Substantial interindividual and limited intraindividual from men with metastatic prostate cancer

Nature Medicine 22, 369-378

DOI: 10.1038/nm.4053

Citation Report

#	Article	IF	CITATIONS
1	The Role of Proteomics in Biomarker Development for Improved Patient Diagnosis and Clinical Decision Making in Prostate Cancer. Diagnostics, 2016, 6, 27.	2.6	15
2	Patient-Derived Prostate Cancer: from Basic Science to the Clinic. Hormones and Cancer, 2016, 7, 236-240.	4.9	8
3	Single-Cell Analysis of Circulating Tumor Cells as a Window into Tumor Heterogeneity. Cold Spring Harbor Symposia on Quantitative Biology, 2016, 81, 269-274.	1.1	40
4	Targeting DNA Repair. Cancer Journal (Sudbury, Mass), 2016, 22, 353-356.	2.0	27
5	Epigenetic signature of Cleason score and prostate cancer recurrence after radical prostatectomy. Clinical Epigenetics, 2016, 8, 97.	4.1	34
6	Castration-Resistant Prostate Cancer Tissue Acquisition From Bone Metastases for Molecular Analyses. Clinical Genitourinary Cancer, 2016, 14, 485-493.	1.9	30
7	SPINK1 Defines a Molecular Subtype of Prostate Cancer in Men with More Rapid Progression in an at Risk, Natural History Radical Prostatectomy Cohort. Journal of Urology, 2016, 196, 1436-1444.	0.4	38
9	Re-Evaluating Clonal Dominance in Cancer Evolution. Trends in Cancer, 2016, 2, 263-276.	7.4	39
10	Trace elements: Innovative biopsy programs map how cancer spreads. Nature Medicine, 2016, 22, 963-965.	30.7	1
11	Mismatch repair enzyme expression in primary and castrate resistant prostate cancer. Asian Journal of Urology, 2016, 3, 223-228.	1.2	14
12	Potential Impact on Clinical Decision Making via a Genome-Wide Expression Profiling: A Case Report. Urology Case Reports, 2016, 9, 51-54.	0.3	0
13	Non-invasive actionable biomarkers for metastatic prostate cancer. Asian Journal of Urology, 2016, 3, 170-176.	1.2	8
14	The Cohesive Metastasis Phenotype in Human Prostate Cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1866, 221-231.	7.4	28
15	Androgen receptor signaling in castration-resistant prostate cancer: a lesson in persistence. Endocrine-Related Cancer, 2016, 23, T179-T197.	3.1	132
16	Cell-free and circulating tumor cell–based biomarkers in men with metastatic prostate cancer: Tools for real-time precision medicine?. Urologic Oncology: Seminars and Original Investigations, 2016, 34, 490-501.	1.6	11
17	The Role of Next-Generation Sequencing in Castration-Resistant Prostate Cancer Treatment. Cancer Journal (Sudbury, Mass), 2016, 22, 357-361.	2.0	9
18	Reprogramming to resist. Science, 2017, 355, 29-30.	12.6	15
19	Reconstructing metastatic seeding patterns of human cancers. Nature Communications, 2017, 8, 14114.	12.8	118

ARTICLE IF CITATIONS # Identifying aggressive prostate cancer foci using a DNA methylation classifier. Genome Biology, 2017, 20 8.8 43 18, 3. Limited heterogeneity of known driver gene mutations among the metastases of individual patients 21.4 with pancreatic cancer. Nature Genetics, 2017, 49, 358-366. Exploiting AR-Regulated Drug Transport to Induce Sensitivity to the Survivin Inhibitor YM155. 22 3.4 17 Molecular Cancer Research, 2017, 15, 521-531. The Strange Case of CDK4/6 Inhibitors: Mechanisms, Resistance, and Combination Strategies. Trends in 206 Cancer, 2017, 3, 39-55. LuCaP Prostate Cancer Patient-Derived Xenografts Reflect the Molecular Heterogeneity of Advanced 24 2.3 219 Disease anÂÂd Serve as Models for Evaluating Cancer Therapeutics. Prostate, 2017, 77, 654-671. Clonal Heterogeneity and Tumor Evolution: Past, Present, and the Future. Cell, 2017, 168, 613-628. 1,957 Taking inventory of metastasis effectors. Nature Medicine, 2017, 23, 275-276. 30.7 26 0 Constraints in cancer evolution. Biochemical Society Transactions, 2017, 45, 1-13. 29 3.4 CHD1 loss sensitizes prostate cancer to DNA damaging therapy by promoting error-prone 28 1.2 91 double-strand break repair. Annals of Oncology, 2017, 28, 1495-1507. Whole-Genome Sequence of the Metastatic PC3 and LNCaP Human Prostate Cancer Cell Lines. G3: 1.8 Genes, Genomes, Genetics, 2017, 7, 1731-1741. Androgen receptor gene status in plasma DNA associates with worse outcome on enzalutamide or abiraterone for castration-resistant prostate cancer: a multi-institution correlative biomarker study. 30 213 1.2 Annals of Oncology, 2017, 28, 1508-1516. Next generation sequencing of pancreatic ductal adenocarcinoma: right or wrong?. Expert Review of 3.0 Gastroenterology and Hepatology, 2017, 11, 683-694. Acquiring evidence for precision prostate cancer care. Annals of Oncology, 2017, 28, 916-917. 32 1.2 1 Circulating Cell-Free DNA to Guide Prostate Cancer Treatment with PARP Inhibition. Cancer Discovery, 9.4 341 2017, 7, 1006-1017. Exome Sequencing of African-American Prostate Cancer Reveals Loss-of-Function <i>ERF</i> 34 9.4 94 Mutations. Cancer Discovery, 2017, 7, 973-983. Androgen Receptor Deregulation Drives Bromodomain-Mediated Chromatin Alterations in Prostate 6.4 99 Cancer. Cell Reports, 2017, 19, 2045-2059. Androgen Receptor Rearrangement and Splicing Variants in Resistance to Endocrine Therapies in 36 2.8 58 Prostate Cancer. Endocrinology, 2017, 158, 1533-1542. The potential of organoids in urological cancer research. Nature Reviews Urology, 2017, 14, 401-414. 3.8

ARTICLE IF CITATIONS # A novel isoform of TET1 that lacks a CXXC domain is overexpressed in cancer. Nucleic Acids Research, 14.5 46 38 2017, 45, 8269-8281. Genomic landscape of high-grade meningiomas. Npj Genomic Medicine, 2017, 2, . 3.8 Rationale for the development of alternative forms of androgen deprivation therapy. 40 3.117 Endocrine-Related Cancer, 2017, 24, R275-R295. Inverse Regulation of DHT Synthesis Enzymes 51[±]-Reductase Types 1 and 2 by the Androgen Receptor in Prostate Cancer. Endocrinology, 2017, 158, 1015-1021. ERF mutations reveal a balance of ETS factors controlling prostate oncogenesis. Nature, 2017, 546, 42 27.8 70 671-675. Metabolic Imaging of Prostate Cancer Reveals Intrapatient Intermetastasis Response Heterogeneity to Systemic Therapy. European Urology Focus, 2017, 3, 639-642. 3.1 HOXB13 mutations and binding partners in prostate development and cancer: Function, clinical 44 3.4 52 significance, and future directions. Genes and Diseases, 2017, 4, 75-87. The Mechanistic Role of the Calcium-Activated Chloride Channel ANO1 in Tumor Growth and 1.6 28 Signaling. Advances in Experimental Medicine and Biology, 2017, 966, 1-14. Improved outcomes and precision medicine come within reach. Nature Reviews Urology, 2017, 14, 71-72. 3.8 46 4 Paired High-Content Analysis of Prostate Cancer Cells in Bone Marrow and Blood Characterizes Increased Androgen Receptor Expression in Tumor Cell Clusters. Clinical Cancer Research, 2017, 23, 1722-1732. Incorporating Biomarker Stratification into STAMPEDE: an Adaptive Multi-arm, Multi-stage Trial 48 1.4 13 Platform. Clinical Oncology, 2017, 29, 778-786. Androgen Receptor Pathway-Independent Prostate Cancer Is Sustained through FGF Signaling. Cancer 49 16.8 483 Cell, 2017, 32, 474-489.e6. Simultaneous evolutionary expansion and constraint of genomic heterogeneity in multifocal lung 50 12.8 53 cancer. Nature Communications, 2017, 8, 823. TOP2A and EZH2 Provide Early Detection of an Aggressive Prostate Cancer Subgroup. Clinical Cancer Research, 2017, 23, 7072-7083. Towards Best Practice in Establishing Patient-Derived Xenografts. Molecular and Translational 52 0.4 8 Medicine, 2017, , 11-28. Targeting androgen-independent pathways: new chances for patients with prostate cancer?. Critical Reviews in Oncology/Hematology, 2017, 118, 42-53. Nuclear mTOR acts as a transcriptional integrator of the androgen signaling pathway in prostate 54 5.9103 cancer. Genes and Development, 2017, 31, 1228-1242. Gene Copy Number Estimation from Targeted Next-Generation Sequencing of Prostate Cancer Biopsies: Analytic Validation and Clinical Qualification. Clinical Cancer Research, 2017, 23, 6070-6077.

#	Article	IF	Citations
56	Opposing effects of cancer-type-specific SPOP mutants on BET protein degradation and sensitivity to BET inhibitors. Nature Medicine, 2017, 23, 1046-1054.	30.7	145
57	Discussing the predictive, prognostic, and therapeutic value of germline DNA-repair gene mutations in metastatic prostate cancer patients. Cancer Biology and Therapy, 2017, 18, 545-546.	3.4	2
58	Somatic BRCA2 bi-allelic loss in the primary prostate cancer was associated to objective response to PARPi in a sporadic CRPC patient. Annals of Oncology, 2017, 28, 1158-1159.	1.2	3
59	Concordance of Circulating Tumor DNA and Matched Metastatic Tissue Biopsy in Prostate Cancer. Journal of the National Cancer Institute, 2017, 109, .	6.3	288
60	The molecular underpinnings of prostate cancer: impacts on management and pathology practice. Journal of Pathology, 2017, 241, 173-182.	4.5	36
61	SOCS1 inhibits migration and invasion of prostate cancer cells, attenuates tumor growth and modulates the tumor stroma. Prostate Cancer and Prostatic Diseases, 2017, 20, 36-47.	3.9	11
62	Getting personal with prostate cancer: <scp>DNA</scp> â€repair defects and olaparib in metastatic prostate cancer. BJU International, 2017, 119, 8-9.	2.5	6
63	Individualized Molecular Analyses Guide Efforts (IMAGE): A Prospective Study of Molecular Profiling of Tissue and Blood in Metastatic Triple-Negative Breast Cancer. Clinical Cancer Research, 2017, 23, 379-386.	7.0	50
64	DNA Repair in Prostate Cancer: Biology and Clinical Implications. European Urology, 2017, 71, 417-425.	1.9	169
65	Beyond Seed and Soil: Understanding and Targeting Metastatic Prostate Cancer; Report From the 2016 Coffey–Holden Prostate Cancer Academy Meeting. Prostate, 2017, 77, 123-144.	2.3	6
66	Intratumoral and Intertumoral Genomic Heterogeneity of Multifocal Localized Prostate Cancer Impacts Molecular Classifications and Genomic Prognosticators. European Urology, 2017, 71, 183-192.	1.9	171
67	Strategies to avoid treatment-induced lineage crisis in advanced prostate cancer. Nature Reviews Clinical Oncology, 2017, 14, 269-283.	27.6	36
68	Ecotropic viral integration site 1, a novel oncogene in prostate cancer. Oncogene, 2017, 36, 1573-1584.	5.9	29
69	Biology and evolution of poorly differentiated neuroendocrine tumors. Nature Medicine, 2017, 23, 664-673.	30.7	192
70	Personalizing Therapy for Metastatic Prostate Cancer: The Role of Solid and Liquid Tumor Biopsies. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2017, 37, 358-369.	3.8	9
71	Beyond the Androgen Receptor: Targeting Actionable Drivers of Prostate Cancer. JCO Precision Oncology, 2017, 1, 1-3.	3.0	4
73	Supraphysiologic Testosterone Therapy in the Treatment of Prostate Cancer: Models, Mechanisms and Questions. Cancers, 2017, 9, 166.	3.7	33
74	Molecular determinants of prostate cancer metastasis. Oncotarget, 2017, 8, 88211-88231.	1.8	19

#	Article	IF	CITATIONS
75	Gene expression signatures of neuroendocrine prostate cancer and primary small cell prostatic carcinoma. BMC Cancer, 2017, 17, 759.	2.6	57
76	Integrative omics for health and disease. Nature Reviews Genetics, 2018, 19, 299-310.	16.3	676
77	Heterochromatin Protein 1α Mediates Development and Aggressiveness of Neuroendocrine Prostate Cancer. Cancer Research, 2018, 78, 2691-2704.	0.9	48
78	Systemic surfaceome profiling identifies target antigens for immune-based therapy in subtypes of advanced prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4473-E4482.	7.1	96
79	Multigene Profiling of CTCs in mCRPC Identifies a Clinically Relevant Prognostic Signature. Molecular Cancer Research, 2018, 16, 643-654.	3.4	33
80	The Heterogeneity of Prostate Cancer: A Practical Approach. Pathobiology, 2018, 85, 108-116.	3.8	93
81	Development of a personalized therapeutic strategy for ERBB-gene-mutated cancers. Therapeutic Advances in Medical Oncology, 2018, 10, 175883401774604.	3.2	11
82	p53 status in the primary tumor predicts efficacy of subsequent abiraterone and enzalutamide in castration-resistant prostate cancer. Prostate Cancer and Prostatic Diseases, 2018, 21, 260-268.	3.9	48
83	Androgen receptor splice variants bind to constitutively open chromatin and promote abiraterone-resistant growth of prostate cancer. Nucleic Acids Research, 2018, 46, 1895-1911.	14.5	79
84	A prospective genome-wide study of prostate cancer metastases reveals association of wnt pathway activation and increased cell cycle proliferation with primary resistance to abiraterone acetate–prednisone. Annals of Oncology, 2018, 29, 352-360.	1.2	70
85	The Genomics of Prostate Cancer: emerging understanding with technologic advances. Modern Pathology, 2018, 31, 1-11.	5.5	47
86	Calcium and CaSR/IP3R in prostate cancer development. Cell and Bioscience, 2018, 8, .	4.8	14
87	Development of a stress response therapy targeting aggressive prostate cancer. Science Translational Medicine, 2018, 10, .	12.4	124
88	The long tail of oncogenic drivers in prostate cancer. Nature Genetics, 2018, 50, 645-651.	21.4	601
89	Targeting Bromodomain and Extra-Terminal (BET) Family Proteins in Castration-Resistant Prostate Cancer (CRPC). Clinical Cancer Research, 2018, 24, 3149-3162.	7.0	111
90	Development and Application of Liquid Biopsies in Metastatic Prostate Cancer. Current Oncology Reports, 2018, 20, 35.	4.0	28
91	Transcriptional Regulation in Prostate Cancer. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a030437.	6.2	57
92	Whole-genome and Transcriptome Sequencing of Prostate Cancer Identify New Genetic Alterations Driving Disease Progression. European Urology, 2018, 73, 322-339.	1.9	130

#	Article	IF	CITATIONS
93	Clinical utility of emerging liquid biomarkers in advanced prostate cancer. Cancer Genetics, 2018, 228-229, 151-158.	0.4	11
94	Targeting the MYCN–PARP–DNA Damage Response Pathway in Neuroendocrine Prostate Cancer. Clinical Cancer Research, 2018, 24, 696-707.	7.0	80
95	SEOM clinical guidelines for the treatment of metastatic prostate cancer (2017). Clinical and Translational Oncology, 2018, 20, 57-68.	2.4	17
96	Clinical and Genomic Characterization of Treatment-Emergent Small-Cell Neuroendocrine Prostate Cancer: A Multi-institutional Prospective Study. Journal of Clinical Oncology, 2018, 36, 2492-2503.	1.6	477
97	Androgen receptor splice variant-7 expression emerges with castration resistance in prostate cancer. Journal of Clinical Investigation, 2018, 129, 192-208.	8.2	266
98	SIRT1 contributes to neuroendocrine differentiation of prostate cancer. Oncotarget, 2018, 9, 2002-2016.	1.8	21
99	Prostate Cancer: Pathology and Genetics. , 2018, , .		0
100	Prostatic cancers: understanding their molecular pathology and the 2016 WHO classification. Oncotarget, 2018, 9, 14723-14737.	1.8	39
101	The Osteogenic Niche Is a Calcium Reservoir of Bone Micrometastases and Confers Unexpected Therapeutic Vulnerability. Cancer Cell, 2018, 34, 823-839.e7.	16.8	93
102	Exploring the transcriptome of hormone-naive multifocal prostate cancer and matched lymph node metastases. British Journal of Cancer, 2018, 119, 1527-1537.	6.4	10
103	ONECUT2 is a targetable master regulator of lethal prostate cancer that suppresses the androgen axis. Nature Medicine, 2018, 24, 1887-1898.	30.7	113
104	Utility of cell-free nucleic acid and circulating tumor cell analyses in prostate cancer. Asian Journal of Andrology, 2018, 20, 230.	1.6	9
105	High-throughput screens identify HSP90 inhibitors as potent therapeutics that target inter-related growth and survival pathways in advanced prostate cancer. Scientific Reports, 2018, 8, 17239.	3.3	29
106	PARPâ€1 regulates DNA repair factor availability. EMBO Molecular Medicine, 2018, 10, .	6.9	52
107	Targeting CD46 for both adenocarcinoma and neuroendocrine prostate cancer. JCI Insight, 2018, 3, .	5.0	43
108	Prostate Osteoblast-Like Cells: A Reliable Prognostic Marker of Bone Metastasis in Prostate Cancer Patients. Contrast Media and Molecular Imaging, 2018, 2018, 1-12.	0.8	24
109	Mutations in an Innate Immunity Pathway Are Associated with Poor Overall Survival Outcomes and Hypoxic Signaling in Cancer. Cell Reports, 2018, 25, 3721-3732.e6.	6.4	22
110	NSD2 is a conserved driver of metastatic prostate cancer progression. Nature Communications, 2018, 9, 5201.	12.8	66

# 111	ARTICLE ZFX Mediates Non-canonical Oncogenic Functions of the Androgen Receptor Splice Variant 7 in Castrate-Resistant Prostate Cancer. Molecular Cell, 2018, 72, 341-354.e6.	IF 9.7	CITATIONS
112	Downregulation of <i>Dipeptidyl Peptidase 4</i> Accelerates Progression to Castration-Resistant Prostate Cancer. Cancer Research, 2018, 78, 6354-6362.	0.9	42
113	Androgen deprivation promotes neuroendocrine differentiation and angiogenesis through CREB-EZH2-TSP1 pathway in prostate cancers. Nature Communications, 2018, 9, 4080.	12.8	138
114	A functional genomics screen reveals a strong synergistic effect between docetaxel and the mitotic gene DLGAP5 that is mediated by the androgen receptor. Cell Death and Disease, 2018, 9, 1069.	6.3	15
115	Dormant tumour cells, their niches and the influence of immunity. Nature Cell Biology, 2018, 20, 1240-1249.	10.3	134
116	Genomic analysis of DNA repair genes and androgen signaling in prostate cancer. BMC Cancer, 2018, 18, 960.	2.6	55
117	Electrostatic repulsion causes anticooperative DNA binding between tumor suppressor ETS transcription factors and JUN–FOS at composite DNA sites. Journal of Biological Chemistry, 2018, 293, 18624-18635.	3.4	13
119	Plasma androgen receptor and serum chromogranin A in advanced prostate cancer. Scientific Reports, 2018, 8, 15442.	3.3	21
120	Die Heterogenitädes Prostatakrebses: Ein praxisorientierter Ansatz. Karger Kompass Onkologie, 2018, 5, 149-157.	0.0	0
121	Whole-Genome Sequencing Reveals Elevated Tumor Mutational Burden and Initiating Driver Mutations in African Men with Treatment-NaÃ ⁻ ve, High-Risk Prostate Cancer. Cancer Research, 2018, 78, 6736-6746.	0.9	66
122	Genetic Alterations of TRAF Proteins in Human Cancers. Frontiers in Immunology, 2018, 9, 2111.	4.8	67
123	Genetics and biology of prostate cancer. Genes and Development, 2018, 32, 1105-1140.	5.9	434
124	An <i>In Vivo</i> Screen Identifies PYGO2 as a Driver for Metastatic Prostate Cancer. Cancer Research, 2018, 78, 3823-3833.	0.9	16
125	SREBF1 Activity Is Regulated by an AR/mTOR Nuclear Axis in Prostate Cancer. Molecular Cancer Research, 2018, 16, 1396-1405.	3.4	53
126	MicroRNAs as potential therapeutics to enhance chemosensitivity in advanced prostate cancer. Scientific Reports, 2018, 8, 7820.	3.3	33
127	Diverse AR-V7 cistromes in castration-resistant prostate cancer are governed by HoxB13. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6810-6815.	7.1	120
128	<i>TMPRSS2-ERG</i> Controls Luminal Epithelial Lineage and Antiandrogen Sensitivity in <i>PTEN</i> and <i>TP53</i> -Mutated Prostate Cancer. Clinical Cancer Research, 2018, 24, 4551-4565.	7.0	51
129	Assessment of the Validity of Nuclear-Localized Androgen Receptor Splice Variant 7 in Circulating Tumor Cells as a Predictive Biomarker for Castration-Resistant Prostate Cancer. JAMA Oncology, 2018, 4, 1179.	7.1	190

# 130	ARTICLE Landmarks in prostate cancer. Nature Reviews Urology, 2018, 15, 627-642.	IF 3.8	CITATIONS
131	Discovering novel valid biomarkers and drugs in patient-centric genomic trials: the new epoch of precision surgical oncology. Drug Discovery Today, 2018, 23, 1848-1872.	6.4	12
132	The Proteome of Prostate Cancer Bone Metastasis Reveals Heterogeneity with Prognostic Implications. Clinical Cancer Research, 2018, 24, 5433-5444.	7.0	68
133	Impact of Phosphoproteomics in the Era of Precision Medicine for Prostate Cancer. Frontiers in Oncology, 2018, 8, 28.	2.8	18
134	Genomic Deletion at 10q23 in Prostate Cancer: More Than PTEN Loss?. Frontiers in Oncology, 2018, 8, 246.	2.8	18
135	Prostate Cancer Genomics: Recent Advances and the Prevailing Underrepresentation from Racial and Ethnic Minorities. International Journal of Molecular Sciences, 2018, 19, 1255.	4.1	50
136	A PDX/Organoid Biobank of Advanced Prostate Cancers Captures Genomic and Phenotypic Heterogeneity for Disease Modeling and Therapeutic Screening. Clinical Cancer Research, 2018, 24, 4332-4345.	7.0	154
137	A New Strategy to Uncover the Anticancer Mechanism of Chinese Compound Formula by Integrating Systems Pharmacology and Bioinformatics. Evidence-based Complementary and Alternative Medicine, 2018, 2018, 1-19.	1.2	8
138	Functional Linkage of RKIP to the Epithelial to Mesenchymal Transition and Autophagy during the Development of Prostate Cancer. Cancers, 2018, 10, 273.	3.7	27
139	A novel mechanism of SRRM4 in promoting neuroendocrine prostate cancer development via a pluripotency gene network. EBioMedicine, 2018, 35, 167-177.	6.1	36
140	Sequence of events in prostate cancer. Nature, 2018, 560, 557-559.	27.8	5
141	Movember GAP1 PDX project: An international collection of serially transplantable prostate cancer patientâ€derived xenograft (PDX) models. Prostate, 2018, 78, 1262-1282.	2.3	76
142	Intratumor heterogeneity in prostate cancer. Urologic Oncology: Seminars and Original Investigations, 2018, 36, 349-360.	1.6	64
143	Inactivation of CDK12 Delineates a Distinct Immunogenic Class of Advanced Prostate Cancer. Cell, 2018, 173, 1770-1782.e14.	28.9	400
144	A Somatically Acquired Enhancer of the Androgen Receptor Is a Noncoding Driver in Advanced Prostate Cancer. Cell, 2018, 174, 422-432.e13.	28.9	234
145	Structural Alterations Driving Castration-Resistant Prostate Cancer Revealed by Linked-Read Genome Sequencing. Cell, 2018, 174, 433-447.e19.	28.9	258
146	Neoadjuvant-Intensive Androgen Deprivation Therapy Selects for Prostate Tumor Foci with Diverse Subclonal Oncogenic Alterations. Cancer Research, 2018, 78, 4716-4730.	0.9	56
147	Metaâ€ʿanalysis of gene expression alterations and clinical significance of the HECT domainâ€ʿcontaining ubiquitin ligase HUWE1 in cancer. Oncology Letters, 2019, 18, 2292-2303.	1.8	9

ARTICLE IF CITATIONS Cellular and Molecular Mechanisms Underlying Prostate Cancer Development: Therapeutic 148 1.4 68 Implications. Medicines (Basel, Switzerland), 2019, 6, 82. Testosterone accumulation in prostate cancer cells is enhanced by facilitated diffusion. Prostate, 149 2.3 2019, 79, 1530-1542. The Polycomb Repressor Complex 1 Drives Double-Negative Prostate Cancer Metastasis by 150 16.8 131 Coordinating Stemness and Immune Suppression. Cancer Cell, 2019, 36, 139-155.e10. Efficacy and Safety of Carboplatin Plus Paclitaxel as the First-, Second-, and Third-line Chemotherapy 1.9 in Men With Castration-resistant Prostate Cancer. Clinical Genitourinary Cancer, 2019, 17, e923-e929. Japanese Case of Enzalutamide-Resistant Prostate Cancer Harboring a SPOP Mutation With Scattered Allelic Imbalance: Response to Platinum-Based Therapy. Clinical Genitourinary Cancer, 2019, 17, 152 1.9 9 e897-e902. Genomic distinctions between metastatic lower and upper tract urothelial carcinoma revealed 5.0 through rapid autopsy. JCI Insight, 2019, 4, . KLF4 as a rheostat of osteolysis and osteogenesis in prostate tumors in the bone. Oncogene, 2019, 38, 154 5.9 8 5766-5777. Clonal Evolution and Epithelial Plasticity in the Emergence of AR-Independent Prostate Carcinoma. 7.4 29 Trends in Cancer, 2019, 5, 440-455. 156 Deciphering the biology of thymic epithelial tumors. Mediastinum, 2019, 3, 36-36. 1.1 15 JAB1/COPS5 is a putative oncogene that controls critical oncoproteins deregulated in prostate 2.1 cancer. Biochemical and Biophysical Research Communications, 2019, 518, 374-380. An algorithm-based meta-analysis of genome- and proteome-wide data identifies a combination of 158 3.3 10 potential plasma biomarkers for colorectal cancer. Scientific Reports, 2019, 9, 15575. Characterization of HMGB1/2 Interactome in Prostate Cancer by Yeast Two Hybrid Approach: Potential 3.7 Pathobiological Implications. Cancers, 2019, 11, 1729. An overview of publicly available patient-centered prostate cancer datasets. Translational Andrology 160 1.4 15 and Urology, 2019, 8, S64-S77. Genomic Validation of 3-Tiered Clinical Subclassification of High-Risk Prostate Cancer. International 0.8 Journal of Radiation Oncology Biology Physics, 2019, 105, 621-627. 162 An analysis of genetic heterogeneity in untreated cancers. Nature Reviews Cancer, 2019, 19, 639-650. 28.4 139 The Î²2-Adrenergic Receptor Is a Molecular Switch for Neuroendocrine Transdifferentiation of Prostate Cancer Cells. Molecular Cancer Research, 2019, 17, 2154-2168. MAZ promotes prostate cancer bone metastasis through transcriptionally activating the 164 8.6 32 KRas-dependent RalGEFs pathway. Journal of Experimental and Clinical Cancer Research, 2019, 38, 391. PEG10 Promoter–Driven Expression of Reporter Genes Enables Molecular Imaging of Lethal Prostate Cancer. Cancer Research, 2019, 79, 5668-5680.

	CHATION R	EPORT	
#	Article	IF	CITATIONS
166	Current Treatment Options for Metastatic Hormone-Sensitive Prostate Cancer Cancers, 2019, 11, 1355.	3.7	54
167	Identification of the PTEN-ARID4B-PI3K pathway reveals the dependency on ARID4B by PTEN-deficient prostate cancer. Nature Communications, 2019, 10, 4332.	12.8	38
168	High-fat diet fuels prostate cancer progression by rewiring the metabolome and amplifying the MYC program. Nature Communications, 2019, 10, 4358.	12.8	109
169	Drivers of AR indifferent anti-androgen resistance in prostate cancer cells. Scientific Reports, 2019, 9, 13786.	3.3	44
170	Towards precision oncology in advanced prostate cancer. Nature Reviews Urology, 2019, 16, 645-654.	3.8	156
171	Integration of Genomic and Transcriptional Features in Pancreatic Cancer Reveals Increased Cell Cycle Progression in Metastases. Cancer Cell, 2019, 35, 267-282.e7.	16.8	151
172	IRE1α-XBP1s pathway promotes prostate cancer by activating c-MYC signaling. Nature Communications, 2019, 10, 323.	12.8	158
173	Characterization of transcriptomic signature of primary prostate cancer analogous to prostatic small cell neuroendocrine carcinoma. International Journal of Cancer, 2019, 145, 3453-3461.	5.1	18
174	Crosstalk Between Prostate Cancer Stem Cells and Immune Cells: Implications for Tumor Progression and Resistance to Immunotherapy. Resistance To Targeted Anti-cancer Therapeutics, 2019, , 173-221.	0.1	3
176	Upregulation of Scavenger Receptor B1 Is Required for Steroidogenic and Nonsteroidogenic Cholesterol Metabolism in Prostate Cancer. Cancer Research, 2019, 79, 3320-3331.	0.9	33
177	Similar incidence of DNA damage response pathway alterations between clinically localized and metastatic prostate cancer. BMC Urology, 2019, 19, 33.	1.4	8
178	Reprogramming of Isocitrate Dehydrogenases Expression and Activity by the Androgen Receptor in Prostate Cancer. Molecular Cancer Research, 2019, 17, 1699-1709.	3.4	19
179	Androgen receptor-modulatory microRNAs provide insight into therapy resistance and therapeutic targets in advanced prostate cancer. Oncogene, 2019, 38, 5700-5724.	5.9	59
180	A Novel Mechanism Driving Poor-Prognosis Prostate Cancer: Overexpression of the DNA Repair Gene, Ribonucleotide Reductase Small Subunit M2 (RRM2). Clinical Cancer Research, 2019, 25, 4480-4492.	7.0	96
181	Editorial Comment to Microâ€ribonucleic acid expression signature of metastatic castrationâ€resistant prostate cancer: regulation of <scp><i>NCAPH</i></scp> by antitumor <i>miRâ€199a/bâ€3p</i> . International Journal of Urology, 2019, 26, 521-521.	1.0	1
182	Integrin Signaling in Cancer: Mechanotransduction, Stemness, Epithelial Plasticity, and Therapeutic Resistance. Cancer Cell, 2019, 35, 347-367.	16.8	533
183	APOBEC Mutagenesis and Copy-Number Alterations Are Drivers of Proteogenomic Tumor Evolution and Heterogeneity in Metastatic Thoracic Tumors. Cell Reports, 2019, 26, 2651-2666.e6.	6.4	92
184	Reactive oxygen species and cancer: A complex interaction. Cancer Letters, 2019, 452, 132-143.	7.2	154

#	ARTICLE Whole-Genome and Transcriptional Analysis of Treatment-Emergent Small-Cell Neuroendocrine	IF	CITATIONS
185	Prostate Cancer Demonstrates Intraclass Heterogeneity. Molecular Cancer Research, 2019, 17, 1235-1240.	3.4	51
186	Targeting DNA Repair Defects for Precision Medicine in Prostate Cancer. Current Oncology Reports, 2019, 21, 42.	4.0	15
187	BRCA2 and Other DDR Genes in Prostate Cancer. Cancers, 2019, 11, 352.	3.7	72
188	Genetic Alterations Detected in Cell-Free DNA Are Associated With Enzalutamide and Abiraterone Resistance in Castration-Resistant Prostate Cancer. JCO Precision Oncology, 2019, 3, 1-14.	3.0	23
189	Merging new-age biomarkers and nanodiagnostics for precision prostate cancer management. Nature Reviews Urology, 2019, 16, 302-317.	3.8	86
190	Enzalutamide therapy for advanced prostate cancer: efficacy, resistance and beyond. Endocrine-Related Cancer, 2019, 26, R31-R52.	3.1	49
191	The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells. Reports on Progress in Physics, 2019, 82, 064602.	20.1	157
192	Staging the Metastatic Spectrum Through Integration of Clinical and Molecular Features. Journal of Clinical Oncology, 2019, 37, 1270-1276.	1.6	12
193	Computational modelling of resistance and associated treatment response heterogeneity in metastatic cancers. Physics in Medicine and Biology, 2019, 64, 115001.	3.0	0
194	Suppressing fatty acid uptake has therapeutic effects in preclinical models of prostate cancer. Science Translational Medicine, 2019, 11, .	12.4	210
195	Evolution of the genomic landscape of circulating tumor DNA (ctDNA) in metastatic prostate cancer over treatment and time. Cancer Treatment and Research Communications, 2019, 19, 100120.	1.7	10
196	ARv7 Represses Tumor-Suppressor Genes in Castration-Resistant Prostate Cancer. Cancer Cell, 2019, 35, 401-413.e6.	16.8	127
197	Genomic alterations of Tenascin C in highly aggressive prostate cancer: a meta-analysis. Genes and Cancer, 2019, 10, 150-159.	1.9	10
198	Genome atlas analysis based profiling of Akt pathway genes in the early and advanced human prostate cancer. Oncoscience, 2019, 6, 317-336.	2.2	6
199	Transcriptomic Heterogeneity of Androgen Receptor Activity Defines a <i>de novo</i> low AR-Active Subclass in Treatment NaÃ⁻ve Primary Prostate Cancer. Clinical Cancer Research, 2019, 25, 6721-6730.	7.0	74
200	Transcriptomic and Clinical Characterization of Neuropeptide Y Expression in Localized and Metastatic Prostate Cancer: Identification of Novel Prostate Cancer Subtype with Clinical Implications. European Urology Oncology, 2019, 2, 405-412.	5.4	14
201	Assessing the Concordance of Genomic Alterations between Circulating-Free DNA and Tumour Tissue in Cancer Patients. Cancers, 2019, 11, 1938.	3.7	23
202	Characterization of a Prostate- and Prostate Cancer-Specific Circular RNA Encoded by the Androgen Receptor Gene. Molecular Therapy - Nucleic Acids, 2019, 18, 916-926.	5.1	30

#	Article	IF	CITATIONS
203	Clinical implications of genetic aberrations in metastatic prostate cancer. Current Opinion in Urology, 2019, 29, 319-325.	1.8	0
204	Genomic Alteration Burden in Advanced Prostate Cancer and Therapeutic Implications. Frontiers in Oncology, 2019, 9, 1287.	2.8	22
205	FOXA1 upregulation promotes enhancer and transcriptional reprogramming in endocrine-resistant breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26823-26834.	7.1	103
206	Development of patient-derived xenograft models of prostate cancer for maintaining tumor heterogeneity. Translational Andrology and Urology, 2019, 8, 519-528.	1.4	19
207	Biologic Significance of Magnetic Resonance Imaging Invisibility in Localized Prostate Cancer. JCO Precision Oncology, 2019, 3, 1-12.	3.0	9
208	Circulating Tumor Cells as a Predictor of Treatment Response in Clinically Localized Prostate Cancer. JCO Precision Oncology, 2019, 3, 1-9.	3.0	18
209	Plasma Androgen Receptor Copy Number Status at Emergence of Metastatic Castration-Resistant Prostate Cancer: A Pooled Multicohort Analysis. JCO Precision Oncology, 2019, 3, 1-13.	3.0	15
210	Epigenetic Therapy with Panobinostat Combined with Bicalutamide Rechallenge in Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2019, 25, 52-63.	7.0	44
211	Multifocal Primary Prostate Cancer Exhibits High Degree of Genomic Heterogeneity. European Urology, 2019, 75, 498-505.	1.9	108
212	An overview of translational prostate cancer cohorts for prognostic and predictive studies. Histopathology, 2019, 74, 161-170.	2.9	1
213	Circulating tumor DNA in advanced prostate cancer: transitioning from discovery to a clinically implemented test. Prostate Cancer and Prostatic Diseases, 2019, 22, 195-205.	3.9	39
214	Active surveillance for prostate and thyroid cancers: evolution in clinical paradigms and lessons learned. Nature Reviews Clinical Oncology, 2019, 16, 168-184.	27.6	41
215	Downregulation of IQGAP2 Correlates with Prostate Cancer Recurrence and Metastasis. Translational Oncology, 2019, 12, 236-244.	3.7	17
216	Circulating tumor DNA alterations in patients with metastatic castrationâ€resistant prostate cancer. Cancer, 2019, 125, 1459-1469.	4.1	38
217	Genome-wide CRISPR screens reveal synthetic lethality of RNASEH2 deficiency and ATR inhibition. Oncogene, 2019, 38, 2451-2463.	5.9	97
218	SMC1A is associated with radioresistance in prostate cancer and acts by regulating epithelialâ€mesenchymal transition and cancer stemâ€like properties. Molecular Carcinogenesis, 2019, 58, 113-125.	2.7	26
219	RB1 Heterogeneity in Advanced Metastatic Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2019, 25, 687-697.	7.0	43
220	DNA Damage Response in Prostate Cancer. Cold Spring Harbor Perspectives in Medicine, 2019, 9,	6.2	40

#	Article	IF	CITATIONS
221	Genetically Engineered Mouse Models of Prostate Cancer in the Postgenomic Era. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a030528.	6.2	36
222	Update on Systemic Prostate Cancer Therapies: Management of Metastatic Castration-resistant Prostate Cancer in the Era of Precision Oncology. European Urology, 2019, 75, 88-99.	1.9	333
223	The Genomics of Prostate Cancer: A Historic Perspective. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a034942.	6.2	11
224	Epigenetic polypharmacology: A new frontier for epiâ€drug discovery. Medicinal Research Reviews, 2020, 40, 190-244.	10.5	74
225	Clinical utility of emerging biomarkers in prostate cancer liquid biopsies. Expert Review of Molecular Diagnostics, 2020, 20, 219-230.	3.1	36
226	Androgen receptor co-regulation in prostate cancer. Asian Journal of Urology, 2020, 7, 219-232.	1.2	28
227	The pan-therapeutic resistance of disseminated tumor cells: Role of phenotypic plasticity and the metastatic microenvironment. Seminars in Cancer Biology, 2020, 60, 138-147.	9.6	26
228	68Ca-PSMA-PET/CT and Diffusion MRI Targeting for Cone-Beam CT-Guided Bone Biopsies of Castration-Resistant Prostate Cancer Patients. CardioVascular and Interventional Radiology, 2020, 43, 147-154.	2.0	8
229	Discordant and heterogeneous clinically relevant genomic alterations in circulating tumor cells vs plasma DNA from men with metastatic castration resistant prostate cancer. Genes Chromosomes and Cancer, 2020, 59, 225-239.	2.8	18
230	ING5 inhibits cancer aggressiveness by inhibiting Akt and activating p53 in prostate cancer. Cell Biology International, 2020, 44, 242-252.	3.0	11
231	SIRPB1 promotes prostate cancer cell proliferation via Akt activation. Prostate, 2020, 80, 352-364.	2.3	12
232	LRP11 activates β-catenin to induce PD-L1 expression in prostate cancer. Journal of Drug Targeting, 2020, 28, 508-515.	4.4	18
233	Exploitation of CD133 for the Targeted Imaging of Lethal Prostate Cancer. Clinical Cancer Research, 2020, 26, 1054-1064.	7.0	15
234	Significance of <i>BRCA2</i> and <i>RB1</i> Co-loss in Aggressive Prostate Cancer Progression. Clinical Cancer Research, 2020, 26, 2047-2064.	7.0	77
235	A MYC and RAS co-activation signature in localized prostate cancer drives bone metastasis and castration resistance. Nature Cancer, 2020, 1, 1082-1096.	13.2	49
236	Prostate cancer evolution from multilineage primary to single lineage metastases with implications for liquid biopsy. Nature Communications, 2020, 11, 5070.	12.8	44
237	Anti-tumor activities and mechanisms of Traditional Chinese medicines formulas: A review. Biomedicine and Pharmacotherapy, 2020, 132, 110820.	5.6	43
238	TGF-β causes Docetaxel resistance in Prostate Cancer via the induction of Bcl-2 by acetylated KLF5 and Protein Stabilization. Theranostics, 2020, 10, 7656-7670.	10.0	34

	CITATION RI	CITATION REPORT	
#	Article	IF	CITATIONS
239	The DNA methylation landscape of advanced prostate cancer. Nature Genetics, 2020, 52, 778-789.	21.4	198
240	Neuroendocrine differentiation in usualâ€type prostatic adenocarcinoma: Molecular characterization and clinical significance. Prostate, 2020, 80, 1012-1023.	2.3	22
241	Accelerating precision medicine in metastatic prostate cancer. Nature Cancer, 2020, 1, 1041-1053.	13.2	45
242	Clinical Actionability of the Genomic Landscape of Metastatic Castration Resistant Prostate Cancer. Cells, 2020, 9, 2494.	4.1	13
243	Cell Plasticity-Related Phenotypes and Taxanes Resistance in Castration-Resistant Prostate Cancer. Frontiers in Oncology, 2020, 10, 594023.	2.8	7
244	Clinical proteomics for prostate cancer: understanding prostate cancer pathology and protein biomarkers for improved disease management. Clinical Proteomics, 2020, 17, 41.	2.1	20
245	Identification of transcription factor co-regulators that drive prostate cancer progression. Scientific Reports, 2020, 10, 20332.	3.3	19
246	Identification of long non-coding RNAs in advanced prostate cancer associated with androgen receptor splicing factors. Communications Biology, 2020, 3, 393.	4.4	34
247	Genomic Profiles of De Novo High- and Low-Volume Metastatic Prostate Cancer: Results From a 2-Stage Feasibility and Prevalence Study in the STAMPEDE Trial. JCO Precision Oncology, 2020, 4, 882-897.	3.0	22
248	Personal Medicine and Bone Metastases: Biomarkers, Micro-RNAs and Bone Metastases. Cancers, 2020, 12, 2109.	3.7	23
249	Multiplex Digital PCR to Detect Amplifications of Specific Androgen Receptor Loci in Cell-Free DNA for Prognosis of Metastatic Castration-Resistant Prostate Cancer. Cancers, 2020, 12, 2139.	3.7	8
250	Cx43 Present at the Leading Edge Membrane Governs Promigratory Effects of Osteoblast-Conditioned Medium on Human Prostate Cancer Cells in the Context of Bone Metastasis. Cancers, 2020, 12, 3013.	3.7	3
251	Development and Validation of a Novel TP53 Mutation Signature That Predicts Risk of Metastasis in Primary Prostate Cancer. Clinical Genitourinary Cancer, 2020, 19, 246-254.e5.	1.9	9
252	Genetic manipulation of LKB1 elicits lethal metastatic prostate cancer. Journal of Experimental Medicine, 2020, 217, .	8.5	19
253	Omics Derived Biomarkers and Novel Drug Targets for Improved Intervention in Advanced Prostate Cancer. Diagnostics, 2020, 10, 658.	2.6	7
254	Genetic testing for the clinician in prostate cancer. Expert Review of Molecular Diagnostics, 2020, 20, 933-946.	3.1	4
255	Phosphoinositideâ€dependent Kinaseâ€1 (PDPK1) regulates serum/glucocorticoidâ€regulated Kinase 3 (SGK3) for prostate cancer cell survival. Journal of Cellular and Molecular Medicine, 2020, 24, 12188-12198.	3.6	19
256	Somatic Mitochondrial DNA Point Mutations Used as Biomarkers to Demonstrate Genomic Heterogeneity in Primary Prostate Cancer. Prostate Cancer, 2020, 2020, 1-10.	0.6	3

#	Article	IF	CITATIONS
257	Histone methyltransferase DOT1L coordinates AR and MYC stability in prostate cancer. Nature Communications, 2020, 11, 4153.	12.8	62
258	Anticancer Imidazoacridinone C-1311 is Effective in Androgen-Dependent and Androgen-Independent Prostate Cancer Cells. Biomedicines, 2020, 8, 292.	3.2	5
259	Neuroendocrine and Aggressive-Variant Prostate Cancer. Cancers, 2020, 12, 3792.	3.7	42
260	Prior PSMA PET-CT Imaging and Hounsfield Unit Impact on Tumor Yield and Success of Molecular Analyses from Bone Biopsies in Metastatic Prostate Cancer. Cancers, 2020, 12, 3756.	3.7	4
261	Mutation Spectra of the MRN (MRE11, RAD50, NBS1/NBN) Break Sensor in Cancer Cells. Cancers, 2020, 12, 3794.	3.7	10
262	Androgen Receptor Signaling Pathway in Prostate Cancer: From Genetics to Clinical Applications. Cells, 2020, 9, 2653.	4.1	98
263	Role of SPTSSB-Regulated de Novo Sphingolipid Synthesis in Prostate Cancer Depends on Androgen Receptor Signaling. IScience, 2020, 23, 101855.	4.1	8
264	<p>Targeting elF3f Suppresses the Growth of Prostate Cancer Cells by Inhibiting Akt Signaling</p> . OncoTargets and Therapy, 2020, Volume 13, 3739-3750.	2.0	5
265	Proteomic Tissue-Based Classifier for Early Prediction of Prostate Cancer Progression. Cancers, 2020, 12, 1268.	3.7	8
266	Molecular and Clinical Relevance of ZBTB38 Expression Levels in Prostate Cancer. Cancers, 2020, 12, 1106.	3.7	9
267	Oncogenic Genomic Alterations, Clinical Phenotypes, and Outcomes in Metastatic Castration-Sensitive Prostate Cancer. Clinical Cancer Research, 2020, 26, 3230-3238.	7.0	112
268	Somatic Tissue Engineering in Mouse Models Reveals an Actionable Role for WNT Pathway Alterations in Prostate Cancer Metastasis. Cancer Discovery, 2020, 10, 1038-1057.	9.4	37
269	Ribonucleotide reductase small subunit M2 is a master driver of aggressive prostate cancer. Molecular Oncology, 2020, 14, 1881-1897.	4.6	22
270	Targeting the PI3K/AKT Pathway Overcomes Enzalutamide Resistance by Inhibiting Induction of the Glucocorticoid Receptor. Molecular Cancer Therapeutics, 2020, 19, 1436-1447.	4.1	31
271	Effects of estrogen receptor signaling on prostate cancer carcinogenesis. Translational Research, 2020, 222, 56-66.	5.0	7
272	Targeting RET Kinase in Neuroendocrine Prostate Cancer. Molecular Cancer Research, 2020, 18, 1176-1188.	3.4	23
273	When Less Is More: Specific Capture and Analysis of Tumor Exosomes in Plasma Increases the Sensitivity of Liquid Biopsy for Comprehensive Detection of Multiple Androgen Receptor Phenotypes in Advanced Prostate Cancer Patients. Biomedicines, 2020, 8, 131.	3.2	33
274	Doublecortin Expression in Prostate Adenocarcinoma and Neuroendocrine Tumors. International Journal of Radiation Oncology Biology Physics, 2020, 108, 936-940.	0.8	3

#	Article	IF	CITATIONS
275	Cellular rewiring in lethal prostate cancer: the architect of drug resistance. Nature Reviews Urology, 2020, 17, 292-307.	3.8	59
276	Plasma cell-free DNA-based predictors of response to abiraterone acetate/prednisone and prognostic factors in metastatic castration-resistant prostate cancer. Prostate Cancer and Prostatic Diseases, 2020, 23, 705-713.	3.9	17
277	HO-1 Interactors Involved in the Colonization of the Bone Niche: Role of ANXA2 in Prostate Cancer Progression. Biomolecules, 2020, 10, 467.	4.0	13
278	Loss of copy of MIR1-2 increases CDK4 expression in ileal neuroendocrine tumors. Oncogenesis, 2020, 9, 37.	4.9	3
279	A genomic and epigenomic atlas of prostate cancer in Asian populations. Nature, 2020, 580, 93-99.	27.8	183
280	<p>ELL2 Is Required for the Growth and Survival of AR-Negative Prostate Cancer Cells</p> . Cancer Management and Research, 2020, Volume 12, 4411-4427.	1.9	6
281	LncRNA <i>HORAS5</i> promotes taxane resistance in castration-resistant prostate cancer via a BCL2A1-dependent mechanism. Epigenomics, 2020, 12, 1123-1138.	2.1	17
282	Imaging Fibroblast Activation Protein Alpha Improves Diagnosis of Metastatic Prostate Cancer with Positron Emission Tomography. Clinical Cancer Research, 2020, 26, 4882-4891.	7.0	32
283	Decoding the evolutionary response to prostate cancer therapy by plasma genome sequencing. Genome Biology, 2020, 21, 162.	8.8	14
284	Malignancies in immune deficiencies. , 2020, , 1079-1096.		0
285	Down-regulation of ADRB2 expression is associated with small cell neuroendocrine prostate cancer and adverse clinical outcomes in castration-resistant prostate cancer. Urologic Oncology: Seminars and Original Investigations, 2020, 38, 931.e9-931.e16.	1.6	4
286	Identifying the key genes and microRNAs in prostate cancer bone metastasis by bioinformatics analysis. FEBS Open Bio, 2020, 10, 674-688.	2.3	33
287	<p>KLF16 Affects the MYC Signature and Tumor Growth in Prostate Cancer</p> . OncoTargets and Therapy, 2020, Volume 13, 1303-1310.	2.0	14
288	Identification of Novel Prognosis and Prediction Markers in Advanced Prostate Cancer Tissues Based on Quantitative Proteomics. Cancer Genomics and Proteomics, 2020, 17, 195-208.	2.0	21
289	BATCAVE: calling somatic mutations with a tumor- and site-specific prior. NAR Genomics and Bioinformatics, 2020, 2, Iqaa004.	3.2	1
290	DNA-PK, Nuclear mTOR, and the Androgen Pathway in Prostate Cancer. Trends in Cancer, 2020, 6, 337-347.	7.4	20
291	Cancer transcriptomic profiling from rapidly enriched circulating tumor cells. International Journal of Cancer, 2020, 146, 2845-2854.	5.1	7
292	Circulating cell-free DNA: Translating prostate cancer genomics into clinical care. Molecular Aspects of Medicine, 2020, 72, 100837.	6.4	6

#	Article	IF	CITATIONS
293	A Novel Prostate Cell Type-Specific Gene Signature to Interrogate Prostate Tumor Differentiation Status and Monitor Therapeutic Response. Cancers, 2020, 12, 176.	3.7	9
294	Intron retention is a hallmark and spliceosome represents a therapeutic vulnerability in aggressive prostate cancer. Nature Communications, 2020, 11, 2089.	12.8	83
295	Current Perspectives on Circulating Tumor DNA, Precision Medicine, and Personalized Clinical Management of Cancer. Molecular Cancer Research, 2020, 18, 517-528.	3.4	60
296	Genetic characterization of a unique neuroendocrine transdifferentiation prostate circulating tumor cell-derived eXplant model. Nature Communications, 2020, 11, 1884.	12.8	62
297	Diverse <i>AR</i> Gene Rearrangements Mediate Resistance to Androgen Receptor Inhibitors in Metastatic Prostate Cancer. Clinical Cancer Research, 2020, 26, 1965-1976.	7.0	55
298	CHD1 and SPOP synergistically protect prostate epithelial cells from DNA damage. Prostate, 2021, 81, 81-88.	2.3	9
299	TP53 alterations of hormone-naÃ⁻ve prostate cancer in the Chinese population. Prostate Cancer and Prostatic Diseases, 2021, 24, 482-491.	3.9	21
300	Molecular pathology of prostate cancer: a practical approach. Pathology, 2021, 53, 36-43.	0.6	17
301	Genomic and phenotypic heterogeneity in prostate cancer. Nature Reviews Urology, 2021, 18, 79-92.	3.8	215
302	Astragaloside Ⅳ enhanced carboplatin sensitivity in prostate cancer by suppressing AKT/NF-κB signaling pathway. Biochemistry and Cell Biology, 2021, 99, 214-222.	2.0	10
303	Real-time visual transmission mechanism of graphics diversity based on mobile 3D graphics matching algorithm. International Journal of Computers and Applications, 2021, 43, 340-345.	1.3	0
304	N6-methyladenosine RNA methylation regulators contribute to the progression of prostate cancer. Journal of Cancer, 2021, 12, 682-692.	2.5	30
305	New Prognostic Biomarkers in Metastatic Castration-Resistant Prostate Cancer. Cells, 2021, 10, 193.	4.1	26
306	Targeting the p300/CBP Axis in Lethal Prostate Cancer. Cancer Discovery, 2021, 11, 1118-1137.	9.4	124
307	Genomic Profiling of Prostate Cancer: An Updated Review. World Journal of Men?s Health, 2022, 40, 368.	3.3	19
308	The Transcriptomic Landscape of Prostate Cancer Development and Progression: An Integrative Analysis. Cancers, 2021, 13, 345.	3.7	6
309	Post-transcriptional Gene Regulation by MicroRNA-194 Promotes Neuroendocrine Transdifferentiation in Prostate Cancer. Cell Reports, 2021, 34, 108585.	6.4	33
310	Reviving the Autopsy for Modern Cancer Evolution Research. Cancers, 2021, 13, 409.	3.7	5

#	Article	IF	CITATIONS
311	Large remodeling of the Myc-induced cell surface proteome in B cells and prostate cells creates new opportunities for immunotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	8
312	Leelamine suppresses cMyc expression in prostate cancer cells in vitro and inhibits prostate carcinogenesis in vivo. , 2021, 7, .		2
313	Non-Coding RNAs Set a New Phenotypic Frontier in Prostate Cancer Metastasis and Resistance. International Journal of Molecular Sciences, 2021, 22, 2100.	4.1	13
314	Susceptibility-Associated Genetic Variation in <i>NEDD9</i> Contributes to Prostate Cancer Initiation and Progression. Cancer Research, 2021, 81, 3766-3776.	0.9	4
315	MAPK4 promotes prostate cancer by concerted activation of androgen receptor and AKT. Journal of Clinical Investigation, 2021, 131, .	8.2	31
316	Inter- and intra-tumor heterogeneity of metastatic prostate cancer determined by digital spatial gene expression profiling. Nature Communications, 2021, 12, 1426.	12.8	176
317	Current Status and Future Perspectives of Androgen Receptor Inhibition Therapy for Prostate Cancer: A Comprehensive Review. Biomolecules, 2021, 11, 492.	4.0	26
318	A noncanonical AR addiction drives enzalutamide resistance in prostate cancer. Nature Communications, 2021, 12, 1521.	12.8	43
319	Discovery of JNJ-63576253, a Next-Generation Androgen Receptor Antagonist Active Against Wild-Type and Clinically Relevant Ligand Binding Domain Mutations in Metastatic Castration-Resistant Prostate Cancer. Molecular Cancer Therapeutics, 2021, 20, 763-774.	4.1	2
320	Epigenetic and transcriptional analysis reveals a core transcriptional program conserved in clonal prostate cancer metastases. Molecular Oncology, 2021, 15, 1942-1955.	4.6	10
322	ARIH1 signaling promotes anti-tumor immunity by targeting PD-L1 for proteasomal degradation. Nature Communications, 2021, 12, 2346.	12.8	52
323	Genomic Testing in Patients with Metastatic Castration-resistant Prostate Cancer: A Pragmatic Guide for Clinicians. European Urology, 2021, 79, 519-529.	1.9	30
324	Expression of ISL1 and its partners in prostate cancer progression and neuroendocrine differentiation. Journal of Cancer Research and Clinical Oncology, 2021, 147, 2223-2231.	2.5	4
326	Plasma Cell–Free DNA Profiling of PTEN-PI3K-AKT Pathway Aberrations in Metastatic Castration-Resistant Prostate Cancer. JCO Precision Oncology, 2021, 5, 622-637.	3.0	18
327	Biopolymer and Biomaterial Conjugated Iron Oxide Nanomaterials as Prostate Cancer Theranostic Agents: A Comprehensive Review. Symmetry, 2021, 13, 974.	2.2	5
328	Flightless I Homolog Reverses Enzalutamide Resistance through PD-L1–Mediated Immune Evasion in Prostate Cancer. Cancer Immunology Research, 2021, 9, 838-852.	3.4	12
330	Smoothened loss is a characteristic of neuroendocrine prostate cancer. Prostate, 2021, 81, 508-520.	2.3	6
331	A Rare Variant in ERF (rs144812092) Predisposes to Prostate and Bladder Cancers in an Extended Pedigree. Cancers, 2021, 13, 2399.	3.7	4

#	Article	IF	CITATIONS
332	Thorny ground, rocky soil: Tissue-specific mechanisms of tumor dormancy and relapse. Seminars in Cancer Biology, 2022, 78, 104-123.	9.6	17
333	Castration-Induced Downregulation of SPARC in Stromal Cells Drives Neuroendocrine Differentiation of Prostate Cancer. Cancer Research, 2021, 81, 4257-4274.	0.9	11
334	CD38 in Advanced Prostate Cancers. European Urology, 2021, 79, 736-746.	1.9	21
335	MCM2-7 complex is a novel druggable target for neuroendocrine prostate cancer. Scientific Reports, 2021, 11, 13305.	3.3	20
336	Evolution of Castration-Resistant Prostate Cancer in ctDNA during Sequential Androgen Receptor Pathway Inhibition. Clinical Cancer Research, 2021, 27, 4610-4623.	7.0	41
337	Identification of crucial genes and pathways associated with prostate cancer in multiple databases. Journal of International Medical Research, 2021, 49, 030006052110166.	1.0	6
338	Site-Specific and Common Prostate Cancer Metastasis Genes as Suggested by Meta-Analysis of Gene Expression Data. Life, 2021, 11, 636.	2.4	7
339	Androgen receptor expression in breast cancer: Implications on prognosis and treatment, a brief review. Molecular and Cellular Endocrinology, 2021, 531, 111324.	3.2	13
340	Bulk and single-cell transcriptome profiling reveal the metabolic heterogeneity in human breast cancers. Molecular Therapy, 2021, 29, 2350-2365.	8.2	49
341	Circulating androgen receptor gene amplification and resistance to 177Lu-PSMA-617 in metastatic castration-resistant prostate cancer: results of a Phase 2 trial. British Journal of Cancer, 2021, 125, 1226-1232.	6.4	13
342	Alternative RNA Splicing—The Trojan Horse of Cancer Cells in Chemotherapy. Genes, 2021, 12, 1085.	2.4	13
343	Multiplexed functional genomic analysis of 5' untranslated region mutations across the spectrum of prostate cancer. Nature Communications, 2021, 12, 4217.	12.8	30
344	Overexpression of claspin promotes docetaxel resistance and is associated with prostateâ€specific antigen recurrence in prostate cancer. Cancer Medicine, 2021, 10, 5574-5588.	2.8	11
345	HOXB5 Overexpression Is Associated with Neuroendocrine Differentiation and Poor Prognosis in Prostate Cancer. Biomedicines, 2021, 9, 893.	3.2	2
346	Antibody Therapy Targeting Cancer-Specific Cell Surface Antigen AGR2. , 0, , .		0
347	SUMOylation activates large tumour suppressor 1 to maintain the tissue homeostasis during Hippo signalling. Oncogene, 2021, 40, 5357-5366.	5.9	2
348	DDX52 knockdown inhibits the growth of prostate cancer cells by regulating c-Myc signaling. Cancer Cell International, 2021, 21, 430.	4.1	4
349	Somatic Alterations Impact AR Transcriptional Activity and Efficacy of AR-Targeting Therapies in Prostate Cancer. Cancers, 2021, 13, 3947.	3.7	5

#	Article	IF	CITATIONS
350	The heterogeneity of prostate cancers lacking AR activity will require diverse treatment approaches. Endocrine-Related Cancer, 2021, 28, T51-T66.	3.1	28
351	Multi-Dimensional Scaling Analysis of Key Regulatory Genes in Prostate Cancer Using the TCGA Database. Genes, 2021, 12, 1350.	2.4	2
352	Anticancer Effects of I-BET151, an Inhibitor of Bromodomain and Extra-Terminal Domain Proteins. Frontiers in Oncology, 2021, 11, 716830.	2.8	5
353	Impact of STAT Proteins in Tumor Progress and Therapy Resistance in Advanced and Metastasized Prostate Cancer. Cancers, 2021, 13, 4854.	3.7	12
354	Chemotherapy in metastatic castration-resistant prostate cancer: Current scenario and future perspectives. Cancer Letters, 2021, 523, 162-169.	7.2	24
355	SPOP and <i>CHD1</i> alterations in prostate cancer: Relationship with PTEN loss, tumor grade, perineural infiltration, and PSA recurrence. Prostate, 2021, 81, 1267-1277.	2.3	7
356	Molecular Basis of Prostate Cancer and Natural Products as Potential Chemotherapeutic and Chemopreventive Agents. Frontiers in Pharmacology, 2021, 12, 738235.	3.5	13
357	Concordance of DNA Repair Gene Mutations in Paired Primary Prostate Cancer Samples and Metastatic Tissue or Cell-Free DNA. JAMA Oncology, 2021, 7, 1378.	7.1	40
358	Case Report: Systemic Treatment and Serial Genomic Sequencing of Metastatic Prostate Adenocarcinoma Progressing to Small Cell Carcinoma. Frontiers in Oncology, 2021, 11, 732071.	2.8	2
359	Metastatic Castration-Resistant Prostate Cancer Remains Dependent on Oncogenic Drivers Found in Primary Tumors. JCO Precision Oncology, 2021, 5, 1514-1522.	3.0	6
360	Prognosis Associated With Luminal and Basal Subtypes of Metastatic Prostate Cancer. JAMA Oncology, 2021, 7, 1644.	7.1	21
361	Discovery of a new candidate drug to overcome cabazitaxel-resistant gene signature in castration-resistant prostate cancer by in silico screening. Prostate Cancer and Prostatic Diseases, 2023, 26, 59-66.	3.9	10
362	Clinical outcomes and molecular profiling of advanced metastatic castration-resistant prostate cancer patients treated with 225Ac-PSMA-617 targeted alpha-radiation therapy. Urologic Oncology: Seminars and Original Investigations, 2021, 39, 729.e7-729.e16.	1.6	34
363	Clinical significance of EPHX2 deregulation in prostate cancer. Asian Journal of Andrology, 2021, 23, 109.	1.6	10
364	Toll-like receptor 4 signaling activates ERG function in prostate cancer and provides a therapeutic target. NAR Cancer, 2021, 3, zcaa046.	3.1	7
365	Germline and Somatic Defects in DNA Repair Pathways in Prostate Cancer. Advances in Experimental Medicine and Biology, 2019, 1210, 279-300.	1.6	7
366	Novel Junction-specific and Quantifiable In Situ Detection of AR-V7 and its Clinical Correlates in Metastatic Castration-resistant Prostate Cancer. European Urology, 2018, 73, 727-735.	1.9	55
368	Multiparametric liquid biopsy analysis in metastatic prostate cancer. JCI Insight, 2019, 4, .	5.0	45

# 369	ARTICLE Supraphysiological androgens suppress prostate cancer growth through androgen receptor–mediated DNA damage. Journal of Clinical Investigation, 2019, 129, 4245-4260.	IF 8.2	CITATIONS 67
370	Molecular profiling stratifies diverse phenotypes of treatment-refractory metastatic castration-resistant prostate cancer. Journal of Clinical Investigation, 2019, 129, 4492-4505.	8.2	250
371	Circulating tumor DNA profile recognizes transformation to castration-resistant neuroendocrine prostate cancer. Journal of Clinical Investigation, 2020, 130, 1653-1668.	8.2	122
372	ERG orchestrates chromatin interactions to drive prostate cell fate reprogramming. Journal of Clinical Investigation, 2020, 130, 5924-5941.	8.2	29
373	ATR inhibition controls aggressive prostate tumors deficient in Y-linked histone demethylase KDM5D. Journal of Clinical Investigation, 2018, 128, 2979-2995.	8.2	53
374	Recent advances in prostate cancer research: large-scale genomic analyses reveal novel driver mutations and DNA repair defects. F1000Research, 2018, 7, 1173.	1.6	37
375	The INO80 chromatin remodeler sustains metabolic stability by promoting TOR signaling and regulating histone acetylation. PLoS Genetics, 2018, 14, e1007216.	3.5	23
376	Personalizing Therapy for Metastatic Prostate Cancer: The Role of Solid and Liquid Tumor Biopsies. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2017, 37, 358-369.	3.8	8
377	p300 is upregulated by docetaxel and is a target in chemoresistant prostate cancer. Endocrine-Related Cancer, 2020, 27, 187-198.	3.1	17
378	Establishment and characterization of patient-derived xenografts for hormone-naÃ ⁻ ve and castrate-resistant prostate cancers to improve treatment modality evaluation. Aging, 2020, 12, 3848-3861.	3.1	5
379	Upregulation of FAM84B during prostate cancer progression. Oncotarget, 2017, 8, 19218-19235.	1.8	26
380	Androgen receptor amplification is concordant between circulating tumor cells and biopsies from men undergoing treatment for metastatic castration resistant prostate cancer. Oncotarget, 2017, 8, 71447-71455.	1.8	23
381	Increased HSF1 expression predicts shorter disease-specific survival of prostate cancer patients following radical prostatectomy. Oncotarget, 2018, 9, 31200-31213.	1.8	19
382	A comparative assessment of clinical whole exome and transcriptome profiling across sequencing centers: implications for precision cancer medicine. Oncotarget, 2016, 7, 52888-52899.	1.8	18
383	ONECUT2 Is a Targetable Master Regulator of Lethal Prostate Cancer That Suppresses the Androgen Axis. SSRN Electronic Journal, 0, , .	0.4	1
384	Understanding cancer lineage plasticity: reversing therapeutic resistance in metastatic prostate cancer. Pharmacogenomics, 2017, 18, 597-600.	1.3	8
385	ZNF24 is upregulated in prostate cancer and facilitates the epithelial‑to‑mesenchymal transition through the regulation of Twist1. Oncology Letters, 2020, 19, 3593-3601.	1.8	8
386	SRSF6 regulates alternative splicing of genes involved in DNA damage response and DNA repair in HeLa cells. Oncology Reports, 2020, 44, 1851-1862.	2.6	13

#	Article	IF	CITATIONS
387	The role of peroxisome proliferator-activated receptor gamma in prostate cancer. Asian Journal of Andrology, 2018, 20, 238.	1.6	39
388	Targeted next-generation sequencing for locally advanced prostate cancer in the Korean population. Investigative and Clinical Urology, 2020, 61, 127.	2.0	8
389	Circulating Tumour DNA as a Biomarker Source in Metastatic Prostate Cancer. Société Internationale D'urologie Journal, 2020, 1, 39-48.	0.4	3
390	MINTIE: identifying novel structural and splice variants in transcriptomes using RNA-seq data. Genome Biology, 2021, 22, 296.	8.8	16
391	Systematic study on expression and prognosis of E2Fs in human colorectal cancer. International Journal of Clinical Oncology, 2022, 27, 362-372.	2.2	0
392	Network-Based Analysis to Identify Drivers of Metastatic Prostate Cancer Using GoNetic. Cancers, 2021, 13, 5291.	3.7	2
393	APOBEC Mutagenesis and Copy Number Alterations are Drivers of Proteogenomic Tumor Evolution and Heterogeneity in Metastatic Thoracic Tumors. SSRN Electronic Journal, 0, , .	0.4	1
394	Prognostic and predictive biomarkers of prostate cancer. Onkourologiya, 2018, 13, 111-121.	0.3	3
395	Integration of Genomic and Transcriptomic Features in Pancreatic Cancer Reveals Increased Cell Cycle Progression in Metastases. SSRN Electronic Journal, 0, , .	0.4	0
399	Molecular Pathology of Genitourinary Cancers: Translating the Cancer Genome to theÂClinic. , 2019, , 419-443.		0
400	Unifying Next-Generation Biomarkers and Nanodiagnostic Platforms for Precision Prostate Cancer Management. Springer Theses, 2019, , 1-29.	0.1	0
405	Comprehensive Molecular Characterization of Urological Malignancies: Literature Review of Landmark Studies. The Korean Journal of Urological Oncology, 2019, 17, 125-135.	0.1	1
409	KRAS, BRAF, PIK3CA mutation frequency of radical prostatectomy samples and review of the literature. Aging Male, 2020, 23, 1627-1641.	1.9	4
410	Attenuation of SRC Kinase Activity Augments PARP Inhibitor–mediated Synthetic Lethality in <i>BRCA2</i> -altered Prostate Tumors. Clinical Cancer Research, 2021, 27, 1792-1806.	7.0	13
411	Antibody profiling of patients with prostate cancer reveals differences in antibody signatures among disease stages. , 2020, 8, e001510.		9
414	Opposing transcriptional programs of KLF5 and AR emerge during therapy for advanced prostate cancer. Nature Communications, 2021, 12, 6377.	12.8	16
416	Androgen action in prostate function and disease. American Journal of Clinical and Experimental Urology, 2018, 6, 62-77.	0.4	37
417	Predictive and targeting value of IGFBP-3 in therapeutically resistant prostate cancer. American Journal of Clinical and Experimental Urology, 2019, 7, 188-202.	0.4	8

#	Article	IF	CITATIONS
418	Genetic alterations of interleukin-17 and related genes in human prostate cancer. American Journal of Clinical and Experimental Urology, 2019, 7, 352-377.	0.4	1
419	Protein tyrosine kinase 6 signaling in prostate cancer. American Journal of Clinical and Experimental Urology, 2020, 8, 1-8.	0.4	7
420	Genome and transcriptome profiling of family in human prostate cancer. American Journal of Clinical and Experimental Urology, 2020, 8, 116-128.	0.4	0
421	Gene polymorphism-related differences in the outcomes of abiraterone for prostate cancer: a systematic overview. American Journal of Cancer Research, 2021, 11, 1873-1894.	1.4	2
423	Topoisomerase II alpha inhibition can overcome taxane-resistant prostate cancer through DNA repair pathways. Scientific Reports, 2021, 11, 22284.	3.3	7
424	Clinical and genomic features of <i>SPOP</i> â€mutant prostate cancer. Prostate, 2022, 82, 260-268.	2.3	20
425	Exploring the Value of BRD9 as a Biomarker, Therapeutic Target and Co-Target in Prostate Cancer. Biomolecules, 2021, 11, 1794.	4.0	4
426	Mutant p53 elicits context-dependent pro-tumorigenic phenotypes. Oncogene, 2022, 41, 444-458.	5.9	13
427	CRISPR Screen Contributes to Novel Target Discovery in Prostate Cancer. International Journal of Molecular Sciences, 2021, 22, 12777.	4.1	16
428	The enhanced cell cycle related to the response to adjuvant therapy in pancreatic ductal adenocarcinoma. Genomics, 2021, 114, 95-106.	2.9	1
429	An adaptive method of defining negative mutation status for multi-sample comparison using next-generation sequencing. BMC Medical Genomics, 2021, 14, 32.	1.5	0
430	Dynamic prostate cancer transcriptome analysis delineates the trajectory to disease progression. Nature Communications, 2021, 12, 7033.	12.8	27
431	The emerging roles of NGS in clinical oncology and personalized medicine. Pathology Research and Practice, 2022, 230, 153760.	2.3	25
432	Patterns of Metastases Progression- the Linear Parallel Ratio. SSRN Electronic Journal, 0, , .	0.4	0
433	Genetic Landscape of Multistep Hepatocarcinogenesis. Cancers, 2022, 14, 568.	3.7	7
434	NEAR trial: A single-arm phase II trial of neoadjuvant apalutamide monotherapy and radical prostatectomy in intermediate- and high-risk prostate cancer. Prostate Cancer and Prostatic Diseases, 2022, , .	3.9	6
436	Recurrent mutations in topoisomerase IIα cause a previously undescribed mutator phenotype in human cancers. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	22
437	GM-CSF elicits antibodies to tumor-associated proteins when used as a prostate cancer vaccine adjuvant. Cancer Immunology, Immunotherapy, 2022, 71, 2267-2275.	4.2	4

ARTICLE IF CITATIONS # Autocrine Canonical Wnt Signaling Primes Noncanonical Signaling through ROR1 in Metastatic 438 0.9 15 Castration-Resistant Prostate Cancer. Cancer Research, 2022, 82, 1518-1533. <i>BRCA</i> associated prostate cancer. <i>BRCA</i> heredity of one family. 0.3 Onkourologiya, 2022, 17, 157-164. Intratumor genetic heterogeneity and clonal evolution to decode endometrial cancer progression. 440 5.9 9 Oncogene, 2022, 41, 1835-1850. AÂm6Avalue predictive of prostate cancer stemness, tumor immune landscape and immunotherapy 441 3.1 response. NAR Cancer, 2022, 4, zcac010. Systematic Pan-Cancer Analysis Reveals Molecular Characteristics and Clinical Relevance of 442 0.4 0 Serine/Arginine-Rich Splicing Factors in Human Cancers. SSRN Electronic Journal, 0, , . Data-driven design of targeted gene panels for estimating immunotherapy biomarkers. Communications Biology, 2022, 5, 156. 4.4 Non-Invasive Profiling of Advanced Prostate Cancer via Multi-Parametric Liquid Biopsy and Radiomic 444 4.1 8 Analysis. International Journal of Molecular Sciences, 2022, 23, 2571. Metabolic profiling of prostate cancer in skeletal microenvironments identifies G6PD as a key 10.3 19 mediator of growth and survival. Science Advances, 2022, 8, eabf9096. GIPC2 interacts with Fzd7 to promote prostate cancer metastasis by activating WNT signaling. 446 5.9 13 Oncogene, 2022, 41, 2609-2623. Focal p53 protein expression and lymphovascular invasion in primary prostate tumors predict 447 3.3 metastatic progression. Scientific Reports, 2022, 12, 5404. Multigene Panel Sequencing Reveals Cancer-Specific and Common Somatic Mutations in Colorectal 449 4 2.4 Cancer Patients: An Egyptian Experience. Current Issues in Molecular Biology, 2022, 44, 1332-1352. Inhibiting 3Î²HSD1 to eliminate the oncogenic effects of progesterone in prostate cancer. Cell Reports 6.5 Medicine, 2022, 3, 100561. Comprehensive genomics in androgen receptor-dependent castration-resistant prostate cancer identifies an adaptation pathway mediated by opioid receptor kappa 1. Communications Biology, 2022, 5, 451 4.4 3 299. Mesenchymal and stem-like prostate cancer linked to therapy-induced lineage plasticity and metastasis. Cell Reports, 2022, 39, 110595. 6.4 Genomic attributes of homology-directed DNA repair deficiency in metastatic prostate cancer. JCI 453 5.015 Insight, 2021, 6, . BoxCar and shotgun proteomic analyses reveal molecular networks regulated by UBR5 in prostate 454 2.2 cancer. Proteomics, 2022, 22, e2100172. The VISION Forward: Recognition and Implication of PSMAâ[~]/¹⁸F-FDG+ mCRPC. Journal of 455 5.016 Nuclear Medicine, 2022, 63, 812-815. Pathology: Hub and Integrator of Modern, Multidisciplinary [Precision] Oncology. Clinical Cancer Research, 2022, 28, 265-270.

#	Article	IF	Citations
457	Panel Informativity Optimizer. Journal of Molecular Diagnostics, 2022, 24, 697-709.	2.8	2
458	Comprehensive Assessment of Anaplastic Lymphoma Kinase in Localized and Metastatic Prostate Cancer Reveals Targetable Alterations. Cancer Research Communications, 2022, 2, 277-285.	1.7	4
461	Bone Progenitors Pull the Strings on the Early Metabolic Rewiring Occurring in Prostate Cancer Cells. Cancers, 2022, 14, 2083.	3.7	5
462	ETS transcription factor ELF3 (ESEâ€1) is a cell cycle regulator in benign and malignant prostate. FEBS Open Bio, 2022, 12, 1365-1387.	2.3	0
463	Tumor microenvironment heterogeneity an important mediator of prostate cancer progression and therapeutic resistance. Npj Precision Oncology, 2022, 6, 31.	5.4	37
464	Grade group system and plasma androgen receptor status in the first line treatment for metastatic castration resistant prostate cancer. Scientific Reports, 2022, 12, 7319.	3.3	1
465	Therapeutic Implications for Intrinsic Phenotype Classification of Metastatic Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2022, 28, 3127-3140.	7.0	11
466	MYC drives aggressive prostate cancer by disrupting transcriptional pause release at androgen receptor targets. Nature Communications, 2022, 13, 2559.	12.8	56
467	Magmas Inhibition in Prostate Cancer: A Novel Target for Treatment-Resistant Disease. Cancers, 2022, 14, 2732.	3.7	4
468	From Omics to Multi-Omics Approaches for In-Depth Analysis of the Molecular Mechanisms of Prostate Cancer. International Journal of Molecular Sciences, 2022, 23, 6281.	4.1	15
470	Androgen receptor genomic alterations and treatment resistance in metastatic prostate cancer. Prostate, 2022, 82, .	2.3	6
471	The evolving landscape of prostate cancer somatic mutations. Prostate, 2022, 82, .	2.3	8
473	Luminal androgen receptor breast cancer subtype and investigation of the microenvironment and neoadjuvant chemotherapy response. NAR Cancer, 2022, 4, .	3.1	10
474	Peroxiredoxin IV plays a critical role in cancer cell growth and radioresistance through the activation of the Akt/GSK3 signaling pathways. Journal of Biological Chemistry, 2022, 298, 102123.	3.4	8
475	Chronologically modified androgen receptor in recurrent castration-resistant prostate cancer and its therapeutic targeting. Science Translational Medicine, 2022, 14, .	12.4	12
476	The novel transcriptomic signature of angiogenesis predicts clinical outcome, tumor microenvironment and treatment response for prostate adenocarcinoma. Molecular Medicine, 2022, 28, .	4.4	3
477	Disassembly of α6β4-mediated hemidesmosomal adhesions promotes tumorigenesis in PTEN-negative prostate cancer by targeting plectin to focal adhesions. Oncogene, 2022, 41, 3804-3820.	5.9	9
478	Role of ubiquitin specific proteases in the immune microenvironment of prostate cancer: A new direction. Frontiers in Oncology, 0, 12, .	2.8	2

#	Article	IF	CITATIONS
479	KIF11: A potential prognostic biomarker for predicting bone metastasis‑free survival of prostate cancer. Oncology Letters, 2022, 24, .	1.8	4
480	Assessment of Androgen Receptor Splice Variant-7 as a Biomarker of Clinical Response in Castration-Sensitive Prostate Cancer. Clinical Cancer Research, 2022, 28, 3509-3525.	7.0	11
481	Phloretin in Benign Prostate Hyperplasia and Prostate Cancer: A Contemporary Systematic Review. Life, 2022, 12, 1029.	2.4	2
482	Deep whole-genome ctDNA chronology of treatment-resistant prostate cancer. Nature, 2022, 608, 199-208.	27.8	63
483	Somatic mutations reveal complex metastatic seeding from multifocal primary prostate cancer. International Journal of Cancer, 2023, 152, 945-951.	5.1	4
484	Genomeâ€Wide 3′â€UTR Single Nucleotide Polymorphism Association Study Identifies Significant Prostate Cancer Riskâ€Associated Functional Loci at 8p21.2 in Chinese Population. Advanced Science, 2022, 9, .	11.2	3
485	Optimization and Characterization of a Bone Culture Model to Study Prostate Cancer Bone Metastasis. Molecular Cancer Therapeutics, 2022, 21, 1360-1368.	4.1	5
486	PAM50 and Beyond: When Will Tissue Transcriptomics Guide Clinical Decision-making?. European Urology Focus, 2022, 8, 916-918.	3.1	2
487	Comprehensive analysis of androgen receptor status in prostate cancer with neuroendocrine differentiation. Frontiers in Oncology, 0, 12, .	2.8	5
488	Resistance to prostate cancer treatments. IUBMB Life, 2023, 75, 390-410.	3.4	4
489	Patterns of metastases progression- The linear parallel ratio. PLoS ONE, 2022, 17, e0274942.	2.5	6
490	Detection of <i>BRCA1</i> , <i>BRCA2</i> , and <i>ATM</i> Alterations in Matched Tumor Tissue and Circulating Tumor DNA in Patients with Prostate Cancer Screened in PROfound. Clinical Cancer Research, 2023, 29, 81-91.	7.0	19
491	Discovery of Highly Potent Daphnane Diterpenoids Uncovers Importin-β1 as a Druggable Vulnerability in Castration-Resistant Prostate Cancer. Journal of the American Chemical Society, 2022, 144, 17522-17532.	13.7	16
492	Epigenome-wide DNA methylation and transcriptome profiling of localized and locally advanced prostate cancer: Uncovering new molecular markers. Genomics, 2022, 114, 110474.	2.9	5
493	Integrated analysis reveals FOXA1 and Ku70/Ku80 as targets of ivermectin in prostate cancer. Cell Death and Disease, 2022, 13, .	6.3	5
494	To bind or not to bind: Cistromic reprogramming in prostate cancer. Frontiers in Oncology, 0, 12, .	2.8	4
496	Increased <scp><i>MYBL2</i></scp> expression in aggressive hormoneâ€sensitive prostate cancer. Molecular Oncology, 2022, 16, 3994-4010.	4.6	4
497	Intrinsic Molecular Subtypes of Metastatic Castration-Resistant Prostate Cancer. Clinical Cancer Research, 0, , .	7.0	4

#	Article	IF	CITATIONS
499	FOXA2 drives lineage plasticity and KIT pathway activation in neuroendocrine prostate cancer. Cancer Cell, 2022, 40, 1306-1323.e8.	16.8	33
500	Towards clinical implementation of circulating tumor DNA in metastatic prostate cancer: Opportunities for integration and pitfalls to interpretation. Frontiers in Oncology, 0, 12, .	2.8	6
501	Patient-Derived Xenografts and Organoids Recapitulate Castration-Resistant Prostate Cancer with Sustained Androgen Receptor Signaling. Cells, 2022, 11, 3632.	4.1	7
502	Genomic instability drives tumorigenesis and metastasis and its implications for cancer therapy. Biomedicine and Pharmacotherapy, 2023, 157, 114036.	5.6	6
503	Correlation of expression of Major Vault Protein with androgen receptor and immune checkpoint protein B7-H3, and with poor prognosis in prostate cancer. Pathology Research and Practice, 2023, 241, 154243.	2.3	2
504	Experimental in vitro, exÂvivo and in vivo models in prostate cancer research. Nature Reviews Urology, 2023, 20, 158-178.	3.8	11
505	Exploring new frontiers in prostate cancer research:ÂReport from the 2022 Coffeyâ 'Holden prostate cancer academy meeting. Prostate, 2023, 83, 207-226.	2.3	0
506	The testosterone paradox of advanced prostate cancer: mechanistic insights and clinical implications. Nature Reviews Urology, 2023, 20, 265-278.	3.8	10
508	Translational Bioinformatics for Human Reproductive Biology Research: Examples, Opportunities and Challenges for a Future Reproductive Medicine. International Journal of Molecular Sciences, 2023, 24, 4.	4.1	3
509	Novel Paired Normal Prostate and Prostate Cancer Model Cell Systems Derived from African American Patients. Cancer Research Communications, 2022, 2, 1617-1625.	1.7	Ο
510	The role and application of transcriptional repressors in cancer treatment. Archives of Pharmacal Research, 2023, 46, 1-17.	6.3	2
511	Chromosome-specific segment size alterations are determinants of prognosis in prostate cancer. Saudi Journal of Biological Sciences, 2023, 30, 103629.	3.8	0
512	CD44 occurring alternative splicing promotes cisplatin resistance and evokes tumor immune response in oral squamous cell carcinoma cells. Translational Oncology, 2023, 31, 101644.	3.7	1
513	Dissecting the effects of androgen deprivation therapy on cadherin switching in advanced prostate cancer: A molecular perspective. Oncology Research, 2022, 30, 137-155.	1.5	5
516	Harnessing transcriptionally driven chromosomal instability adaptation to target therapy-refractory lethal prostate cancer. Cell Reports Medicine, 2023, 4, 100937.	6.5	11
517	Preclinical models of prostate cancer — modelling androgen dependency and castration resistance in vitro, ex vivo and in vivo. Nature Reviews Urology, 2023, 20, 480-493.	3.8	5
518	TRIM28 promotes luminal cell plasticity in a mouse model of prostate cancer. Oncogene, 2023, 42, 1347-1359.	5.9	0
519	RB1-deficient prostate tumor growth and metastasis are vulnerable to ferroptosis induction via the E2F/ACSL4 axis. Journal of Clinical Investigation, 2023, 133, .	8.2	15

#	ARTICLE	IF	CITATIONS
520	Expression and Therapeutic Targeting of TROP-2 in Treatment-Resistant Prostate Cancer. Clinical Cancer Research, 2023, 29, 2324-2335.	7.0	7
521	Genomics of Prostate Cancer: Clinical Utility and Challenges. Acta Clinica Croatica, 2022, , .	0.2	0
523	Targeting SMYD2 inhibits prostate cancer cell growth by regulating câ€Myc signaling. Molecular Carcinogenesis, 2023, 62, 940-950.	2.7	2
524	Molecular fingerprints of nuclear genome and mitochondrial genome for early diagnosis of lung adenocarcinoma. Journal of Translational Medicine, 2023, 21, .	4.4	2
525	Insights into the metastatic cascade through research autopsies. Trends in Cancer, 2023, 9, 490-502.	7.4	5
526	Computational drug discovery for castration-resistant prostate cancers through in vitro drug response modeling. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	3
527	Isocitrate dehydrogenase 1 sustains a hybrid cytoplasmic–mitochondrial tricarboxylic acid cycle that can be targeted for therapeutic purposes in prostate cancer. Molecular Oncology, 2023, 17, 2109-2125.	4.6	2
528	Targeting PHB1 to inhibit castration-resistant prostate cancer progression in vitro and in vivo. Journal of Experimental and Clinical Cancer Research, 2023, 42, .	8.6	2
529	The DACH1 gene is frequently deleted in prostate cancer, restrains prostatic intraepithelial neoplasia, decreases DNA damage repair, and predicts therapy responses. Oncogene, 2023, 42, 1857-1873.	5.9	1
530	Novel Approaches in the Systemic Management of High-Risk Prostate Cancer. Clinical Genitourinary Cancer, 2023, 21, e485-e494.	1.9	2
531	Tumor heterogeneity: preclinical models, emerging technologies, and future applications. Frontiers in Oncology, 0, 13, .	2.8	10
532	Prostate organoids: emerging experimental tools for translational research. Journal of Clinical Investigation, 2023, 133, .	8.2	5
533	Autonomous action and cooperativity between the ONECUT2 transcription factor and its $3\hat{a}\in^2$ untranslated region. Frontiers in Cell and Developmental Biology, 0, 11, .	3.7	1
534	Hierarchical Phosphorylation of HOXB13 by mTOR Dictates Its Activity and Oncogenic Function in Prostate Cancer. Molecular Cancer Research, 2023, 21, 1050-1063.	3.4	1
535	Loss of SYNCRIP unleashes APOBEC-driven mutagenesis, tumor heterogeneity, and AR-targeted therapy resistance in prostate cancer. Cancer Cell, 2023, 41, 1427-1449.e12.	16.8	6
536	Dysbindin Domain-Containing 1 in Prostate Cancer: New Insights into Bioinformatic Validation of Molecular and Immunological Features. International Journal of Molecular Sciences, 2023, 24, 11930.	4.1	1
537	The neurological and non-neurological roles of the primary microcephaly-associated protein ASPM. Frontiers in Neuroscience, 0, 17, .	2.8	2
538	Copy number architectures define treatment-mediated selection of lethal prostate cancer clones. Nature Communications, 2023, 14, .	12.8	0

#	Article	IF	CITATIONS
539	Inhibition of the serine/threonine kinase BUB1 reverses taxane resistance in prostate cancer. IScience, 2023, 26, 107681.	4.1	2
540	Prospective clinical sequencing of 1016 Chinese prostate cancer patients: uncovering genomic characterization and race disparity. Molecular Oncology, 2023, 17, 2183-2199.	4.6	Ο
541	Increased Cell Proliferation as a Key Event in Chemical Carcinogenesis: Application in an Integrated Approach for the Testing and Assessment of Non-Genotoxic Carcinogenesis. International Journal of Molecular Sciences, 2023, 24, 13246.	4.1	2
542	Development and Validation of a New BAG-1L Specific Antibody to Quantify BAG-1L Protein Expression in Advanced Prostate Cancer Laboratory Investigation, 2023, , 100245.	3.7	0
543	Co-evolution of <i>AR</i> gene copy number and structural complexity in endocrine therapy resistant prostate cancer. NAR Cancer, 2023, 5, .	3.1	0
544	A novel GRK3-HDAC2 regulatory pathway is a key direct link between neuroendocrine differentiation and angiogenesis in prostate cancer progression. Cancer Letters, 2023, 571, 216333.	7.2	2
545	Glucocorticoid receptor-induced non-muscle caldesmon regulates metastasis in castration-resistant prostate cancer. Oncogenesis, 2023, 12, .	4.9	0
546	Phagocytosis-initiated tumor hybrid cells acquire a c-Myc-mediated quasi-polarization state for immunoevasion and distant dissemination. Nature Communications, 2023, 14, .	12.8	0
549	Targeting <i>MALAT1</i> Augments Sensitivity to PARP Inhibition by Impairing Homologous Recombination in Prostate Cancer. Cancer Research Communications, 2023, 3, 2044-2061.	1.7	1
550	Fascin-1 expression is associated with neuroendocrine prostate cancer and directly suppressed by androgen receptor. British Journal of Cancer, 0, , .	6.4	0
551	Sigma1 Regulates Lipid Droplet–Mediated Redox Homeostasis Required for Prostate Cancer Proliferation. Cancer Research Communications, 2023, 3, 2195-2210.	1.7	0
552	Introduction of Androgen Receptor Targeting shRNA Inhibits Tumor Growth in Patient-Derived Prostate Cancer Xenografts. Current Oncology, 2023, 30, 9437-9447.	2.2	0
553	Unveiling Disrupted Lipid Metabolism in Benign Prostate Hyperplasia, Prostate Cancer, and Metastatic Patients: Insights from a Colombian Nested Case–Control Study. Cancers, 2023, 15, 5465.	3.7	0
554	Integrated Genomic Analysis of Primary Prostate Tumor Foci and Corresponding Lymph Node Metastases Identifies Mutations and Pathways Associated with Metastasis. Cancers, 2023, 15, 5671.	3.7	0
555	Integrative analysis identified two subtypes and a taurine-related signature to predict the prognosis and efficacy of immunotherapy in hepatocellular carcinoma. Computational and Structural Biotechnology Journal, 2023, 21, 5561-5582.	4.1	0
556	Molecular characteristics and clinical implications of serine/arginine-rich splicing factors in human cancer. Aging, 2023, 15, 13287-13311.	3.1	0
557	Safety and pharmacokinetics of imaradenant (AZD4635) in Japanese patients with advanced solid malignancies: a phase I, open-label study. Cancer Chemotherapy and Pharmacology, 0, , .	2.3	0
558	Active DHEA uptake in the prostate gland correlates with aggressive prostate cancer. Journal of Clinical Investigation, 2023, 133, .	8.2	0

#	Article	IF	CITATIONS
559	Novel signatures of prostate cancer progression and therapeutic resistance. Expert Opinion on Therapeutic Targets, 2023, 27, 1195-1206.	3.4	0
561	Mechanism-centric regulatory network identifies NME2 and MYC programs as markers of Enzalutamide resistance in CRPC. Nature Communications, 2024, 15, .	12.8	0
562	Identification of Molecular Markers Associated with Prostate Cancer Subtypes: An Integrative Bioinformatics Approach. Biomolecules, 2024, 14, 87.	4.0	0
563	Multiregion sampling of de novo metastatic prostate cancer reveals complex polyclonality and augments clinical genotyping. Nature Cancer, 2024, 5, 114-130.	13.2	4
564	Nomogram to predict the presence of PSMA-negative but FDG-positive lesion in castration-resistant prostate cancer: a multicenter cohort study. Therapeutic Advances in Medical Oncology, 2024, 16, .	3.2	0
566	Prostate cancer: Molecular aspects, consequences, and opportunities of the multifocal nature. Biochimica Et Biophysica Acta: Reviews on Cancer, 2024, 1879, 189080.	7.4	0
567	Exploiting epigenetic targets to overcome taxane resistance in prostate cancer. Cell Death and Disease, 2024, 15, .	6.3	0
568	Molecular complexity of intraductal carcinoma of the prostate. Cancer Medicine, 2024, 13, .	2.8	0
569	Identification of recurrent BRAF non-V600 mutations in intraductal carcinoma of the prostate in Chinese populations. Neoplasia, 2024, 50, 100983.	5.3	0
570	Comparative analysis of prognosis and gene expression in prostate cancer patients with site-specific visceral metastases. Urologic Oncology: Seminars and Original Investigations, 2024, 42, 160.e1-160.e10.	1.6	0
571	In vivo genome-wide CRISPR screening identifies CITED2 as a driver of prostate cancer bone metastasis. Oncogene, 2024, 43, 1303-1315.	5.9	0
572	A platform-independent AI tumor lineage and site (ATLAS) classifier. Communications Biology, 2024, 7, .	4.4	0