Free-Radical-Induced Grafting from Plasma Polymer Su

Chemical Reviews 116, 3975-4005

DOI: 10.1021/acs.chemrev.5b00634

Citation Report

#	Article	IF	CITATIONS
1	Where physics meets chemistry: Thin film deposition from reactive plasmas. Frontiers of Chemical Science and Engineering, 2016, 10, 441-458.	2.3	20
2	Surface Modification of Tissue Engineering Scaffolds. , 2016, , 123-150.		2
3	Substrate-Regulated Growth of Plasma-Polymerized Films on Carbide-Forming Metals. Langmuir, 2016, 32, 10835-10843.	1.6	27
4	Plasma induced graft polymerization of hydrophilic monomers on polysulfone gas separation membrane surfaces. Surface and Coatings Technology, 2016, 296, 157-163.	2.2	33
5	Linker-free covalent immobilization of nisin using atmospheric pressure plasma induced grafting. Journal of Materials Chemistry B, 2017, 5, 2500-2510.	2.9	32
6	Synthesis of highly functionalised plasma polymer films from protonated precursor ions <i>via</i> the plasma αâ€ʿʿĨ³ transition. Physical Chemistry Chemical Physics, 2017, 19, 5637-5646.	1.3	13
7	Does a Nitrogen Lone Pair Lead to Two Centered–Three Electron (2c–3e) Interactions in Pyridyl Radical Isomers?. Journal of Physical Chemistry A, 2017, 121, 3781-3791.	1.1	9
8	Effect of surface functionalizations of multi-walled carbon nanotubes on neoplastic transformation potential in primary human lung epithelial cells. Nanotoxicology, 2017, 11, 613-624.	1.6	21
9	Mechanism of degradation of a nitrogenous heterocycle induced by a reductive radical: decomposition of a sym-triazine ring. Physical Chemistry Chemical Physics, 2017, 19, 9354-9357.	1.3	7
10	Covalent immobilization of lysozyme in silicone rubber modified by easy chemical grafting. MRS Communications, 2017, 7, 904-912.	0.8	10
11	Microstructure evolution and tribological properties of acrylonitrile–butadiene rubber surface modified by atmospheric plasma treatment. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	7
12	Nanoâ€Starâ€Shaped Polymers for Drug Delivery Applications. Macromolecular Rapid Communications, 2017, 38, 1700410.	2.0	109
13	The chemistry of organophosphate thin film coatings from low pressure plasma and the effect of the substrate on adhesion. Plasma Processes and Polymers, 2017, 14, 1700037.	1.6	6
14	Tunable wettability and pHâ€responsiveness of plasma copolymers of acrylic acid and octafluorocyclobutane. Plasma Processes and Polymers, 2017, 14, 1700053.	1.6	25
15	Surface functionalisation of polymers. Chemical Society Reviews, 2017, 46, 5701-5713.	18.7	128
16	Review of Electrochemically Triggered Macromolecular Film Buildup Processes and Their Biomedical Applications. ACS Applied Materials & Interfaces, 2017, 9, 28117-28138.	4.0	48
17	Enhancement of cell growth on honeycomb-structured polylactide surface using atmospheric-pressure plasma jet modification. Applied Surface Science, 2017, 394, 534-542.	3.1	27
18	Promiscuous hydrogen in polymerising plasmas. Physical Chemistry Chemical Physics, 2018, 20, 7033-7042.	1.3	10

#	Article	IF	CITATIONS
19	Scaffold functionalization to support a tissue biocompatibility. , 2018, , 255-277.		4
20	Ultrafast Tailoring of Carbon Surfaces via Electrochemically Attached Triazolinediones. Langmuir, 2018, 34, 2397-2402.	1.6	13
21	Recent approaches to reduce aging phenomena in oxygen- and nitrogen-containing plasma polymer films: An overview. Current Opinion in Solid State and Materials Science, 2018, 22, 26-38.	5.6	66
22	Plasma Synthesis of Carbon-Based Nanocarriers for Linker-Free Immobilization of Bioactive Cargo. ACS Applied Nano Materials, 2018, 1, 580-594.	2.4	20
23	Surface modification of polypropylene mesh devices with cyclodextrin via cold plasma for hernia repair: Characterization and antibacterial properties. Applied Surface Science, 2018, 439, 749-759.	3.1	53
24	Influences of cold atmospheric plasma on microbial safety, physicochemical and sensorial qualities of meat products. Journal of Food Science and Technology, 2018, 55, 846-857.	1.4	32
25	Recent progress on non-thermal plasma technology for high barrier layer fabrication. Plasma Science and Technology, 2018, 20, 063001.	0.7	17
26	Controlling external versus internal pore modification of ultrafiltration membranes using surface-initiated AGET-ATRP. Journal of Membrane Science, 2018, 554, 109-116.	4.1	30
27	Plasma dye coating as straightforward and widely applicable procedure for dye immobilization on polymeric materials. Nature Communications, 2018, 9, 1123.	5.8	25
28	Duty cycle dependent chemical structure and wettability of RF pulsed plasma copolymers of acrylic acid and octafluorocyclobutane. Applied Surface Science, 2018, 436, 411-418.	3.1	10
29	Reinforcement of a dodecylacrylate plasma polymer by admixture of a diacrylate or a dimethacrylate crossâ€linker. Plasma Processes and Polymers, 2018, 15, 1800031.	1.6	4
30	Charge transport mechanism under applied DC electric field in plasma polymerized diethanolamine thin films prepared by a capacitively coupled reactor. Thin Solid Films, 2018, 668, 23-29.	0.8	3
31	Multifunctional Protein-Immobilized Plasma Polymer Films for Orthopedic Applications. ACS Biomaterials Science and Engineering, 2018, 4, 4084-4094.	2.6	27
32	Plasma-based treatments of textiles for water repellency. , 2018, , 215-232.		2
33	Plasma Polymerization of TEMPO Yields Coatings Containing Stable Nitroxide Radicals for Controlling Interactions with Prokaryotic and Eukaryotic Cells. ACS Applied Nano Materials, 2018, 1, 6587-6595.	2.4	12
34	Thermally stable antibacterial wool fabrics surface-decorated by TiON and TiON/Cu thin films. Surface Innovations, 2018, 6, 258-265.	1.4	24
35	Plasma Modification and Synthesis of Membrane Materials—A Mechanistic Review. Membranes, 2018, 8, 56.	1.4	55
36	Characterization of structural and optical properties of plasma polymerized diethanolamine thin films. Advances in Polymer Technology, 2018, 37, 3084-3094.	0.8	28

#	Article	IF	CITATIONS
37	Molecular Dynamics Simulations of Hydrocarbon Film Growth from Acetylene Monomers and Radicals: Effect of Substrate Temperature. Journal of Physical Chemistry C, 2018, 122, 15252-15263.	1.5	15
38	A novel effective approach of nanocrystalline cellulose production: oxidation–hydrolysis strategy. Cellulose, 2018, 25, 5035-5048.	2.4	23
39	Cellular responses to radical propagation from ion-implanted plasma polymer surfaces. Applied Surface Science, 2018, 456, 701-710.	3.1	21
40	Direct covalent attachment of silver nanoparticles on radical-rich plasma polymer films for antibacterial applications. Journal of Materials Chemistry B, 2018, 6, 5845-5853.	2.9	40
41	Analysis of epoxy functionalized layers synthesized by plasma polymerization of allyl glycidyl ether. Physical Chemistry Chemical Physics, 2018, 20, 20070-20077.	1.3	13
42	Antibacterial biocompatible PCL nanofibers modified by COOH-anhydride plasma polymers and gentamicin immobilization. Materials and Design, 2018, 153, 60-70.	3.3	54
43	Plasma activated coatings with dual action against fungi and bacteria. Applied Materials Today, 2018, 12, 72-84.	2.3	52
44	Surface Functionalization With Biopolymers via Plasma-Assisted Surface Grafting and Plasma-Induced Graft Polymerization—Materials for Biomedical Applications. , 2018, , 115-151.		16
45	A review of biomimetic surface functionalization for bone-integrating orthopedic implants: Mechanisms, current approaches, and future directions. Progress in Materials Science, 2019, 106, 100588.	16.0	147
46	Polyethylene–Silica Nanocomposites with the Structure of Semiâ€Interpenetrating Networks. Macromolecular Materials and Engineering, 2019, 304, 1900430.	1.7	3
47	Non-equilibrium hybrid organic plasma processing for superhydrophobic PTFE surface towards potential bio-interface applications. Colloids and Surfaces B: Biointerfaces, 2019, 183, 110463.	2.5	16
49	Stimulating antibacterial activities of graphitic carbon nitride nanosheets with plasma treatment. Nanoscale, 2019, 11, 18416-18425.	2.8	41
50	A facile and versatile route to functional poly(propylene) surfaces via UV-curable coatings. Reactive and Functional Polymers, 2019, 144, 104366.	2.0	11
51	Preparation and rheological study of pentaerythritol triacrylate grafted onto polypropylene induced by air plasma. Journal of Applied Polymer Science, 2019, 136, 48054.	1.3	1
52	Controlled Surface Wettability by Plasma Polymer Surface Modification. Surfaces, 2019, 2, 349-371.	1.0	94
53	Metal-Free Site-Specific Hydroxyalkylation of Imidazo[1,2- <i>a</i>]pyridines with Alcohols through Radical Reaction. Organic Letters, 2019, 21, 3436-3440.	2.4	30
54	Polydopamine-Inspired Surface Modification of Polypropylene Hernia Mesh Devices via Cold Oxygen Plasma: Antibacterial and Drug Release Properties. Coatings, 2019, 9, 164.	1.2	19
55	Chitosan Cross-Linked Bio-based Antimicrobial Polypropylene Meshes for Hernia Repair Loaded with Levofloxacin HCl via Cold Oxygen Plasma. Coatings, 2019, 9, 168.	1.2	26

#	Article	IF	CITATIONS
56	Plasma jet based <i>in situ</i> reduction of copper oxide in direct write printing. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, .	0.6	14
57	The Physics of Plasma Ion Chemistry: A Case Study of Plasma Polymerization of Ethyl Acetate. Journal of Physical Chemistry Letters, 2019, 10, 7306-7310.	2.1	3
58	Multipathway Antibacterial Mechanism of a Nanoparticle-Supported Artemisinin Promoted by Nitrogen Plasma Treatment. ACS Applied Materials & Interfaces, 2019, 11, 47299-47310.	4.0	15
59	Preserving the reactivity of coatings plasma deposited from oxazoline precursors â^ An in depth study. Plasma Processes and Polymers, 2019, 16, 1800130.	1.6	19
60	Surface modification of cellulose/polyvinyl alcohol biocomposites by non-thermal argon plasma: applications towards biological relevance. Cellulose, 2019, 26, 2437-2451.	2.4	9
61	Recent progress on fabrication methods of polymeric thin film gas separation membranes for CO2 capture. Journal of Membrane Science, 2019, 572, 38-60.	4.1	210
62	Relevance of Plasma Processing on Polymeric Materials and Interfaces. , 2019, , 1-21.		9
63	Plasma-Induced Polymeric Coatings. , 2019, , 129-157.		2
64	Plasma Treatment of Polymeric Membranes. , 2019, , 211-240.		18
65	Plasma Assisted Polymer Modifications. , 2019, , 95-127.		21
66	Plasma-initiated polymerization of N-isopropylacrylamide and functionalized with dopamine for the adhesion to Hela cells. Polymer Bulletin, 2020, 77, 963-974.	1.7	11
67	CF4 plasma-fluorinated nano-SiC promotes the charge transfer in the interface of epoxy nanocomposites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124029.	2.3	7
68	Surface modification of UHMWPE using ECR plasma for osteoblast and osteoclast differentiation. Applied Surface Science, 2020, 506, 144665.	3.1	16
69	Tuning the surface immunomodulatory functions of polyetheretherketone for enhanced osseointegration. Biomaterials, 2020, 230, 119642.	5.7	100
70	Technological challenges and progress in nanomaterials plasma surface modification – A review. Materials Science and Engineering Reports, 2020, 139, 100521.	14.8	60
71	Effect of plasma carrier gas on the moisture barrier properties of plasma-enhanced chemical vapor deposited (PECVD) polyorganosiloxane thin film. Molecular Crystals and Liquid Crystals, 2020, 705, 141-149.	0.4	3
72	Antibacterial hydrogel coating: Strategies in surface chemistry. Advances in Colloid and Interface Science, 2020, 285, 102280.	7.0	102
73	Polymerization Reactions and Modifications of Polymers by Ionizing Radiation. Polymers, 2020, 12, 2877.	2.0	178

#	Article	IF	CITATIONS
74	Enhancement of Cr(VI) ion adsorption by two-step grafting of methacrylamide (MAAm) and 2-(dimethylamino)ethyl methacrylate (DMAEMA) onto polyethylene plate. Environmental Technology (United Kingdom), 2020, , 1-14.	1.2	2
75	Tailoring surface properties of polyethylene terephthalate by atmospheric pressure plasma jet for grafting biomaterials. Thin Solid Films, 2020, 709, 138152.	0.8	14
76	A Versatile Strategy for Unimolecular Micelle-Derived Hollow Polymer Nanoparticles as General Nanoreactors. Langmuir, 2020, 36, 6690-6697.	1.6	0
77	Multi-nanolayer drug delivery using radiofrequency plasma technology. BMC Cancer, 2020, 20, 565.	1.1	3
78	Green Nanomaterials. Advanced Structured Materials, 2020, , .	0.3	5
79	Comparative study of different nitrogen-containing plasma modifications applied on 3D porous PCL scaffolds and 2D PCL films. Applied Surface Science, 2020, 516, 146067.	3.1	22
80	Chemical Surface Modification of Polymeric Biomaterials for Biomedical Applications. Macromolecular Rapid Communications, 2020, 41, e1900430.	2.0	86
81	Non-equilibrium organosilane plasma polymerization for modulating the surface of PTFE towards potential blood contact applications. Journal of Materials Chemistry B, 2020, 8, 2814-2825.	2.9	16
82	Investigation of Plasma-Assisted Functionalization of Graphitic Materials for Epoxy Composites. Nanomaterials, 2020, 10, 78.	1.9	6
83	From surface to bulk modification: Plasma polymerization of amine-bearing coating by synergic strategy of biomolecule grafting and nitric oxide loading. Bioactive Materials, 2020, 5, 17-25.	8.6	37
84	Electrochemical activation of polymer chains mediated with radical transfer reactions. Chemical Communications, 2020, 56, 2626-2629.	2.2	4
85	A multifaceted biomimetic interface to improve the longevity of orthopedic implants. Acta Biomaterialia, 2020, 110, 266-279.	4.1	34
86	Bioactive hydrogel coatings of complex substrates using diffusion-mediated redox initiation. Journal of Materials Chemistry B, 2020, 8, 4289-4298.	2.9	12
87	Bacterial attachment to oxygen-functionalized graphenic surfaces. Materials Science and Engineering C, 2020, 113, 110972.	3.8	26
88	Plasma polymerization of cyclopropylamine in a low-pressure cylindrical magnetron reactor: A PIC-MC study of the roles of ions and radicals. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, 033003.	0.9	3
89	Understanding the dielectric and electrical transport behaviors of plasma polymerized diethanolamine thin films under alternating electric field. Thin Solid Films, 2020, 704, 138018.	0.8	2
90	Effects of nitrogen incorporation on N-doped DLC thin film electrodes fabricated by dielectric barrier discharge plasma: Structural evolution and electrochemical performances. Journal of Alloys and Compounds, 2021, 853, 157298.	2.8	20
91	Plasma-enhanced modification of polysaccharides for wastewater treatment: A review. Carbohydrate Polymers, 2021, 252, 117195.	5.1	13

CITATION	Report	
	IF	Citations

#	Article	IF	CITATION
92	Recent Developments in Semiconducting Polymer Dots for Analytical Detection and NIR-II Fluorescence Imaging. ACS Applied Bio Materials, 2021, 4, 2142-2159.	2.3	25
93	Stability of oxygen-functionalized graphenic surfaces: Theoretical and experimental insights into electronic properties and wettability. Applied Surface Science, 2021, 539, 148190.	3.1	15
94	Hexavalent Cr ion adsorption and desorption behaviour of expanded poly(tetrafluoro)ethylene films grafted with 2-(dimethylamino)ethyl methacrylate. Environmental Technology (United Kingdom), 2021, 42, 1885-1898.	1.2	3
95	Recent advances in surface modification of biopolymeric nanofibrous scaffolds. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 493-512.	1.8	10
96	Superficial Surface Treatment using Atmospheric Plasma on Recycled Nylon 6,6. Journal of Nuclear Physics Material Sciences Radiation and Applications, 2021, 8, 191-196.	0.1	1
97	Atmospheric Pressure Plasma Surface Treatment of Polymers and Influence on Cell Cultivation. Molecules, 2021, 26, 1665.	1.7	30
98	Low-frequency plasma activation of nylon 6. Applied Surface Science, 2021, 544, 148929.	3.1	22
99	Rapid and eco-friendly technique for surface modification of TFC RO membrane for improved filtration performance. Journal of Environmental Chemical Engineering, 2021, 9, 105227.	3.3	25
100	Plasma & Microwaves as Greener Options for Nanodiamond Purification: Insight Into Cytocompatibility. Frontiers in Bioengineering and Biotechnology, 2021, 9, 637587.	2.0	4
101	Promising grafting strategies on cellulosic backbone through radical polymerization processes – A review. European Polymer Journal, 2021, 152, 110448.	2.6	29
102	Future antiviral polymers by plasma processing. Progress in Polymer Science, 2021, 118, 101410.	11.8	31
103	Simultaneous application of diamond-like carbon coating and surface amination on polyether ether ketone: Towards superior mechanical performance and osseointegration. Smart Materials in Medicine, 2021, 2, 219-228.	3.7	28
104	A Review of Plasma Synthesis Methods for Polymer Films and Nanoparticles under Atmospheric Pressure Conditions. Polymers, 2021, 13, 2267.	2.0	35
105	Construction of a Novel Substrate of Unfigured Islands-in-Sea Microfiber Synthetic Leather Based on Waste Collagen. ACS Omega, 2021, 6, 26086-26097.	1.6	3
106	Plasma dust deposition in low-pressure parallel plates reactor. Materials Today: Proceedings, 2021, , .	0.9	0
107	Bridging principal component analysis and method of moments based parameter estimation for grafting of polybutadiene with styrene. Chemical Engineering Journal, 2021, 425, 130463.	6.6	19
108	Enhanced osteogenic activity and antibacterial performance <i>in vitro</i> of polyetheretherketone by plasma-induced graft polymerization of acrylic acid and incorporation of zinc ions. Journal of Materials Chemistry B, 2021, 9, 7506-7515.	2.9	15
109	Bioactive polypropylene by plasma processing. , 2021, , 481-489.		1

#	Article	IF	CITATIONS
110	Plasma-assisted mechanochemistry to produce polyamide/boron nitride nanocomposites with high thermal conductivities and mechanical properties. Composites Part B: Engineering, 2019, 164, 710-719.	5.9	40
111	Radio-frequency plasma polymerized biodegradable carrier for <i>in vivo</i> release of cis-platinum. Oncotarget, 2016, 7, 58121-58132.	0.8	8
112	Biopolymer Coatings for Biomedical Applications. Polymers, 2020, 12, 3061.	2.0	75
113	Preparation and performances of coated polypropylene hernia mesh with natural biomaterials. Colloids and Interface Science Communications, 2021, 45, 100535.	2.0	5
114	Surface Modification of Bio-polymeric Nanoparticles and Its Applications. Advanced Structured Materials, 2020, , 261-282.	0.3	4
115	Enhanced plasmonic processes in amino-rich plasma polymer films for applications at the biointerface. Physical Chemistry Chemical Physics, 2021, 23, 27365-27376.	1.3	0
116	Long-lasting antifogging mechanism for large-aperture optical surface in low-pressure air plasma in-situ treated. Applied Surface Science, 2022, 581, 152358.	3.1	21
117	Effect of Fluorinated Nano-Composite Coating on the Flashover Characteristics of Epoxy Insulators. , 2020, , .		0
118	Reactive Extrusion (REx): Using Chemistry and Engineering to Solve the Problem of Ocean Plastics. Engineering, 2022, 14, 15-18.	3.2	3
119	Effect of lowâ€pressure cold plasma on the properties of edible film based on alginate enriched with <i>Dunaliella salina</i> powder. Plasma Processes and Polymers, 2022, 19, .	1.6	11
120	Plasma surface engineering for manmade soft materials: a review. Journal Physics D: Applied Physics, 2022, 55, 173002.	1.3	16
121	Synthesis and redox activity of carbene-coordinated group 13 metal radicals. Chemical Communications, 2022, 58, 4372-4375.	2.2	5
122	Controlled deposition of plasmaâ€polyaniline thin film by PECVD: Understanding the influence of aniline to argon ratio. Plasma Processes and Polymers, 2022, 19, .	1.6	3
123	Plasma-controlled surface wettability: recent advances and future applications. International Materials Reviews, 2023, 68, 82-119.	9.4	29
124	Autoclavable Polydopamine-Gelatin-Modified Polyethylene Terephthalate Microfibrous Carriers Regulate the Proliferation and Paracrine Signaling of Mesenchymal Stem Cells. ACS Applied Polymer Materials, 2022, 4, 3711-3725.	2.0	1
125	Diamond-like carbon coating and surface grafting of osteoprotegerin and alendronate on polyetheretherketone to ameliorate the mechanical performance and osseointegration simultaneously. Composites Part B: Engineering, 2022, 236, 109815.	5.9	14
126	Potential Application of Pin-to-Liquid Dielectric Barrier Discharge Structure in Decomposing Aqueous Phosphorus Compounds for Monitoring Water Quality. Materials, 2021, 14, 7559.	1.3	5
127	Improvement of Nanostructured Polythiophene Film Uniformity Using a Cruciform Electrode and Substrate Rotation in Atmospheric Pressure Plasma Polymerization. Nanomaterials, 2022, 12, 32.	1.9	3

#	Article	IF	CITATIONS
128	Self-cleaning expanded polytetrafluoroethylene-based hybrid membrane for water filtration. RSC Advances, 2022, 12, 13228-13234.	1.7	1
129	Deposition of Hydrophobic Polymer Coatings on the Surface of Track-Etched Membranes from an Active Gas Phase. Membranes and Membrane Technologies, 2022, 4, 133-143.	0.6	1
130	Effect of crosslinker on the wettability and mechanical properties of hydrophobic coatings deposited via atmospheric pressure plasma. Plasma Processes and Polymers, 2022, 19, .	1.6	5
131	Fluorine-free superhydrophobic coating with mechanical interlocking and high corrosion resistance. Progress in Organic Coatings, 2022, 168, 106871.	1.9	6
132	Sensitivity analysis of isothermal free radical induced grafting through application of the distribution - Numerical fractionation - Method of moments. Chemical Engineering Journal, 2022, 444, 136595.	6.6	11
133	Ultra-Robust, Stretchable Electrodes Based on Superamphiphobic Surface for Personal Exercise Monitoring. SSRN Electronic Journal, 0, , .	0.4	Ο
134	Surface tailored graphite–polymer composite electrodes through cold plasma for electrochemical applications. Plasma Processes and Polymers, 2022, 19, .	1.6	3
135	Molecular modeling and docking studies of new antioxidant pyrazole-thiazole hybrids. Journal of Molecular Structure, 2022, 1267, 133582.	1.8	4
136	Ultra-Robust, Stretchable Electrodes Based on Superamphiphobic Surface for Personal Exercise Monitoring. SSRN Electronic Journal, 0, , .	0.4	0
138	Post-plasma oxidation in water of graphene paper surface. Carbon, 2022, 199, 141-150.	5.4	2
139	Immobilization of TiO2 nanoparticles on PES substrate via dopamine and poly (vinyl alcohol) for long-term oil/water purification. Chemical Engineering Research and Design, 2022, 166, 656-668.	2.7	14
140	Ultra-robust, stretchable electrodes based on superamphiphobic surface for personal exercise monitoring. Chemical Engineering Journal, 2023, 452, 139421.	6.6	10
141	Challenges and strategies of water supply and wastewater management in coastal urban and semi-urban areas. Current Directions in Water Scarcity Research, 2022, , 425-446.	0.2	0
142	Applications of biopolymer coatings in biomedical engineering. Journal of Electrochemical Science and Engineering, 0, , .	1.6	9
143	Plasma-Induced Graft Polymerization of Polyethylenimine onto Chitosan/Polycaprolactone Composite Membrane for Heavy Metal Pollutants Treatment in Industrial Wastewater. Coatings, 2022, 12, 1966.	1.2	2
144	Oxidative functionalization of polypropylene mesh surface by radio frequency plasma. Surfaces and Interfaces, 2023, 37, 102656.	1.5	3
145	Plasma surface functionalization: A comprehensive review of advances in the quest for bioinstructive materials and interfaces. Applied Physics Reviews, 2023, 10, .	5.5	8
	Zwitterionic surface modification of polyethylene via atmospheric plasma-induced polymerization of		

#	Article	IF	CITATIONS
147	Exploring the functionalization of Ti-6Al-4V alloy with the novel antimicrobial peptide JIChis-2 via plasma polymerization. Biofouling, 2023, 39, 47-63.	0.8	4
148	Nanostructured Polyaniline Films Functionalized through Auxiliary Nitrogen Addition in Atmospheric Pressure Plasma Polymerization. Polymers, 2023, 15, 1626.	2.0	2
149	Comparison of continuous wave and pulsed mode plasma polymerization of glycidol for storageâ€stable coatings for biomolecule immobilization. Plasma Processes and Polymers, 0, , .	1.6	0
150	Biofunctionalized 3D printed structures for biomedical applications: A critical review of recent advances and future prospects. Progress in Materials Science, 2023, 137, 101124.	16.0	6
151	Multi-scale nanofiber membrane functionalized with metal-organic frameworks for efficient filtration of both PM2.5 and CH3CHO with colorimetric NH3 detection. Chemical Engineering Journal, 2023, 464, 142725.	6.6	3
164	Surface Modification of Tissue Engineering Scaffolds. , 2023, , 227-264.		0
167	Biodegradability, life cycle analysis, and biocompatibility of organic radicals. , 2024, , 1-19.		0