An optimization model for selecting the optimal green s comfort and energy consumption

Applied Energy 169, 682-695 DOI: 10.1016/j.apenergy.2016.02.032

Citation Report

#	Article	IF	CITATIONS
1	Multi-objective optimization of building energy performance and indoor thermal comfort: A new method using artificial bee colony (ABC). Energy and Buildings, 2016, 131, 42-53.	3.1	126
2	Integrating and optimizing metrics of sustainable building performance using human-focused agent-based modeling. Applied Energy, 2016, 183, 926-937.	5.1	52
3	Energy saving potential of fragmented green spaces due to their temperature regulating ecosystem services in the summer. Applied Energy, 2016, 183, 1428-1440.	5.1	86
4	Evaluation of the performance of eco-friendly lightweight interlocking concrete paving units incorporating sawdust wastes and laterite. Cogent Engineering, 2016, 3, 1255168.	1.1	39
5	Numerical simulation of cooling effect of vegetation enhancement in a subtropical urban park. Applied Energy, 2017, 192, 178-200.	5.1	65
6	Building Energy Use Modes and Thermal Comfort. , 2017, , .		0
7	Establishment of an optimal occupant behavior considering the energy consumption and indoor environmental quality by region. Applied Energy, 2017, 204, 1431-1443.	5.1	50
8	Balancing indoor thermal comfort and energy consumption of ACMV systems via sparse swarm algorithms in optimizations. Energy and Buildings, 2017, 149, 1-15.	3.1	32
9	Modeling and optimization of different sparse Augmented Firefly Algorithms for ACMV systems under two case studies. Building and Environment, 2017, 125, 129-142.	3.0	9
10	A hybridised framework combining integrated methods for environmental Life Cycle Assessment and Life Cycle Costing. Journal of Cleaner Production, 2017, 168, 846-866.	4.6	102
11	Development of the hybrid model for estimating the undisturbed ground temperature using the finite element method and geostatistical technique. Energy and Buildings, 2017, 152, 162-174.	3.1	7
12	Minimum Energy Performance Assessment of Air-Conditioners in a University Indoor Environment. , 2017, , .		0
13	Optimization of room air temperature in stratum-ventilated rooms for both thermal comfort and energy saving. Applied Energy, 2017, 204, 420-431.	5.1	95
14	An integrated psychological response score of the occupants based on their activities and the indoor environmental quality condition changes. Building and Environment, 2017, 123, 66-77.	3.0	42
15	Appropriate activation threshold of the external blind for visual comfort and lighting energy saving in different climate conditions. Building and Environment, 2017, 113, 247-266.	3.0	34
16	User satisfaction-induced demand side load management in residential buildings with user budget constraint. Applied Energy, 2017, 187, 352-366.	5.1	118
18	Multi-criteria analysis of a self-consumption strategy for building sectors focused on ground source heat pump systems. Journal of Cleaner Production, 2018, 186, 68-80.	4.6	22
19	Multi-period maintenance planning for public buildings: A risk based approach for climate conscious operation. Journal of Cleaner Production, 2018, 170, 1338-1353.	4.6	40

#	Article	IF	CITATIONS
20	OPTIMIZATION APPLIED TO ENERGY EFFICIENCY AND THERMAL COMFORT OF BUILDINGS: BIBLIOMETRIC ANALYSIS ON TECHNIQUES AND APPLICATIONS. Revista De Engenharia Térmica, 2018, 17, 20.	0.0	1
21	A simulation-based optimization method for designing energy efficient buildings. Energy and Buildings, 2018, 178, 216-227.	3.1	41
22	A review on optimization methods applied in energy-efficient building geometry and envelope design. Renewable and Sustainable Energy Reviews, 2018, 92, 897-920.	8.2	258
23	Energy Optimization Using a Case-Based Reasoning Strategy. Sensors, 2018, 18, 865.	2.1	110
24	Integrated task performance score for the building occupants based on the CO2 concentration and indoor climate factors changes. Applied Energy, 2018, 228, 1707-1713.	5.1	25
25	Optimizing the indoor thermal behaviour of housing units in hot humid climates: Analysis and modelling of sustainable constructive alternatives. Indoor and Built Environment, 2019, 28, 772-789.	1.5	6
26	Management of cooling energy through building controls for thermal comfort and relative performance in an office building. Science and Technology for the Built Environment, 2019, 25, 139-148.	0.8	7
27	Optimising choices of â€`building services' for green building: Interdependence and life cycle costing. Building and Environment, 2019, 161, 106247.	3.0	21
28	Optimizing ventilation: Theoretical study on increasing rates in offices to maximize occupant productivity with constrained additional energy use. Building and Environment, 2019, 166, 106314.	3.0	21
29	Simulation study of the eco green roof in order to reduce heat transfer in four different climatic zones. Results in Engineering, 2019, 2, 100010.	2.2	17
30	Analyzing the real-time indoor environmental quality factors considering the influence of the building occupants' behaviors and the ventilation. Building and Environment, 2019, 156, 99-109.	3.0	31
32	Techno-economic performance analysis of the smart solar photovoltaic blinds considering the photovoltaic panel type and the solar tracking method. Energy and Buildings, 2019, 193, 1-14.	3.1	33
33	A multi-objective optimization model for determining the building design and occupant behaviors based on energy, economic, and environmental performance. Energy, 2019, 174, 823-834.	4.5	55
34	Analysis strategy for multi-criteria optimization: Application to inter-seasonal solar heat storage for residential building needs. Energy, 2019, 171, 419-434.	4.5	22
35	Ceramic panels versus aluminium in buildings: Energy consumption and environmental impact assessment with a new methodology. Applied Energy, 2019, 233-234, 959-974.	5.1	12
36	Optimal roofing solutions for Australian green buildings: a life-cycle cost perspective. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2020, 173, 30-41.	0.4	1
37	Energy target pinch analysis for optimising thermal comfort in low-income dwellings. Journal of Building Engineering, 2020, 28, 101045.	1.6	14
38	Simulation optimisation towards energy efficient green buildings: Current status and future trends. Journal of Cleaner Production, 2020, 254, 120012.	4.6	89

CITATION REPORT

#	Article	IF	CITATIONS
39	A new approach for developing a hybrid sun-tracking method of the intelligent photovoltaic blinds considering the weather condition using data mining technique. Energy and Buildings, 2020, 209, 109708.	3.1	11
40	Building occupants' psycho-physiological response to indoor climate and CO2 concentration changes in office buildings. Building and Environment, 2020, 169, 106596.	3.0	33
41	Cost implications of obtaining construction waste management-related credits in green building. Waste Management, 2020, 102, 722-731.	3.7	25
42	Comfort evaluation of seasonally and daily used residential load in smart buildings for hottest areas via predictive mean vote method. Sustainable Computing: Informatics and Systems, 2020, 25, 100369.	1.6	3
43	Intelligent planning unit for the artificial intelligent based built environment focusing on human-building interaction. Journal of Asian Architecture and Building Engineering, 2021, 20, 729-746.	1.2	3
44	Energy savings of block-scale facade greening for different urban forms. Applied Energy, 2020, 279, 115844.	5.1	35
45	Engineering, Durability, and Sustainability Properties Analysis of High-Volume, PCC Ash-Based Concrete. Sustainability, 2020, 12, 3520.	1.6	3
46	Optimal Control Method for HVAC Systems in Offices with a Control Algorithm Based on Thermal Environment. Buildings, 2020, 10, 95.	1.4	9
47	Quantifying seasonal and diurnal contributions of urban landscapes to heat energy dynamics. Applied Energy, 2020, 264, 114724.	5.1	33
48	Multi-objective home appliance scheduling with implicit and interactive user satisfaction modelling. Applied Energy, 2020, 267, 114690.	5.1	24
49	Sustainability and performance assessment of binary blended low-carbon concrete using supplementary cementitious materials. Journal of Cleaner Production, 2021, 280, 124373.	4.6	14
50	Mix design optimization and environmental impact assessment of low-carbon materials containing alkali-activated slag and high CaO fly ash. Construction and Building Materials, 2021, 267, 120932.	3.2	15
52	Comparative analysis of user comfort and thermal performance of six types of vernacular dwellings as the first step towards climate resilient, sustainable and bioclimatic architecture in western sub-Saharan Africa. Renewable and Sustainable Energy Reviews, 2021, 140, 110736.	8.2	39
53	A model-based multi-objective optimization of energy consumption and thermal comfort for active chilled beam systems. Applied Energy, 2021, 287, 116531.	5.1	19
54	Optimizing thermal comfort and energy use for learning environments. Energy and Buildings, 2021, 248, 111181.	3.1	16
55	Smarter people, buildings, and cities: a multidisciplinary research approach. , 2019, , 139-150.		0
56	Strategies for optimizing energy consumption in buildings. , 2021, , .		0
57	Multi-Criteria Decision Making Optimisation Framework for Positive Energy Blocks for Cities. Sustainability, 2022, 14, 446.	1.6	10

CITATION REPORT

#	Article	IF	CITATIONS
58	Investigation of occupied/unoccupied period on thermal comfort in Guangzhou: Challenges and opportunities of public buildings with high window-wall ratio. Energy, 2022, 244, 123186.	4.5	12
59	Architectural Simulations on Spatio-Temporal Changes of Settlement Outdoor Thermal Environment in Guanzhong Area, China. Buildings, 2022, 12, 345.	1.4	4
60	Impact of 3-D urban landscape patterns on the outdoor thermal environment: A modelling study with SOLWEIG. Computers, Environment and Urban Systems, 2022, 94, 101773.	3.3	23
61	Towards simulating the constraint-based nature-inspired smart scheduling in energy intelligent buildings. Simulation Modelling Practice and Theory, 2022, 118, 102550.	2.2	5
62	Course timetable optimization for a university teaching building considering the building energy efficiency and time-varying thermal perception of students. Building and Environment, 2022, , 109175.	3.0	6
63	A bi-objective optimization of energy consumption and investment cost for public building envelope design based on the Îμ-constraint method. Energy and Buildings, 2022, 266, 112133.	3.1	16
64	Balancing thermal comfort and energy conservation– A multi-objective optimization model for controlling air-condition and mechanical ventilation systems. Building and Environment, 2022, 219, 109237.	3.0	17
65	A clustering review of vegetation-indicating parameters in urban thermal environment studies towards various factors. Journal of Thermal Biology, 2022, 110, 103340.	1.1	14
66	Multi-Criteria Energy Management with Preference Induced Load Scheduling Using Grey Wolf Optimizer. Sustainability, 2023, 15, 957.	1.6	4
67	Metamodel-Based Hyperparameter Optimization of Optimization Algorithms in Building Energy Optimization. Buildings, 2023, 13, 167.	1.4	0
68	Analysis of thermal comfort, energy consumption, and CO2 reduction of indoor space according to the type of local heating under winter rest conditions. Energy, 2023, 268, 126722.	4.5	4
69	Indoor environmental quality improvement in green building: Occupant perception and behavioral impact. Journal of Building Engineering, 2023, 69, 106314.	1.6	1
70	Thermal Comfort in Buildings: Scientometric Analysis and Systematic Review. Journal of Architectural Engineering, 2023, 29, .	0.8	1
71	A Meta-Synthesis Review of Occupant Comfort Assessment in Buildings (2002–2022). Sustainability, 2023, 15, 4303.	1.6	3
73	Deep Learning-Based Framework for Reconstruction and Optimisation of Building Information ModelsÂContaining Parametric Rules. Studies in Systems, Decision and Control, 2023, , 289-305.	0.8	0
77	Energy-Efficient Thermal Comfort Optimization Game in Office Building Networks. , 2023, , .		0

CITATION REPORT