Resolution of the Band Gap Prediction Problem for Mat

Journal of Physical Chemistry Letters 7, 1198-1203 DOI: 10.1021/acs.jpclett.5b02870

Citation Report

#	Article	IF	CITATIONS
1	Hybrid-density functional theory study on the band structures of tetradymite-Bi2Te3, Sb2Te3, Bi2Se3, and Sb2Se3 thermoelectric materials. Journal of the Korean Physical Society, 2016, 69, 1683-1687.	0.7	27
2	Predicting Band Gaps with Hybrid Density Functionals. Journal of Physical Chemistry Letters, 2016, 7, 4165-4170.	4.6	369
3	Schottky-Barrier-Free Contacts with Two-Dimensional Semiconductors by Surface-Engineered MXenes. Journal of the American Chemical Society, 2016, 138, 15853-15856.	13.7	444
4	Gaussian-Based Coupled-Cluster Theory for the Ground-State and Band Structure of Solids. Journal of Chemical Theory and Computation, 2017, 13, 1209-1218.	5.3	171
5	Importance of the Kinetic Energy Density for Band Gap Calculations in Solids with Density Functional Theory. Journal of Physical Chemistry A, 2017, 121, 3318-3325.	2.5	126
6	Predicting edge sign and finding prestige of nodes in networks. Cluster Computing, 2017, 20, 1473-1481.	5.0	0
7	From the Kohn–Sham band gap to the fundamental gap in solids. An integer electron approach. Physical Chemistry Chemical Physics, 2017, 19, 15639-15656.	2.8	42
8	A novel borophene featuring heptagonal holes: a common precursor of borospherenes. Physical Chemistry Chemical Physics, 2017, 19, 19890-19895.	2.8	12
9	Self-consistent hybrid functionals for solids: a fully-automated implementation. Journal of Physics Condensed Matter, 2017, 29, 314001.	1.8	23
10	Polymorphs of two dimensional phosphorus and arsenic: insight from an evolutionary search. Physical Chemistry Chemical Physics, 2017, 19, 11282-11288.	2.8	20
11	Ultrathin two-dimensional porous organic nanosheets with molecular rotors for chemical sensing. Nature Communications, 2017, 8, 1142.	12.8	152
12	Adding to the Perovskite Universe: Inverse-Hybrid Perovskites. ACS Energy Letters, 2017, 2, 2681-2685.	17.4	30
13	<i>Ab initio</i> electronic transport and thermoelectric properties of solids from full and range-separated hybrid functionals. Journal of Chemical Physics, 2017, 147, 114101.	3.0	32
14	The VN ₃ H defect in diamond: a quantum-mechanical characterization. Physical Chemistry Chemical Physics, 2017, 19, 22221-22229.	2.8	20
15	Hybrid visible-light responsive Al2O3 particles. Chemical Physics Letters, 2017, 685, 416-421.	2.6	14
16	Effects of shape, size, and pyrene doping on electronic properties of graphene nanoflakes. Journal of Molecular Modeling, 2017, 23, 355.	1.8	8
17	Monolayer atomic crystal molecular superlattices. Nature, 2018, 555, 231-236.	27.8	323
18	Understanding and Controlling the Dielectric Response of Metal–Organic Frameworks. ChemPlusChem, 2018, 83, 308-316.	2.8	36

	CITATION RE	PORT	
#	Article	IF	CITATIONS
19	Quantumâ€mechanical condensed matter simulations with CRYSTAL. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2018, 8, e1360.	14.6	1,277
20	Boosting photocatalytic cross-dehydrogenative coupling reaction by incorporating [Rull(bpy)3] into a radical metal-organic framework. Applied Catalysis B: Environmental, 2018, 227, 425-432.	20.2	27
21	First principles calculations of structural, magnetic and electronic properties of Co2TiZ (ZÂ= Si and) Tj ETQq0 0 C 790-797.) rgBT /Ov 5.5	erlock 10 Tf : 7
22	Defect complexes in Ti-doped sapphire: A first principles study. Journal of Applied Physics, 2018, 123, .	2.5	16
23	Empirical optimization of DFT  +  U and HSE for the band structure of ZnO. Journal of Physics 0 Matter, 2018, 30, 065501.	Condensed	¹ 26
24	Improved Photoactivity of Pyroxene Silicates by Cation Substitutions. ChemPhysChem, 2018, 19, 943-953.	2.1	2
25	Predicting the Band Gaps of Inorganic Solids by Machine Learning. Journal of Physical Chemistry Letters, 2018, 9, 1668-1673.	4.6	267
26	Toward the Design of New Suitable Materials for Solar Water Splitting Using Density Functional Theory. ACS Omega, 2018, 3, 18117-18123.	3.5	15
27	Orbital-free approximations to the kinetic-energy density in exchange-correlation MGGA functionals: Tests on solids. Journal of Chemical Physics, 2018, 149, 144105.	3.0	17
28	Low energy excitations in NiO based on a direct Δ-SCF approach. Journal of Physics Condensed Matter, 2018, 30, 495901.	1.8	16
29	Machine-Learning-Assisted Accurate Band Gap Predictions of Functionalized MXene. Chemistry of Materials, 2018, 30, 4031-4038.	6.7	235
30	Exploring potential crossing seams in periodic systems: Intersystem crossing pathways in the benzene crystal. Journal of Chemical Physics, 2018, 149, 072329.	3.0	4
31	An <i>ab initio</i> investigation on the electronic structure, defect energetics, and magnesium kinetics in Mg ₃ Bi ₂ . Journal of Materials Chemistry A, 2018, 6, 16983-16991.	10.3	25
32	Density functional theory—projected local density of states—based estimation of Schottky barrier for monolayer MoS2. Journal of Applied Physics, 2018, 124, .	2.5	9
33	Synthesis, characterization and use of highly stable trimethyl sulfonium tin(IV) halide defect perovskites in dye sensitized solar cells. Polyhedron, 2018, 150, 83-91.	2.2	31
34	Density functional approximations for orbital energies and total energies of molecules and solids. Journal of Chemical Physics, 2018, 149, 054105.	3.0	29
35	Visible light absorption of surface-modified Al2O3 powders: A comparative DFT and experimental study. Microporous and Mesoporous Materials, 2019, 273, 41-49.	4.4	15
36	Atom table convolutional neural networks for an accurate prediction of compounds properties. Npj Computational Materials, 2019, 5, .	8.7	58

		CITATION REPORT	
# 37	ARTICLE Partially-oxidized phosphorene sensor for the detection of sub-nano molar concentrations of nitric oxide: a first-principles study. Physical Chemistry Chemical Physics, 2019, 21, 19083-19091.	IF 2.8	Citations 6
38	Predicting the reactivity of energetic materials: an <i>ab initio</i> multi-phonon approach. Journal of Materials Chemistry A, 2019, 7, 19539-19553.	10.3	52
39	Efficient band gap prediction of semiconductors and insulators from a semilocal exchange-correlation functional. Physical Review B, 2019, 100, .	3.2	35
40	Large-Scale Benchmark of Exchange–Correlation Functionals for the Determination of Electronic Band Gaps of Solids. Journal of Chemical Theory and Computation, 2019, 15, 5069-5079.	5.3	151
41	A semiconducting layered metal-organic framework magnet. Nature Communications, 2019, 10, 3260.	12.8	119
42	Transport properties of rocksalt-type cluster sulfides V4GeS8 and Mn substitution effect. Japanese Journal of Applied Physics, 2019, 58, 061008.	1.5	0
43	Accurate Band Gap Predictions of Semiconductors in the Framework of the Similarity Transformed Equation of Motion Coupled Cluster Theory. Inorganic Chemistry, 2019, 58, 9303-9315.	4.0	58
44	Triphenyleneâ€Derived Electron Acceptors and Donors on Ag(111): Formation of Intermolecular Chargeâ€Transfer Complexes with Common Unoccupied Molecular States. Small, 2019, 15, e1901741.	10.0	10
45	Assessment of the exact-exchange-only Kohn-Sham method for the calculation of band structures for transition metal oxide and metal halide perovskites. Physical Review B, 2019, 100, .	3.2	5
46	Phillips-Inspired Machine Learning for Band Gap and Exciton Binding Energy Prediction. Journal of Physical Chemistry Letters, 2019, 10, 5640-5646.	4.6	36
47	Semilocal exchange-correlation potentials for solid-state calculations: Current status and future directions. Journal of Applied Physics, 2019, 126, .	2.5	41
48	Calculating spin crossover temperatures by a first-principles LDA+U scheme with parameter U evaluated from GW. Journal of Chemical Physics, 2019, 151, 134701.	3.0	7
49	Reduced Graphene Oxide/Amorphous Carbon P–N Junctions: Nanosecond Laser Patterning. ACS Applied Materials & Interfaces, 2019, 11, 24318-24330.	8.0	18
50	Fundamental Role of Fock Exchange in Relativistic Density Functional Theory. Journal of Physical Chemistry Letters, 2019, 10, 3580-3585.	4.6	17
51	Structural and electronic properties of boron nitride using density functional theory. AIP Conference Proceedings, 2019, , .	0.4	2
52	Atomistic Simulations of the Reactivity of Acanthite Facets toward Cyanidation. Journal of Physical Chemistry C, 2019, 123, 11888-11898.	3.1	2
53	Limitations of the DFT–1/2 method for covalent semiconductors and transition-metal oxides. Physical Review B, 2019, 99, .	3.2	27
54	Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals. Chemistry of Materials, 2019, 31, 3564-3572.	6.7	561

#	Article	IF	CITATIONS
55	Plasmonic Au Nanoparticles on 2D MoS ₂ /Graphene van der Waals Heterostructures for High-Sensitivity Surface-Enhanced Raman Spectroscopy. ACS Applied Nano Materials, 2019, 2, 1412-1420.	5.0	53
56	Boron and nitrogen co-doped graphene nanosheets for NO and NO2 gas sensing. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 1607-1614.	2.1	43
57	Analysis of the front MgxZn1-xO interface in CdTe thin film solar cells using Density Functional Theory (DFT). , 2019, , .		0
58	Extending and assessing composite electronic structure methods to the solid state. Journal of Chemical Physics, 2019, 151, 121101.	3.0	21
59	Basics of semiconducting metal oxide–based gas sensors. , 2019, , 61-165.		17
60	Ternary sulfides BaLa2S4 and CaLa2S4 as promising photocatalytic water splitting and thermoelectric materials: First-principles DFT calculations. International Journal of Hydrogen Energy, 2020, 45, 22600-22612.	7.1	19
61	The GIPAW approach for the study of local structures and the electric field gradients at Cd and Ta impurity sites. Application to doped yttria ceramics. Computational Materials Science, 2020, 171, 109224.	3.0	4
62	Two novel centrosymmetric barium strontium borates with a deep-UV cut-off edge: Ba2Sr3B4O11 and Ba3Sr3B4O12. Journal of Solid State Chemistry, 2020, 281, 121023.	2.9	9
63	Study on the Energy Band Regulation of Bi _{2â~} <i>_x</i> Sb <i>_x</i> Te ₃ and Its Application as Mode Locking Material in Low Gain Ultrafast Fiber Laser. Advanced Optical Materials, 2020, 8, 1901618.	7.3	14
64	Europium (III) doped LiNa2B5P2O14 phosphor: Surface analysis, DFT calculations and luminescent properties. Journal of Alloys and Compounds, 2020, 822, 153606.	5.5	32
65	Ternary Metal Chalcogenide Heterostructure (AgInS ₂ –TiO ₂) Nanocomposites for Visible Light Photocatalytic Applications. ACS Omega, 2020, 5, 406-421.	3.5	36
66	Effects of Mnâ€Doping on the Structural and Electrochemical Properties of Na 3 Ni 2 SbO 6 for Sodiumâ€ion Battery Batteries and Supercaps, 2020, 3, 402-408.	4.7	6
67	Ultrafast Melting of Metal–Organic Frameworks for Advanced Nanophotonics. Advanced Functional Materials, 2020, 30, 1908292.	14.9	31
68	Periodic Electronic Structure Calculations with the Density Matrix Embedding Theory. Journal of Chemical Theory and Computation, 2020, 16, 130-140.	5.3	40
69	High thermopower and power factors in EuFeO3 for high temperature thermoelectric applications: A first-principles approach. Journal of Applied Physics, 2020, 128, .	2.5	8
70	Cost-effective composite methods for large-scale solid-state calculations. Faraday Discussions, 2020, 224, 292-308.	3.2	13
71	Tuplewise Material Representation Based Machine Learning for Accurate Band Gap Prediction. Journal of Physical Chemistry A, 2020, 124, 10616-10623.	2.5	30
72	Exchange-correlation functionals for band gaps of solids: benchmark, reparametrization and machine learning. Npj Computational Materials, 2020, 6, .	8.7	156

# 73	ARTICLE Tailoring the phase transition temperature to achieve high-performance cubic GeTe-based thermoelectrics. Journal of Materials Chemistry A, 2020, 8, 18880-18890.	lF 10.3	CITATIONS
74	Enormous enhancement of p-orbital magnetism and band gap in the lightly doped carbyne. Physical Chemistry Chemical Physics, 2020, 22, 12996-13001.	2.8	1
75	Accurate electronic band gaps of two-dimensional materials from the local modified Becke-Johnson potential. Physical Review B, 2020, 101, .	3.2	21
76	Towards theoretical framework for probing the accuracy limit of electronic transport properties of SnSe ₂ using many-body calculations. Europhysics Letters, 2020, 130, 57001.	2.0	5
77	WIEN2k: An APW+lo program for calculating the properties of solids. Journal of Chemical Physics, 2020, 152, 074101.	3.0	1,185
78	A progressive learning method for predicting the band gap of ABO ₃ perovskites using an instrumental variable. Journal of Materials Chemistry C, 2020, 8, 3127-3136.	5.5	23
79	A Critical Review of Machine Learning of Energy Materials. Advanced Energy Materials, 2020, 10, 1903242.	19.5	319
80	Effects of boron doping on structural, electronic, elastic, and optical properties of energetic crystal 2,6-diamino-3,5-dinitropyrazine-1-oxide: a theoretical study using the first principles calculation and Hirshfeld surface analysis. Journal of Molecular Modeling, 2020, 26, 41.	1.8	1
81	Structural and Electronic Properties of Bulk ZnX (X = O, S, Se, Te), ZnF ₂ , and ZnO/ZnF ₂ : A DFT Investigation within PBE, PBE + <i>U</i> , and Hybrid HSE Functionals. Journal of Physical Chemistry A, 2020, 124, 3778-3785.	2.5	31
82	Exact exchange-correlation potentials for calculating the fundamental gap with a fixed number of electrons. Physical Review A, 2021, 103, .	2.5	3
83	Interfacial magnetism in a fused superatomic cluster [Co ₆ Se ₈ (PEt ₃) ₅] ₂ . Nanoscale, 2021, 13, 15763-15769.	5.6	6
85	Investigation of Structural and Optoelectronic Properties of Organic Semiconductor Film Based on 8-Hydroxyquinoline Zinc. Electronics (Switzerland), 2021, 10, 117.	3.1	6
86	Metal Sulfide Nanoparticle Synthesis with Ionic Liquids – State of the Art and Future Perspectives. ChemistryOpen, 2021, 10, 272-295.	1.9	16
87	Tuning the Excitonic Properties of the 2D (PEA) ₂ (MA) _{<i>n</i>â^`1} Pb _{<i>n</i>} I _{3<i>n</i>+1} Perovskite Family via Quantum Confinement. Journal of Physical Chemistry Letters, 2021, 12, 1638-1643.	4.6	49
88	Excitonic Effects on Two-Dimensional Transition-Metal Dichalcogenide Monolayers: Impact on Solar Cell Efficiency. ACS Applied Energy Materials, 2021, 4, 3265-3278.	5.1	26
89	Reducing p-type Schottky contact barrier in metal/ZnO heterostructure through Ni-doping. Applied Surface Science, 2021, 545, 149023.	6.1	12
90	A theoretical exploration of the effect and mechanism of CO on NO2 heterogeneous reduction over carbonaceous surfaces. Fuel, 2021, 290, 120102.	6.4	11
91	Silicene/ZnI ₂ van der Waals heterostructure: tunable structural and electronic properties. Nanotechnology, 2021, 32, 305707.	2.6	8

#	Article	IF	CITATIONS
92	Pyrolysis and carbonization of polyvinyl chloride under electric field: A computational study. Chemical Physics Letters, 2021, 770, 138450.	2.6	4
93	Introducing spin polarization into atomically thin 2D carbon nitride sheets for greatly extended visible-light photocatalytic water splitting. Nano Energy, 2021, 83, 105783.	16.0	42
94	Requirements for an accurate dispersion-corrected density functional. Journal of Chemical Physics, 2021, 154, 230902.	3.0	39
96	Behaviour of induced states of substitutional and adatom impurity doping on electronic transport properties of single-layer black phosphorus. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 130, 114701.	2.7	1
97	Evaluation of optical band gaps and dopant state energies in transition metal oxides using oxidation-state constrained density functional theory. Journal of Physics Condensed Matter, 2021, 33, 365901.	1.8	3
98	Electronic Structure of Molecules, Surfaces, and Molecules on Surfaces with the Local Modified Becke–Johnson Exchange–Correlation Potential. Journal of Chemical Theory and Computation, 2021, 17, 4746-4755.	5.3	10
99	Nonradiative Energy Transfer and Selective Charge Transfer in a WS ₂ /(PEA) ₂ PbI ₄ Heterostructure. ACS Applied Materials & Interfaces, 2021, 13, 33677-33684.	8.0	10
100	Structural Origin of Very Large Second-Harmonic Generation of a Layered Perovskite, Na _{0.5} Bi _{2.5} Nb ₂ O ₉ . Chemistry of Materials, 2021, 33, 6564-6571.	6.7	17
101	Band Gap Engineering and 14 Electron Superatoms in 2D Superoctahedral Boranes B ₄ X ₂ (B, N, P, As, Sb). Journal of Physical Chemistry C, 2021, 125, 17280-17290.	3.1	6
102	Role of Structural Phases and Octahedra Distortions in the Optoelectronic and Excitonic Properties of CsGeX ₃ (X = Cl, Br, I) Perovskites. Journal of Physical Chemistry C, 2021, 125, 19142-19155.	3.1	26
103	The structure and stability of faecal pigment-Zinc(II) complexes. Journal of Molecular Structure, 2021, 1238, 130440.	3.6	5
104	Electronic Excitations in Crystalline Solids through the Maximum Overlap Method. Journal of Chemical Theory and Computation, 2021, 17, 6073-6079.	5.3	4
105	Revisiting the electronic nature of nanodiamonds. Diamond and Related Materials, 2021, 120, 108627.	3.9	7
106	Computational insights into optoelectronic and magnetic properties of V(III)-doped GaN. Journal of Solid State Chemistry, 2021, 304, 122606.	2.9	4
107	Intrinsic point defects and charge carrier trapping in monolayer BiOX (X = I, Br, and Cl). Ceramics International, 2021, 47, 30523-30530.	4.8	5
108	Effect of oxygen atoms adsorption and doping on hexagonal boron nitride. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 135, 114977.	2.7	10
109	A data-driven approach to predicting band gap, excitation, and emission energies for Eu ²⁺ -activated phosphors. Inorganic Chemistry Frontiers, 2021, 8, 4610-4624.	6.0	10
110	Tuning the mechanical flexibility of organic molecular crystals by polymorphism for flexible optical waveguides. CrystEngComm, 2021, 23, 5815-5825.	2.6	30

#	ARTICLE	IF	CITATIONS
111	Prediction of tunable spin-orbit gapped materials for dark matter detection. Physical Review Research, 2021, 3, .	3.6	12
112	Discovery of Lead-Free Hybrid Organic/Inorganic Perovskites Using Metaheuristic-Driven DFT Calculations. Chemistry of Materials, 2021, 33, 782-798.	6.7	23
113	Design, fabrication and optical characterizations of pyrimidine fused quinolone carboxylate moiety for photodiode applications. Optik, 2020, 216, 164882.	2.9	32
114	Screened range-separated hybrid by balancing the compact and slowly varying density regimes: Satisfaction of local density linear response. Journal of Chemical Physics, 2020, 152, 044111.	3.0	22
115	Data integration for accelerated materials design via preference learning. New Journal of Physics, 2020, 22, 055001.	2.9	6
116	Machine learning enabled discovery of application dependent design principles for two-dimensional materials. Machine Learning: Science and Technology, 2020, 1, 035015.	5.0	9
117	External-strain-induced semimetallic and metallic phase of chlorographene. Physical Review Materials, 2018, 2, .	2.4	4
118	Fundamental principles for calculating charged defect ionization energies in ultrathin two-dimensional materials. Physical Review Materials, 2018, 2, .	2.4	50
119	Screening and Understanding Li Adsorption on Two-Dimensional Metallic Materials by Learning Physics and Physics-Simplified Learning. Jacs Au, 2021, 1, 1904-1914.	7.9	12
120	A Density Functional Theory (DFT) Study on the Effect of Chlorine in the Magnesium Zinc Oxide (MZO) Front Interface for Cadmium Telluride (CdTe) Thin Film Solar Cells. , 2020, , .		1
121	Experimental and Computational Methods. Springer Theses, 2020, , 33-64.	0.1	0
123	Vibrational Up-Pumping in Some Molecular Energetic Materials. Springer Theses, 2020, , 113-155.	0.1	0
124	Quantitative Determination of Contradictory Bandgap Values of Bulk PdSe ₂ from Electrical Transport Properties. Advanced Functional Materials, 2022, 32, 2108061.	14.9	11
125	Coupling of photoactive transition metal complexes to a functional polymer matrix**. Chemistry - A European Journal, 2021, 27, 17104-17114.	3.3	5
126	Asymmetric <i>N</i> -heteroacene tetracene analogues as potential n-type semiconductors. Journal of Materials Chemistry C, 2021, 9, 17073-17083.	5.5	3
127	CO2 capture and separation from H2/CH4/N2 gas mixtures by a novel ternary pentagonal monolayer "Penta-BCN― First principles investigation. Journal of Molecular Liquids, 2022, 348, 118474.	4.9	4
128	Photocatalytic degradation of rhodamine B in the visible region using nanostructured CoAl2â^'xLaxO4 (xÂ=Â0, 0.01, 0.03, 0.07, and 0.09) series: Photocatalytic activity and DFT calculations. Inorganic Chemistry Communication, 2022, 136, 109176.	3.9	8
129	The Exchange-Correlation Effects on the Electronic Bands of Hybrid Armchair Single-Walled Carbon Boron Nitride Nanostructure. Crystals, 2022, 12, 394.	2.2	17

#	Article	IF	CITATIONS
130	Synthesis, Crystal Structure, and Broadband Emission of (CH ₃) ₃ SsnCl ₃ . Inorganic Chemistry, 2022, 61, 4769-4777.	4.0	3
131	Electronic and optical properties of cubic bulk and ultrathin surface [001] slab of CsPbBr <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msub><mml:mrow /><mml:mn>3</mml:mn></mml:mrow </mml:msub>. Surfaces and Interfaces, 2022, 30, 101829.</mml:math 	3.0	9
132	Performance of the modified Becke–Johnson potential employing the pseudopotential plane-wave approach for band structure calculations. Computational Materials Science, 2022, 208, 111324.	3.0	6
133	Edge Effect in Electronic and Transport Properties of 1D Fluorinated Graphene Materials. Nanomaterials, 2022, 12, 125.	4.1	4
134	Lithiation and Magnesiation Mechanism of VOCI: First-Principles Moleculardynamics Simulation. Journal of the Electrochemical Society, 0, , .	2.9	2
135	Theoretical Investigation of the Role of Anion and Trivalent Cation Substitution in the Physical Properties of Lead-Free Zero-Dimensional Perovskites. Journal of Physical Chemistry C, 2022, 126, 7245-7255.	3.1	8
136	Silicon-doped boron nitride graphyne-like sheet for catalytic N2O reduction: A DFT study. Journal of Molecular Graphics and Modelling, 2022, 114, 108186.	2.4	3
137	Designing 3d metal oxides: selecting optimal density functionals for strongly correlated materials. Physical Chemistry Chemical Physics, 2022, 24, 14119-14139.	2.8	4
138	Discovery of Pb-free hybrid organic–inorganic 2D perovskites using a stepwise optimization strategy. Npj Computational Materials, 2022, 8, .	8.7	9
139	First-principles investigation of the role of Cr in the electronic properties of the two-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Mo</mml:mi><mml: and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>MoBlueting Burger of the 2002 (</mml:mi></mml:mrow></mml:math></mml: </mml:mrow></mml:math 	mi 2x #/mm	l:nøi>
140	Subgap states spectroscopy in a quantum dot coupled to gapped hosts: Unified picture for superconductor and semiconductor bands. Physical Review B, 2022, 105, .	3.2	5
141	First-principles study of electronic, cohesive and elastic properties of silica polymorphs. Materials Today Communications, 2022, 31, 103607.	1.9	2
142	General relationship between the band-gap energy and iodine-oxygen bond distance in metal iodates. Physical Review Materials, 2022, 6, .	2.4	7
143	Tailoring Excitonic and Optoelectronic Properties of Transition Metal Dichalcogenide Bilayers. Journal of Physical Chemistry C, 2022, 126, 9173-9184.	3.1	10
144	Implementation of self-consistent MGGA functionals in augmented plane wave based methods. Physical Review B, 2022, 105, .	3.2	4
145	Phase formation behavior and electronic transport properties of HfSe2-HfTe2 solid solution system. Journal of Alloys and Compounds, 2022, 920, 166028.	5.5	7
146	Al- and Ga-embedded boron nitride nanotubes as effective nanocarriers for delivery of rizatriptan. Journal of Molecular Liquids, 2022, 361, 119662.	4.9	6
147	A computational and theoretical study of some heavy metal heteronuclear dimers. Journal of the Indian Chemical Society, 2022, , 100643.	2.8	0

		(
#	Article	IF	Citations
148	Developing a two-parabolic band model for thermoelectric transport modelling using Mg ₂ Sn as an example. JPhys Energy, 2022, 4, 045002.	5.3	5
149	Delocalization error: The greatest outstanding challenge in densityâ€functional theory. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2023, 13, .	14.6	43
150	The <mml:math <="" altimg="si1.svg" display="inline" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td></td><td></td></mml:math>		

#	Article	IF	Citations
166	WanTiBEXOS: A Wannier based Tight Binding code for electronic band structure, excitonic and optoelectronic properties of solids. Computer Physics Communications, 2023, 285, 108636.	7.5	4
167	CRYSTAL23: A Program for Computational Solid State Physics and Chemistry. Journal of Chemical Theory and Computation, 2023, 19, 6891-6932.	5.3	43
168	Exploring the adsorption behavior of pyrazinamide on the surface of X12Y12(XÂ=ÂB, Al; YÂ=ÂN, P) nanocages: A in-silico study. Journal of Molecular Liquids, 2023, 372, 121211.	4.9	4
169	Accelerated Discovery of Advanced Thermoelectric Materials via Transfer Learning. Advanced Energy Materials, 0, , .	19.5	0
170	Bandgap energy prediction of senary zincblende III–V semiconductor compounds using machine learning. Materials Science in Semiconductor Processing, 2023, 161, 107461.	4.0	0
171	Data Mining and Graph Network Deep Learning for Band Gap Prediction in Crystalline Borate Materials. Inorganic Chemistry, 2023, 62, 4716-4726.	4.0	2
172	Water adsorption on lead dioxide from <i>abÂinitio</i> molecular dynamics simulations. Journal of Chemical Physics, 2023, 158, .	3.0	1
173	Confinement fluorescence effect of an aggregationâ€induced emission luminogen in crystalline polymer. Aggregate, 2023, 4, .	9.9	2
174	Meta-GGA SCAN Functional in the Prediction of Ground State Properties of Magnetic Materials: Review of the Current State. Metals, 2023, 13, 728.	2.3	5
175	Ferroelectricity in Niobium Oxide Dihalides NbOX ₂ (X = Cl, I): A Macroscopic- to Microscopic-Scale Study. ACS Nano, 2023, 17, 7170-7179.	14.6	7
176	UV-excited single-component white phosphor of Lu ₂ WO ₆ with broad-band emission for pc-WLED. Dalton Transactions, 2023, 52, 8058-8064.	3.3	1
177	Schottky-Diode Design for Future High-Speed Telecommunications. Nanomaterials, 2023, 13, 1448.	4.1	1
178	Electronic Activation during Nanoparticle Exsolution for Enhanced Activity at Elevated Temperature. ACS Nano, 2023, 17, 10677-10688.	14.6	1
179	Band structures and <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="double-struck">Z<mml:mn>2</mml:mn></mml:mi </mml:msub> invariants of two-dimensional transition metal dichalcogenide monolayers from fully relativistic Dirac-Kohn-Sham</mmi:math 	2.4	2
180	theory using Gaussian type orbitals. Physical Review Materials, 2023, 7, . Band gap predictions of double perovskite oxides using machine learning. Communications Materials, 2023, 4, .	6.9	6
181	Theoretical Investigation of the Role of Mixed A ⁺ Cations in the Structure, Stability, and Electronic Properties of Perovskite Alloys. ACS Applied Energy Materials, 2023, 6, 5259-5273.	5.1	3
182	Many-Body Calculations of Excitons in Two-Dimensional GaN. Crystals, 2023, 13, 1048.	2.2	0
183	DFT estimation of structural parameters and band gaps of Ill–V (GaP, AlP, InP, BP) and Il–VI (BeX, MgX,) Tj E 	TQq110.7	784314 rgBT

#	Article	IF	CITATIONS
184	First-principles calculations of the solvent effects on magnesium polysulfides in magnesium-sulfur batteries. Journal of Molecular Structure, 2023, 1294, 136360.	3.6	0
185	On the excitonic effects of the 11 and 10 <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si71.svg" display="inline" id="d1e1203"><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mi mathvariant="normal">T</mml:mi </mml:mrow></mml:msub>phases of PdS2, PdSe2, and</mml:math 	4.0	2
186	Simulating excited states in metal organic frameworks: from light-absorption to photochemical CO ₂ reduction. Materials Advances, 0, , .	5.4	0
187	Theoretical Insights into High-Entropy Ni-Rich Layered Oxide Cathodes for Low-Strain Li-Ion Batteries. Chemistry of Materials, 2023, 35, 8426-8439.	6.7	1
188	Tailoring the adsorption behaviors of flucytosine on BnNn (nÂ=Â12, 16, 20, and 24) nanocage scaffolds: A computational insight on drug delivery applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 678, 132481.	4.7	1
189	Intrinsic room-temperature ferromagnetism in a two-dimensional semiconducting metal-organic framework. Nature Communications, 2023, 14, .	12.8	0
190	Promising TMDC-like optical and excitonic properties of the TiBr ₂ 2H monolayer. Dalton Transactions, 2024, 53, 746-752.	3.3	0
191	Two-Dimensional Cr5Te8@Graphite Heterostructure for Efficient Electromagnetic Microwave Absorption. Nano-Micro Letters, 2024, 16, .	27.0	3
192	Tailoring Metal-Ion-Doped Carbon Nitrides for Photocatalytic Oxygen Evolution Reaction. ACS Catalysis, 2024, 14, 2562-2571.	11.2	0
193	Electron doping as a handle to increase the Curie temperature in ferrimagnetic Mn ₃ Si ₂ X ₆ (X = Se, Te). Physical Chemistry Chemical Physics, 2024, 26, 8604-8612.	2.8	0
194	Thermoelectric Properties of Single-Phase n-Type Bi ₁₄ Te ₁₃ S ₈ . ACS Applied Electronic Materials, 2024, 6, 1283-1291.	4.3	0
195	Improving Photocatalytic activity of (100) and (111) TiO2 nanosheets by coupling with ZrO2 and HfO2 nanosheets; A DFT-U study. Journal of Physics and Chemistry of Solids, 2024, 189, 111952.	4.0	0
196	Integrative approach of machine learning and symbolic regression for stability prediction of multicomponent perovskite oxides and high-throughput screening. Computational Materials Science, 2024, 236, 112889.	3.0	0
197	Predicting band gaps of ABN ₃ perovskites: an account from machine learning and first-principle DFT studies. RSC Advances, 2024, 14, 6385-6397.	3.6	0
198	The generation of noise-like pulses and various solitons with CuO nanorods as a broadband saturable absorber. Journal of Alloys and Compounds, 2024, 984, 173965.	5.5	0
199	Data driven high quantum yield halide perovskite phosphors design and fabrication. Materials Today, 2024, , .	14.2	0
200	Stabilization of Î ³ -La2S3 by Ba2+ ions at low temperature. Ceramics International, 2024, 50, 20340-20347.	4.8	0