, 10, 1199-1213.	1.9	19
487	Expansion of EasyClone-MarkerFree toolkit for <i>Saccharomyces cerevisiae</i> genome with new integration sites. FEMS Yeast Research, 2021, 21, .	1.1	15
488	A Computational Framework for Identifying Promoter Sequences in Nonmodel Organisms Using RNA-seq Data Sets. ACS Synthetic Biology, 2021, 10, 1394-1405.	1.9	15
489	Biomolecular Systems Engineering: Unlocking the Potential of Engineered Allostery via the Lactose Repressor Topology. Annual Review of Biophysics, 2021, 50, 303-321.	4.5	6
490	Anodic electro-fermentation: Empowering anaerobic production processes via anodic respiration. Biotechnology Advances, 2021, 48, 107728.	6.0	36
491	Genome-scale metabolic modeling of P. thermoglucosidasius NCIMB 11955 reveals metabolic bottlenecks in anaerobic metabolism. Metabolic Engineering, 2021, 65, 123-134.	3.6	14
493	Nanomaterial Shape Influence on Cell Behavior. International Journal of Molecular Sciences, 2021, 22, 5266.	1.8	27
494	Recent progress and new perspectives for diterpenoid biosynthesis in medicinal plants. Medicinal Research Reviews, 2021, 41, 2971-2997.	5.0	39
495	Innovative Tools and Strategies for Optimizing Yeast Cell Factories. Trends in Biotechnology, 2021, 39, 488-504.	4.9	37
496	Microbial Polymers in Edible Films and Coatings of Garden Berry and Grape: Current and Prospective Use. Food and Bioprocess Technology, 2021, 14, 1432-1445.	2.6	18
497	NICEpath: Finding metabolic pathways in large networks through atom-conserving substrate–product pairs. Bioinformatics, 2021, 37, 3560-3568.	1.8	10
498	Production of Rainbow Colorants by Metabolically Engineered <i>Escherichia coli</i> Advanced Science, 2021, 8, e2100743.	5.6	28

#	Article	IF	CITATIONS
499	Proposal of a Relational Database (SQL) for Zoological Research of Epigeic Synusion. Mendel, 2021, 27, 23-28.	0.5	0
500	Dynamic control of the distribution of carbon flux between cell growth and butyrate biosynthesis in Escherichia coli. Applied Microbiology and Biotechnology, 2021, 105, 5173-5187.	1.7	2
501	Biocatalysis. Nature Reviews Methods Primers, 2021, 1, .	11.8	255
502	Learning the Regulatory Code of Gene Expression. Frontiers in Molecular Biosciences, 2021, 8, 673363.	1.6	17
504	Strategies and challenges with the microbial conversion of methanol to highâ€value chemicals. Biotechnology and Bioengineering, 2021, 118, 3655-3668.	1.7	12
505	Engineering yeast metabolism for the discovery and production of polyamines and polyamine analogues. Nature Catalysis, 2021, 4, 498-509.	16.1	26
506	From omics to cellular mechanisms in mammalian cell factory development. Current Opinion in Chemical Engineering, 2021, 32, 100688.	3.8	5
509	Chemoproteomics profiling of surfactin-producing nonribosomal peptide synthetases in living bacterial cells. Cell Chemical Biology, 2022, 29, 145-156.e8.	2.5	14
510	Saccharomyces: Is a Necessary Organism or a Biological Warrior?., 0, , .		0
511	Portable bacterial CRISPR transcriptional activation enables metabolic engineering in Pseudomonas putida. Metabolic Engineering, 2021, 66, 283-295.	3.6	30
512	Synthetic biology-inspired strategies and tools for engineering of microbial natural product biosynthetic pathways. Biotechnology Advances, 2021, 49, 107759.	6.0	29
513	Efficient multiplexed gene regulation in <i>Saccharomyces cerevisiae</i> li>using dCas12a. Nucleic Acids Research, 2021, 49, 7775-7790.	6.5	24
514	Designing Modular Cell-free Systems for Tunable Biotransformation of l-phenylalanine to Aromatic Compounds. Frontiers in Bioengineering and Biotechnology, 2021, 9, 730663.	2.0	11
515	<i>Escherichia coli</i> as a platform microbial host for systems metabolic engineering. Essays in Biochemistry, 2021, 65, 225-246.	2.1	22
516	Wholeâ€Cellâ€Based Photosynthetic Biohybrid Systems for Energy and Environmental Applications. ChemPlusChem, 2021, 86, 1021-1036.	1.3	9
518	Modelâ€guided development of an evolutionarily stable yeast chassis. Molecular Systems Biology, 2021, 17, e10253.	3.2	6
519	A Multiphase Multiobjective Dynamic Genome-Scale Model Shows Different Redox Balancing among Yeast Species of the <i>Saccharomyces </i> Genus in Fermentation. MSystems, 2021, 6, e0026021.	1.7	20
520	An integrated in vivo/in vitro framework to enhance cell-free biosynthesis with metabolically rewired yeast extracts. Nature Communications, 2021, 12, 5139.	5.8	16

#	Article	IF	CITATIONS
521	Mining and engineering exporters for titer improvement of macrolide biopesticides in <i>Streptomyces</i> . Microbial Biotechnology, 2022, 15, 1120-1132.	2.0	8
522	An Integrative Toolbox for Synthetic Biology in <i>Rhodococcus</i> . ACS Synthetic Biology, 2021, 10, 2383-2395.	1.9	10
525	Reduction of lipid-accumulation of oleaginous yeast <i>Rhodosporidium toruloides</i> through CRISPR/Cas9-mediated inactivation of lipid droplet structural proteins. FEMS Microbiology Letters, 2021, 368, .	0.7	5
526	Exploring functionality of the reverse \hat{l}^2 -oxidation pathway in Corynebacterium glutamicum for production of adipic acid. Microbial Cell Factories, 2021, 20, 155.	1.9	8
527	Genome-scale target identification in Escherichia coli for high-titer production of free fatty acids. Nature Communications, 2021, 12, 4976.	5.8	44
528	Physiological limitations and opportunities in microbial metabolic engineering. Nature Reviews Microbiology, 2022, 20, 35-48.	13.6	53
530	History-Driven Genetic Modification Design Technique Using a Domain-Specific Lexical Model for the Acceleration of DBTL Cycles for Microbial Cell Factories. ACS Synthetic Biology, 2021, 10, 2308-2317.	1.9	2
531	Inducible Population Quality Control of Engineered <i>Bacillus subtilis</i> for Improved <i>N</i> Acetylneuraminic Acid Biosynthesis. ACS Synthetic Biology, 2021, 10, 2197-2209.	1.9	7
532	O-glycosyltransferases from Homo sapiens contributes to the biosynthesis of Glycyrrhetic Acid 3-O-mono-Î ² -D-glucuronide and Glycyrrhizin in Saccharomyces cerevisiae. Synthetic and Systems Biotechnology, 2021, 6, 173-179.	1.8	9
533	Design and Implementation of a Tool to Assess Students' Understanding of Metabolic Pathways Dynamics and Regulation. CBE Life Sciences Education, 2021, 20, ar35.	1.1	3
534	Model-guided dynamic control of essential metabolic nodes boosts acetyl-coenzyme A–dependent bioproduction in rewired Pseudomonas putida. Metabolic Engineering, 2021, 67, 373-386.	3.6	41
535	Computational design and analysis of modular cells for large libraries of exchangeable product synthesis modules. Metabolic Engineering, 2021, 67, 453-463.	3.6	2
536	Combinatorial pathway balancing provides biosynthetic access to 2-fluoro-cis,cis-muconate in engineered Pseudomonas putida. Chem Catalysis, 2021, 1, 1234-1259.	2.9	19
537	Food grade microbial synthesis of the butter aroma compound butanedione using engineered and non-engineered Lactococcus lactis. Metabolic Engineering, 2021, 67, 443-452.	3.6	9
538	High-throughput characterization of mutations in genes that drive clonal evolution using multiplex adaptome capture sequencing. Cell Systems, 2021, 12, 1187-1200.e4.	2.9	5
539	Establishment of a GCâ€MSâ€based ¹³ Câ€positional isotopomer approach suitable for investigating metabolic fluxes in plant primary metabolism. Plant Journal, 2021, 108, 1213-1233.	2.8	18
540	Metabolic network remodelling enhances yeast's fitness on xylose using aerobic glycolysis. Nature Catalysis, 2021, 4, 783-796.	16.1	23
541	Overview of yeast environmental stress response pathways and the development of tolerant yeasts. Systems Microbiology and Biomanufacturing, 0 , 1 .	1.5	10

#	Article	IF	CITATIONS
542	Sorting for secreted molecule production using a biosensor-in-microdroplet approach. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	15
543	Growth-coupled selection of synthetic modules to accelerate cell factory development. Nature Communications, 2021, 12, 5295.	5.8	35
544	Random Base Editing for Genome Evolution in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2021, 10, 2440-2446.	1.9	12
545	Medicinal Plants: Guests and Hosts in the Heterologous Expression of High-Value Products. Planta Medica, 2022, 88, 1175-1189.	0.7	1
547	Synergistic improvement of N-acetylglucosamine production by engineering transcription factors and balancing redox cofactors. Metabolic Engineering, 2021, 67, 330-346.	3.6	43
548	Sustainability in drug discovery. Medicine in Drug Discovery, 2021, 12, 100107.	2.3	5
550	The Transporter-Mediated Cellular Uptake and Efflux of Pharmaceutical Drugs and Biotechnology Products: How and Why Phospholipid Bilayer Transport Is Negligible in Real Biomembranes. Molecules, 2021, 26, 5629.	1.7	14
551	Genetic Toolkits to Design and Build Mammalian Synthetic Systems. Trends in Biotechnology, 2021, 39, 1004-1018.	4.9	12
552	Tailoring Genetic Elements of the Plasmid-Driven T7 System for Stable and Robust One-Step Cloning and Protein Expression in Broad <i>Escherichia coli</i>	1.9	9
553	In silico, inÂvitro, and inÂvivo machine learning in synthetic biology and metabolic engineering. Current Opinion in Chemical Biology, 2021, 65, 85-92.	2.8	21
554	Combinatorial engineering of Saccharomyces cerevisiae for improving limonene production. Biochemical Engineering Journal, 2021, 176, 108155.	1.8	26
555	Shaping a reactor microbiome generating stable n-caproate productivity through Design-Build-Test-Learn approach. Chemical Engineering Journal, 2021, 425, 131587.	6.6	4
556	Challenges and opportunities in biological funneling of heterogeneous and toxic substrates beyond lignin. Current Opinion in Biotechnology, 2022, 73, 1-13.	3.3	39
557	Microbial production of chemicals driven by CRISPR-Cas systems. Current Opinion in Biotechnology, 2022, 73, 34-42.	3.3	16
558	Identification of novel membrane proteins for improved lignocellulose conversion. Current Opinion in Biotechnology, 2022, 73, 198-204.	3.3	2
559	CRISPR-based tools for microbial cell factories. , 2021, , 95-113.		0
560	PCR & Pre-installed Expression Chassis for Facile Integration of Multi-Gene Biosynthetic Pathways. Frontiers in Bioengineering and Biotechnology, 2020, 8, 613771.	2.0	14
561	Quantitative Analysis of Oncometabolite 2-Hydroxyglutarate. Advances in Experimental Medicine and Biology, 2021, 1280, 161-172.	0.8	3

#	Article	IF	CITATIONS
562	Microbial production of 4â€aminoâ€1â€butanol, a fourâ€carbon amino alcohol. Biotechnology and Bioengineering, 2020, 117, 2771-2780.	1.7	7
563	Genome-Scale Metabolic Modeling of Escherichia coli and Its Chassis Design for Synthetic Biology Applications. Methods in Molecular Biology, 2021, 2189, 217-229.	0.4	9
564	Challenges in the Application of Synthetic Biology Toward Synthesis of Commodity Products by Cyanobacteria via "Direct Conversion― Advances in Experimental Medicine and Biology, 2018, 1080, 3-26.	0.8	12
565	Systems and Synthetic Biotechnology for theÂProduction of Polyunsaturated Fatty Acids. , 2019, , 189-202.		2
566	CRISPR/Cas9-Edited Rice: A New Frontier for Sustainable Agriculture. , 2020, , 427-458.		21
567	Climate Change: Challenges to Reduce Global Warming and Role of Biofuels. , 2020, , 13-54.		4
568	Recent advances and future directions in plant and yeast engineering to improve lignocellulosic biofuel production. Renewable and Sustainable Energy Reviews, 2020, 134, 110390.	8.2	41
569	Combining Rational Design and Continuous Evolution on Minimalist Proteins That Target the E-box DNA Site. ACS Chemical Biology, 2021, 16, 35-44.	1.6	8
570	CRISPR-based gene expression control for synthetic gene circuits. Biochemical Society Transactions, 2020, 48, 1979-1993.	1.6	30
571	Engineered protein switches for exogenous control of gene expression. Biochemical Society Transactions, 2020, 48, 2205-2212.	1.6	4
572	Programmable gene regulation for metabolic engineering using decoy transcription factor binding sites. Nucleic Acids Research, 2021, 49, 1163-1172.	6.5	29
590	Biocatalytic Process Design and Reaction Engineering. Chemical and Biochemical Engineering Quarterly, 2017, 31, 131-138.	0.5	15
591	How bacteria keep proteins moving. ELife, 2017, 6, .	2.8	2
592	De novo biosynthesis of bioactive isoflavonoids by engineered yeast cell factories. Nature Communications, 2021, 12, 6085.	5.8	62
593	Metabolomics-based engineering for biofuel and bio-based chemical production in microalgae and cyanobacteria: A review. Bioresource Technology, 2022, 344, 126196.	4.8	31
594	GEDpm-cg: Genome Editing Automated Design Platform for Point Mutation Construction in Corynebacterium glutamicum. Frontiers in Bioengineering and Biotechnology, 2021, 9, 768289.	2.0	1
595	Towards valorization of pectin-rich agro-industrial residues: Engineering of Saccharomyces cerevisiae for co-fermentation of d-galacturonic acid and glycerol. Metabolic Engineering, 2022, 69, 1-14.	3.6	9
596	An orthogonal metabolic framework for one-carbon utilization. Nature Metabolism, 2021, 3, 1385-1399.	5.1	32

#	Article	IF	CITATIONS
597	Accurate prediction of mutation-induced frequency shifts in chlorophyll proteins with a simple electrostatic model. Journal of Chemical Physics, 2021, 155, 151102.	1.2	5
598	Immobilization of Microbial Consortium for Glutaric Acid Production from Lysine. ChemCatChem, 2021, 13, 5047-5055.	1.8	6
599	Biosensor-based growth-coupling and spatial separation as an evolution strategy to improve small molecule production of Corynebacterium glutamicum. Metabolic Engineering, 2021, 68, 162-173.	3.6	11
600	Engineering microbial metabolic energy homeostasis for improved bioproduction. Biotechnology Advances, 2021, 53, 107841.	6.0	8
601	Bioproduction of Fuels: An Introduction. , 2016, , 1-23.		0
602	Immune-Metabolism: Bridging Immunity and Metabolism. Journal of Immunobiology, 2017, 02, .	0.3	0
609	Construction of Microbial Cell Factories by Systems and Synthetic Biotechnology., 2019,, 9-43.		1
610	Screening, Optimization and Assembly of Key Pathway Enzymes in Metabolic Engineering. , 2019, , 167-176.		1
611	Synthetic Biology: An Overview. , 2019, , 659-670.		0
612	Getting on the Path to Engineering Biology. Learning Materials in Biosciences, 2019, , 3-10.	0.2	2
624	DNA Double-Strand Break-Induced Gene Amplification in Yeast. Methods in Molecular Biology, 2021, 2153, 239-252.	0.4	1
625	Predictive Engineering of Class I Terpene Synthases Using Experimental and Computational Approaches. ChemBioChem, 2022, 23, .	1.3	12
626	Integrated engineering of enzymes and microorganisms for improving the efficiency of industrial lignocellulose deconstruction. Engineering Microbiology, 2021, 1, 100005.	2.2	34
628	Does co-expression of Yarrowia lipolytica genes encoding Yas1p, Yas2p and Yas3p make a potential alkane-responsive biosensor in Saccharomyces cerevisiae?. PLoS ONE, 2020, 15, e0239882.	1.1	0
629	Mathematical modeling of population structure in bioreactors seeded with light-controllable microbial stem cells. Mathematical Biosciences and Engineering, 2020, 17, 8182-8201.	1.0	0
630	Application of Metabolic Engineering for Biofuel Production in Microorganisms. Clean Energy Production Technologies, 2020, , 243-261.	0.3	3
631	Refactoring and optimization of metabolic network. , 2020, , 77-105.		2
633	Microbiome therapies: Role of microbial biotechnology in sustainable development., 2020, , 163-172.		0

#	Article	IF	CITATIONS
634	Synthetic Biology and Future Production of Biofuels and High–Value Products. , 2020, , 271-302.		4
635	Synthetic Biology-Empowered Hydrogels for Medical Diagnostics. Advances in Biochemical Engineering/Biotechnology, 2020, 178, 197-226.	0.6	2
636	Microbial Production of Polysaccharides. , 2020, , 175-187.		0
640	Recent Progress in CRISPR-Based Technology Applications for Biofuels Production. Clean Energy Production Technologies, 2021, , 217-231.	0.3	0
641	Recent Advances in Metabolic Engineering and Synthetic Biology for Microbial Production of Isoprenoid-Based Biofuels: An Overview. Clean Energy Production Technologies, 2021, , 183-201.	0.3	0
644	Developing fungal heterologous expression platforms to explore and improve the production of natural products from fungal biodiversity. Biotechnology Advances, 2022, 54, 107866.	6.0	36
645	Supplying plant natural products by yeast cell factories. Current Opinion in Green and Sustainable Chemistry, 2022, 33, 100567.	3.2	14
646	Engineering Escherichia coli biofilm to increase contact surface for shikimate and L-malate production. Bioresources and Bioprocessing, 2021, 8, .	2.0	6
647	<i>Escherichia coli</i> Nata-Driven Strain Design Using Aggregated Adaptive Laboratory Evolution Mutational Data. ACS Synthetic Biology, 2021, 10, 3379-3395.	1.9	5
648	Towards a Synthetic Biology Toolset for Metallocluster Enzymes in Biosynthetic Pathways: What We Know and What We Need. Molecules, 2021, 26, 6930.	1.7	4
649	Biosynthesis and regulation of terpenoids from basidiomycetes: exploration of new research. AMB Express, 2021, 11, 150.	1.4	12
650	Engineering Yeast <i>Yarrowia lipolytica</i> for Methanol Assimilation. ACS Synthetic Biology, 2021, 10, 3537-3550.	1.9	21
651	A dual cellular–heterogeneous catalyst strategy for the production of olefins from glucose. Nature Chemistry, 2021, 13, 1178-1185.	6.6	12
652	Channeling Anabolic Side Products toward the Production of Nonessential Metabolites: Stable Malate Production in Synechocystis sp. PCC6803. ACS Synthetic Biology, 2021, , .	1.9	1
653	Expansion of the Yeast Modular Cloning Toolkit for CRISPR-Based Applications, Genomic Integrations and Combinatorial Libraries. ACS Synthetic Biology, 2021, 10, 3461-3474.	1.9	22
654	Editorial: Engineering Yeast to Produce Plant Natural Products. Frontiers in Bioengineering and Biotechnology, 2021, 9, 798097.	2.0	4
656	Cell-Free Protein Synthesis for High-Throughput Biosynthetic Pathway Prototyping. Methods in Molecular Biology, 2022, 2433, 199-215.	0.4	9
657	Strategies to increase tolerance and robustness of industrial microorganisms. Synthetic and Systems Biotechnology, 2022, 7, 533-540.	1.8	22

#	Article	IF	CITATIONS
659	Synthetic Biology-Driven Microbial Production of Resveratrol: Advances and Perspectives. Frontiers in Bioengineering and Biotechnology, 2022, 10, 833920.	2.0	15
660	Extracellular Electron Transfer Enables Cellular Control of Cu(I)-Catalyzed Alkyne–Azide Cycloaddition. ACS Central Science, 2022, 8, 246-257.	5. 3	4
662	Metabolic engineering for valorization of macroalgae biomass. Metabolic Engineering, 2022, 71, 42-61.	3.6	29
663	Toward improved terpenoids biosynthesis: strategies to enhance the capabilities of cell factories. Bioresources and Bioprocessing, 2022, 9, .	2.0	21
664	Headâ€toâ€tail cyclization of side chainâ€protected linear peptides to recapitulate geneticallyâ€encoded cyclized peptides. Peptide Science, 2022, 114, .	1.0	3
665	Genome-scale modeling of yeast metabolism: retrospectives and perspectives. FEMS Yeast Research, 2022, 22, .	1.1	20
666	Synthetic biosources., 2022, , 123-153.		1
667	Biotransformation Enables Innovations Toward Green Synthesis of Steroidal Pharmaceuticals. ChemSusChem, 2022, 15, .	3.6	24
668	Microbiomes – naturally occurring and engineered. , 2022, , 201-216.		0
670	Bioprocess intensification: A route to efficient and sustainable biocatalytic transformations for the future. Chemical Engineering and Processing: Process Intensification, 2022, 172, 108793.	1.8	41
671	Recent advances in production of bioenergy carrying molecules, microbial fuels, and fuel design - A review. Fuel, 2022, 316, 123330.	3.4	7
672	Highâ€Frequency Ultrasound Boosts Bull and Human Sperm Motility. Advanced Science, 2022, 9, e2104362.	5 . 6	13
673	INTEGRATE: Model-based multi-omics data integration to characterize multi-level metabolic regulation. PLoS Computational Biology, 2022, 18, e1009337.	1.5	24
674	Bifunctional optogenetic switch for improving shikimic acid production in E. coli., 2022, 15, 13.		10
675	Modelling of glucose repression signalling in yeast <i>Saccharomyces cerevisiae</i> Research, 2022, 22, .	1.1	6
676	Whole cell enzyme catalyst production using waste substrate for application in production of biodiesel., 2022,, 163-191.		0
677	RoboMoClo: A Robotics-Assisted Modular Cloning Framework for Multiple Gene Assembly in Biofoundry. ACS Synthetic Biology, 2022, 11, 1336-1348.	1.9	9
678	TAQing 2.0 for genome reorganization of asexual industrial yeasts by direct protein transfection. Communications Biology, 2022, 5, 144.	2.0	4

#	Article	IF	CITATIONS
679	Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale. Nature Biotechnology, 2022, 40, 335-344.	9.4	195
680	Orotic acid production from crude glycerol by engineered Ashbya gossypii. Bioresource Technology Reports, 2022, 17, 100992.	1.5	1
681	CRISPR signal conductor 2.0 for redirecting cellular information flow. Cell Discovery, 2022, 8, 26.	3.1	2
684	The living interface between synthetic biology and biomaterial design. Nature Materials, 2022, 21, 390-397.	13.3	68
685	Biosensor-Coupled <i>In Vivo</i> Mutagenesis and Omics Analysis Reveals Reduced Lysine and Arginine Synthesis To Improve Malonyl-Coenzyme A Flux in <i>Saccharomyces cerevisiae</i> MSystems, 2022, 7, e0136621.	1.7	6
686	The role of NAD and NAD precursors on longevity and lifespan modulation in the budding yeast, Saccharomyces cerevisiae. Biogerontology, 2022, 23, 169-199.	2.0	7
687	bletl ―A Python package for integrating BioLector microcultivation devices in the Designâ€Buildâ€Testâ€Learn cycle. Engineering in Life Sciences, 2022, 22, 242-259.	2.0	18
688	Biotechnological production of specialty aromatic and aromatic-derivative compounds. World Journal of Microbiology and Biotechnology, 2022, 38, 80.	1.7	7
690	Diverting mevalonate pathway metabolic flux leakage in Saccharomyces cerevisiae for monoterpene geraniol production from cane molasses. Biochemical Engineering Journal, 2022, 181, 108398.	1.8	2
691	Rational engineering in <i>Escherichia coli</i> for highâ€titer production of baicalein based on genomeâ€scale target identification. Biotechnology and Bioengineering, 2022, 119, 1916-1925.	1.7	4
692	Engineering new metabolic pathways in isolated cells for the degradation of guanidinoacetic acid and simultaneous production of creatine. Molecular Therapy - Methods and Clinical Development, 2022, 25, 26-40.	1.8	1
693	Applications of targeted proteomics in metabolic engineering: advances and opportunities. Current Opinion in Biotechnology, 2022, 75, 102709.	3.3	6
694	G6P-capturing molecules in the periplasm of Escherichia coli accelerate the shikimate pathway. Metabolic Engineering, 2022, 72, 68-81.	3.6	3
695	Production of phenylpropanoids and flavonolignans from glycerol by metabolically engineered <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2022, 119, 946-962.	1.7	7
696	An update on the progress of microbial biotransformation of commercial monoterpenes. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2022, 77, 225-240.	0.6	1
697	Underground metabolism as a rich reservoir for pathway engineering. Bioinformatics, 2022, 38, 3070-3077.	1.8	2
698	Pareto optimal metabolic engineering for the growthâ€coupled overproduction of sustainable chemicals. Biotechnology and Bioengineering, 2022, 119, 1890-1902.	1.7	10
725	Saccharomyces cerevisiae as a Heterologous Host for Natural Products. Methods in Molecular Biology, 2022, 2489, 333-367.	0.4	3

#	Article	IF	CITATIONS
727	A comprehensive review of spermidine: Safety, health effects, absorption and metabolism, food materials evaluation, physical and chemical processing, and bioprocessing. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 2820-2842.	5.9	21
728	Non-homologous End Joining-Mediated Insertional Mutagenesis Reveals a Novel Target for Enhancing Fatty Alcohols Production in Yarrowia lipolytica. Frontiers in Microbiology, 2022, 13, 898884.	1.5	3
729	Recent advances in high-throughput metabolic engineering: Generation of oligonucleotide-mediated genetic libraries. Biotechnology Advances, 2022, 59, 107970.	6.0	3
730	Microbial chassis engineering drives heterologous production of complex secondary metabolites. Biotechnology Advances, 2022, 59, 107966.	6.0	30
731	Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering. Nature Catalysis, 2022, 5, 388-396.	16.1	153
732	Recent Advances in the Heterologous Expression of Biosynthetic Gene Clusters for Marine Natural Products. Marine Drugs, 2022, 20, 341.	2.2	7
733	Development of a dedicated Golden Gate Assembly Platform (RtGGA) for Rhodotorula toruloides. Metabolic Engineering Communications, 2022, 15, e00200.	1.9	8
734	CRISPR-mediated protein-tagging signal amplification systems for efficient transcriptional activation and repression in <i> Saccharomyces cerevisiae < /i > . Nucleic Acids Research, 2022, 50, 5988-6000.</i>	6.5	10
735	Rebooting life: engineering non-natural nucleic acids, proteins and metabolites in microorganisms. Microbial Cell Factories, 2022, 21, .	1.9	3
736	Advances in microbial engineering for the production of value-added products in a biorefinery. Systems Microbiology and Biomanufacturing, 2023, 3, 246-261.	1.5	3
737	Strain design optimization using reinforcement learning. PLoS Computational Biology, 2022, 18, e1010177.	1.5	6
738	Solarâ€Driven Overproduction of Biofuels in Microorganisms. Angewandte Chemie - International Edition, 2022, 61, .	7.2	5
739	De novo biosynthesis of rubusoside and rebaudiosides in engineered yeasts. Nature Communications, 2022, 13, .	5.8	36
740	Solarâ€driven Overproduction of Biofuels inÂMicroorganisms. Angewandte Chemie, 0, , .	1.6	0
741	Learning Strategies in Protein Directed Evolution. Methods in Molecular Biology, 2022, , 225-275.	0.4	5
742	Advances in microbial production of feed amino acid. Advances in Applied Microbiology, 2022, , 1-33.	1.3	3
743	Advances in microbial synthesis of bioplastic monomers. Advances in Applied Microbiology, 2022, , .	1.3	0
744	Flux Regulation Through Glycolysis and Respiration is Balanced by Inositol Pyrophosphates. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
745	RNP-Based Control Systems for Genetic Circuits in Synthetic Biology Beyond CRISPR. Methods in Molecular Biology, 2022, , 1-31.	0.4	1
746	Engineering nonphotosynthetic carbon fixation for production of bioplastics by methanogenic archaea. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	9
748	Establishing <i>Komagataella phaffii</i> as a Cell Factory for Efficient Production of Sesquiterpenoid \hat{l}_{\pm} -Santalene. Journal of Agricultural and Food Chemistry, 2022, 70, 8024-8031.	2.4	16
749	Metabolism Instead of Machine: Towards an Ontology of Hybrids. Philosophy and Technology, 2022, 35,	2.6	4
750	Dynamic control of 4-hydroxyisoleucine biosynthesis by multi-biosensor in Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2022, 106, 5105-5121.	1.7	7
751	Advances and prospects of transcriptionâ€factorâ€based biosensors in highâ€throughput screening for cell factories construction. , 2022, 1, 135-147.		3
752	Methanol biotransformation toward high-level production of fatty acid derivatives by engineering the industrial yeast <i>Pichia pastoris</i> Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	49
753	Acyl-CoA:diacylglycerol acyltransferase: Properties, physiological roles, metabolic engineering and intentional control. Progress in Lipid Research, 2022, 88, 101181.	5.3	27
754	Rescuing yeast from cell death enables overproduction of fatty acids from sole methanol. Nature Metabolism, 2022, 4, 932-943.	5.1	51
755	Enhanced metabolic flux of methylerythritol phosphate (MEP) pathway by overexpression of Ginkgo biloba 1-Hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate Reductase 1 (GbHDR1) gene in poplar. Applied Biological Chemistry, 2022, 65, .	0.7	1
756	Designer bacterial cell factories for improved production of commercially valuable non-ribosomal peptides. Biotechnology Advances, 2022, 60, 108023.	6.0	3
757	Metabolic and cellular engineering for the production of natural products. Current Opinion in Biotechnology, 2022, 77, 102760.	3.3	8
758	Natural carbon fixation and advances in synthetic engineering for redesigning and creating new fixation pathways. Journal of Advanced Research, 2023, 47, 75-92.	4.4	19
7 59	Designing drugs when there is low data availability: one-shot learning and other approaches to face the issues of a long-term concern. Expert Opinion on Drug Discovery, 2022, 17, 929-947.	2.5	6
760	Engineering <i>Escherichia coli</i> asymmetry distributionâ€based synthetic consortium for shikimate production. Biotechnology and Bioengineering, 0, , .	1.7	3
761	A Universal Method for Developing Autoinduction Expression Systems Using AHL-Mediated Quorum-Sensing Circuits. ACS Synthetic Biology, 2022, 11, 3114-3119.	1.9	0
762	Research progress on the application of cell-free synthesis systems for enzymatic processes. Critical Reviews in Biotechnology, 2023, 43, 938-955.	5.1	0
764	Engineering microbial cell viability for enhancing chemical production by second codon engineering. Metabolic Engineering, 2022, 73, 235-246.	3.6	3

#	Article	IF	Citations
765	Optimizing microbial networks through metabolic bypasses. Biotechnology Advances, 2022, 60, 108035.	6.0	13
766	Production of Plant Natural Products in Heterologous Microbial Species. SpringerBriefs in Plant Science, 2022, , 31-43.	0.4	O
767	Recent advances in the production of nutritional products from algal biomass. , 2022, , 235-260.		1
768	Synthetic biology in Europe: current community landscape and future perspectives. Biotechnology Notes, 2022, 3, 54-61.	0.7	6
769	GotEnzymes: an extensive database of enzyme parameter predictions. Nucleic Acids Research, 2023, 51, D583-D586.	6.5	17
771	Prediction of strain engineerings that amplify recombinant protein secretion through the machine learning approach MaLPHAS. Engineering Biology, 2022, 6, 82-90.	0.8	4
772	Optimization and Scale-Up of Fermentation Processes Driven by Models. Bioengineering, 2022, 9, 473.	1.6	17
773	Top-Down, Knowledge-Based Genetic Reduction of Yeast Central Carbon Metabolism. MBio, 2022, 13, .	1.8	2
775	Machine learning alternative to systems biology should not solely depend on data. Briefings in Bioinformatics, 2022, 23, .	3.2	5
776	Metabolic, physiological and anatomical responses of soybean plants under water deficit and high temperature condition. Scientific Reports, 2022, 12, .	1.6	9
777	Scale-Up of Engineering Strain for Industrial Applications. , 2022, , 311-326.		2
778	Role of Thermophilic Bacterial Enzymes in Lignocellulosic Bioethanol Production: A Panoramic View. Microorganisms for Sustainability, 2022, , 57-81.	0.4	0
779	A tunable metabolic valve for precise growth control and increased product formation in Pseudomonas putida. Metabolic Engineering, 2023, 75, 47-57.	3. 6	2
780	Opportunities and Challenges of in vitro Synthetic Biosystem for Terpenoids Production. Biotechnology and Bioprocess Engineering, 2022, 27, 697-705.	1.4	1
781	Metabolic reconfiguration enables synthetic reductive metabolism in yeast. Nature Metabolism, 2022, 4, 1551-1559.	5.1	20
782	The use of a three-tier diagnostic test to investigate conceptions related to cell biology concepts among pre-service teachers of life and earth sciences. Journal of Biological Education, 0, , 1-28.	0.8	2
783	The choice of the objective function in flux balance analysis is crucial for predicting replicative lifespans in yeast. PLoS ONE, 2022, 17, e0276112.	1.1	6
784	InÂvivo fluorine biocatalysis: Six enzymes in search of a cell factory. Chem Catalysis, 2022, 2, 2403-2405.	2.9	1

#	Article	IF	CITATIONS
785	Metabolic recycling of storage lipids promotes squalene biosynthesis in yeast., 2022, 15, .		5
786	Application of GeneCloudOmics: Transcriptomic Data Analytics for Synthetic Biology. Methods in Molecular Biology, 2023, , 221-263.	0.4	0
787	Combining microbial and chemical syntheses for the production of complex natural products. Chinese Journal of Natural Medicines, 2022, 20, 729-736.	0.7	3
788	Predictive evolution of metabolic phenotypes using modelâ€designed environments. Molecular Systems Biology, 2022, 18, .	3.2	10
789	Robust and versatile cell factory based on artificial spores. Chem Catalysis, 2022, 2, 2443-2445.	2.9	0
790	Synthetic metabolism without the TCA cycle. Nature Metabolism, 2022, 4, 1438-1439.	5.1	3
791	Challenges and opportunities in C1-based biomanufacturing. Bioresource Technology, 2022, 364, 128095.	4.8	14
792	Guided by the principles of microbiome engineering: Accomplishments and perspectives for environmental use., 2022, 1, 382-398.		13
793	Design and application of a kinetic model of lipid metabolism in Saccharomyces cerevisiae. Metabolic Engineering, 2023, 75, 12-18.	3.6	6
794	Engineering yeast for high-level production of diterpenoid sclareol. Metabolic Engineering, 2023, 75, 19-28.	3.6	20
795	High-Level Production of Hydroxytyrosol in Engineered <i>Saccharomyces cerevisiae</i> Synthetic Biology, 2022, 11, 3706-3713.	1.9	10
796	Global Cellular Metabolic Rewiring Adapts Corynebacterium glutamicum to Efficient Nonnatural Xylose Utilization. Applied and Environmental Microbiology, 2022, 88, .	1.4	3
797	In vivo Biocatalytic Cascades Featuring an Artificialâ€Enzymeâ€Catalyzed Newâ€ŧoâ€Nature Reaction. Angewandte Chemie, 0, , .	1.6	0
798	Engineering yeast for bio-production of food ingredients. Systems Microbiology and Biomanufacturing, 2023, 3, 2-11.	1.5	2
799	Enhancing nutritional niche and host defenses by modifying the gut microbiome. Molecular Systems Biology, 2022, 18, .	3.2	6
800	In Vivo Biocatalytic Cascades Featuring an Artificialâ€Enzymeâ€Catalysed Newâ€toâ€Nature Reaction**. Angewandte Chemie - International Edition, 2023, 62, .	7.2	2
802	Pushing hybrids to the limits. Nature Catalysis, 2022, 5, 975-976.	16.1	4
803	Recent advances in machine learning applications in metabolic engineering. Biotechnology Advances, 2023, 62, 108069.	6.0	18

#	Article	IF	CITATIONS
804	Modeling the metabolic dynamics at the genome-scale by optimized yield analysis. Metabolic Engineering, 2023, 75, 119-130.	3.6	5
805	Acetyl-CoA Counteracts the Inhibitory Effect of Antiandrogens on Androgen Receptor Signaling in Prostate Cancer Cells. Cancers, 2022, 14, 5900.	1.7	0
806	Enhanced production of acetyl-CoA-based products via peroxisomal surface display in <i>Saccharomyces cerevisiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	7
807	Folding of heterologous proteins in bacterial cell factories: Cellular mechanisms and engineering strategies. Biotechnology Advances, 2023, 63, 108079.	6.0	10
808	Transcription regulation strategies in methylotrophs: progress and challenges. Bioresources and Bioprocessing, 2022, 9, .	2.0	3
809	De novo design of the global transcriptional factor Craâ€regulated promoters enables highly sensitive glycolysis flux biosensor for dynamic metabolic control. Microbial Biotechnology, 2023, 16, 605-617.	2.0	5
810	Spatial–temporal regulation of fatty alcohol biosynthesis in yeast. , 2022, 15, .		7
811	Inferring Conditional Probability Distributions of Noisy Gene Expression from Limited Observations by Deep Learning., 2022, 1, 504-513.		0
812	CRISPR–dCas12a-mediated genetic circuit cascades for multiplexed pathway optimization. Nature Chemical Biology, 2023, 19, 367-377.	3.9	20
814	Rapid prototyping enzyme homologs to improve titer of nicotinamide mononucleotide using a strategy combining cellâ€free protein synthesis with split GFP. Biotechnology and Bioengineering, 2023, 120, 1133-1146.	1.7	1
815	Manipulation of IME4 expression, a global regulation strategy for metabolic engineering in Saccharomyces cerevisiae. Acta Pharmaceutica Sinica B, 2023, 13, 2795-2806.	5.7	2
817	A novel synthetic sRNA promoting protein overexpression in cellâ€free systems. Biotechnology Progress, 0, , .	1.3	0
818	Engineering Cyborg Bacteria Through Intracellular Hydrogelation. Advanced Science, 2023, 10, .	5.6	4
819	Increasing the production of the bioactive compounds in medicinal mushrooms: an omics perspective. Microbial Cell Factories, 2023, 22, .	1.9	8
820	Genetically Encoded Detection of Biosynthetic Protease Inhibitors. ACS Synthetic Biology, 2023, 12, 83-94.	1.9	0
821	Increasing cellular fitness and product yields in Pseudomonas putida through an engineered phosphoketolase shunt. Microbial Cell Factories, 2023, 22, .	1.9	2
822	Metabolic stress constrains microbial L-cysteine production in Escherichia coli by accelerating transposition through mobile genetic elements. Microbial Cell Factories, 2023, 22, .	1.9	4
823	Harnessing Cellular Organelles to Bring New Functionalities into Yeast. Biotechnology and Bioprocess Engineering, 2023, 28, 936-948.	1.4	0

#	Article	IF	CITATIONS
824	Strain Design and Optimization Methods for Sustainable Production., 2023, , 1-15.		O
825	Recent Advances in CRISPR-Cas Technologies for Synthetic Biology. Journal of Microbiology, 2023, 61, 13-36.	1.3	4
826	Microbial production of hydrocarbon and its derivatives using different kinds of microorganisms., 2023,, 137-149.		1
828	Designing artificial pathways for improving chemical production. Biotechnology Advances, 2023, 64, 108119.	6.0	4
829	A highly selective cell-based fluorescent biosensor for genistein detection. Engineering Microbiology, 2023, 3, 100078.	2.2	1
830	Engineering synthetic biomolecular condensates. , 2023, 1, 466-480.		21
831	Improved terephthalic acid production from p-xylene using metabolically engineered Pseudomonas putida. Metabolic Engineering, 2023, 76, 75-86.	3.6	7
833	Flux regulation through glycolysis and respiration is balanced by inositol pyrophosphates in yeast. Cell, 2023, 186, 748-763.e15.	13.5	14
834	Mass Spectrometry-Based High-Throughput Quantification of Bioproducts in Liquid Culture. Analytical Chemistry, 2023, 95, 4067-4076.	3.2	4
835	Design of Four Small-Molecule-Inducible Systems in the Yeast Chromosome, Applied to Optimize Terpene Biosynthesis. ACS Synthetic Biology, 2023, 12, 1119-1132.	1.9	7
836	Rapid Screening and Synthesis of Abiotic Synthetic Receptors for Selective Bacterial Recognition. ACS Applied Materials & Samp; Interfaces, 2023, 15, 16408-16419.	4.0	0
837	Application of Quorum Sensing in Metabolic Engineering. Journal of Agricultural and Food Chemistry, 2023, 71, 5062-5074.	2.4	1
838	Machine learning for metabolic pathway optimization: A review. Computational and Structural Biotechnology Journal, 2023, 21, 2381-2393.	1.9	1
839	Inducible Synthetic Growth Regulation Using the ClpXP Proteasome Enhances cis, cis-Muconic Acid and Glycolic Acid Yields in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2023, 12, 1021-1033.	1.9	1
840	Self assembling nanoparticle enzyme clusters provide access to substrate channeling in multienzymatic cascades. Nature Communications, 2023, 14 , .	5.8	11
841	Profiling proteomic responses to hexokinase-II depletion in terpene-producing Saccharomyces cerevisiae. Engineering Microbiology, 2023, 3, 100079.	2.2	2
842	Lâ€lactate production in engineered <i>Saccharomyces cerevisiae</i> using a multistage multiobjective automated design framework. Biotechnology and Bioengineering, 2023, 120, 1929-1952.	1.7	1
843	Bioactive Compounds from and against Yeasts in the One Health Context: A Comprehensive Review. Fermentation, 2023, 9, 363.	1.4	2

#	Article	IF	CITATIONS
844	Bridging the gap between mechanistic biological models and machine learning surrogates. PLoS Computational Biology, 2023, 19, e1010988.	1.5	13
845	Metabolic Engineering of Pichia pastoris for the Production of Triacetic Acid Lactone. Journal of Fungi (Basel, Switzerland), 2023, 9, 494.	1.5	1
848	Multi-Objective Optimization for Systems and Synthetic Biology. , 2023, , 1-11.		0
857	MECHANOTRANSDAUCTION: HOW CELLS SENSE AND REACT TO MECHANICAL STIMULATION. , 2023, , .		O
868	State-of-art engineering approaches for ameliorated production of microbial lipid. Systems Microbiology and Biomanufacturing, 0, , .	1.5	0
884	Simple phenylpropanoids: recent advances in biological activities, biosynthetic pathways, and microbial production. Natural Product Reports, 0, , .	5.2	0
890	Biological Methane Conversion. , 2023, , 199-226.		0
892	Modeling the Microbial Cells for Biotechnological Applications. Advances in Bioinformatics and Biomedical Engineering Book Series, 2023, , 121-151.	0.2	O
901	Current Biotechnological Advancements in Lignin Valorization For Value-added Products., 2023,, 37-60.		0
941	Reprogramming microbial cell factories to overproduce plant natural products through directed genome evolution., 2024,, 315-343.		0
943	Biotechnology for renewable fuel and chemicals. , 2024, , 325-345.		0
949	Redesigning Saccharomyces cerevisiae Meyen ex E.C. Hansen Using CRISPR to Combat Industrial Needs. , 2024, , 113-137.		0