Prussian Blue Nanoparticles as Multienzyme Mimetics & Scavengers

Journal of the American Chemical Society 138, 5860-5865

DOI: 10.1021/jacs.5b12070

Citation Report

#	Article	IF	CITATIONS
3	Nano-Engineered Biomimetic Optical Sensors for Glucose Monitoring in Diabetes. Sensors, 2016, 16, 1931.	2.1	27
4	In Vivo Monitoring of H ₂ O ₂ with Polydopamine and Prussian Blue-coated Microelectrode. Analytical Chemistry, 2016, 88, 7769-7776.	3.2	87
5	Platinum nanoparticles inhibit antioxidant effects of vitamin C via ascorbate oxidase-mimetic activity. Journal of Materials Chemistry B, 2016, 4, 7895-7901.	2.9	33
6	A Database of the Structural and Electronic Properties of Prussian Blue, Prussian White, and Berlin Green Compounds through Density Functional Theory. Inorganic Chemistry, 2016, 55, 12851-12862.	1.9	92
7	Artificial Metalloenzymeâ€Based Enzyme Replacement Therapy for the Treatment of Hyperuricemia. Advanced Functional Materials, 2016, 26, 7921-7928.	7.8	51
8	Nanozymes: Next Wave of Artificial Enzymes. Springer Briefs in Molecular Science, 2016, , .	0.1	62
9	Other Nanomaterials for Nanozymes. Springer Briefs in Molecular Science, 2016, , 93-102.	0.1	0
10	Uncapped nanobranch-based CuS clews used as an efficient peroxidase mimic enable the visual detection of hydrogen peroxide and glucose with fast response. Analytica Chimica Acta, 2016, 947, 42-49.	2.6	99
11	Enabling Prussian Blue with Tunable Localized Surface Plasmon Resonances: Simultaneously Enhanced Dual-Mode Imaging and Tumor Photothermal Therapy. ACS Nano, 2016, 10, 11115-11126.	7.3	123
12	Facet Energy <i>versus</i> Enzyme-like Activities: The Unexpected Protection of Palladium Nanocrystals against Oxidative Damage. ACS Nano, 2016, 10, 10436-10445.	7.3	247
13	Rationally Modulate the Oxidase-like Activity of Nanoceria for Self-Regulated Bioassays. ACS Sensors, 2016, 1, 1336-1343.	4.0	255
14	Manganese Phosphate Self-assembled Nanoparticle Surface and Its application for Superoxide Anion Detection. Scientific Reports, 2016, 6, 28989.	1.6	44
15	Near-infrared photothermal therapy of Prussian-blue-functionalized lanthanide-ion-doped inorganic/plasmonic multifunctional nanostructures for the selective targeting of HER2-expressing breast cancer cells. Biomaterials Science, 2016, 4, 1781-1791.	2.6	32
16	Challenges and Perspectives. Springer Briefs in Molecular Science, 2016, , 103-107.	0.1	5
17	Prussian Blue as a Highly Sensitive and Background-Free Resonant Raman Reporter. Analytical Chemistry, 2017, 89, 1551-1557.	3.2	95
18	Surface modification of nanozymes. Nano Research, 2017, 10, 1125-1148.	5 . 8	406
19	Recent progress in Prussian blue films: Methods used to control regular nanostructures for electrochemical biosensing applications. Biosensors and Bioelectronics, 2017, 96, 17-25.	5 . 3	82
20	Magnetic drug delivery systems. Science China Materials, 2017, 60, 471-486.	3.5	41

#	ARTICLE	IF	Citations
21	Surface-Enhanced Raman Scattering Active Gold Nanoparticles with Enzyme-Mimicking Activities for Measuring Glucose and Lactate in Living Tissues. ACS Nano, 2017, 11, 5558-5566.	7.3	514
22	Shape-dependent enzyme-like activity of Co3O4 nanoparticles and their conjugation with his-tagged EGFR single-domain antibody. Colloids and Surfaces B: Biointerfaces, 2017, 154, 55-62.	2.5	46
23	In vitro cytotoxicity evaluation of graphene oxide from the peroxidase-like activity perspective. Colloids and Surfaces B: Biointerfaces, 2017, 151, 215-223.	2.5	16
24	Monitoring of Heparin Activity in Live Rats Using Metal–Organic Framework Nanosheets as Peroxidase Mimics. Analytical Chemistry, 2017, 89, 11552-11559.	3.2	215
25	Manganese Dioxide Nanozymes as Responsive Cytoprotective Shells for Individual Living Cell Encapsulation. Angewandte Chemie, 2017, 129, 13849-13853.	1.6	16
26	A Redox Modulatory Mn ₃ O ₄ Nanozyme with Multiâ€Enzyme Activity Provides Efficient Cytoprotection to Human Cells in a Parkinson's Disease Model. Angewandte Chemie - International Edition, 2017, 56, 14267-14271.	7.2	448
27	A Redox Modulatory Mn ₃ O ₄ Nanozyme with Multiâ€Enzyme Activity Provides Efficient Cytoprotection to Human Cells in a Parkinson's Disease Model. Angewandte Chemie, 2017, 129, 14455-14459.	1.6	102
28	How Do Enzymes †Meet†Manoparticles and Nanomaterials?. Trends in Biochemical Sciences, 2017, 42, 914-930.	3.7	144
29	Manganese Dioxide Nanozymes as Responsive Cytoprotective Shells for Individual Living Cell Encapsulation. Angewandte Chemie - International Edition, 2017, 56, 13661-13665.	7.2	196
30	Role of Acid in Tailoring Prussian Blue as Cathode for Highâ€Performance Sodiumâ€lon Battery. Chemistry - A European Journal, 2017, 23, 15991-15996.	1.7	64
31	A review on hexacyanoferrate-based materials for energy storage and smart windows: challenges and perspectives. Journal of Materials Chemistry A, 2017, 5, 18919-18932.	5.2	235
32	Mimicking horseradish peroxidase and oxidase using ruthenium nanomaterials. RSC Advances, 2017, 7, 52210-52217.	1.7	102
33	Exploring the activities of ruthenium nanomaterials as reactive oxygen species scavengers. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 2017, 35, 223-238.	2.9	15
34	Mimicking Peroxidase Activities with Prussian Blue Nanoparticles and Their Cyanometalate Structural Analogues. Nano Letters, 2017, 17, 4958-4963.	4.5	106
35	Boosting the Peroxidase-Like Activity of Nanostructured Nickel by Inducing Its 3+ Oxidation State in LaNiO ₃ Perovskite and Its Application for Biomedical Assays. Theranostics, 2017, 7, 2277-2286.	4.6	90
36	Engineering of a Nanosized Biocatalyst for Combined Tumor Starvation and Low-Temperature Photothermal Therapy. ACS Nano, 2018, 12, 2858-2872.	7.3	343
37	Manganeseâ€Based Nanozymes: Multienzyme Redox Activity and Effect on the Nitric Oxide Produced by Endothelial Nitric Oxide Synthase. Chemistry - A European Journal, 2018, 24, 8393-8403.	1.7	84
38	ROS scavenging Mn ₃ O ₄ nanozymes for <i>in vivo</i> anti-inflammation. Chemical Science, 2018, 9, 2927-2933.	3.7	447

#	ARTICLE	IF	CITATIONS
39	Iron nanostructured catalysts: design and applications. Catalysis Science and Technology, 2018, 8, 1754-1776.	2.1	33
40	Cervical Cancer HeLa Cell Autocrine Apoptosis Induced by Coimmobilized IFN-γ plus TNF-α Biomaterials. ACS Applied Materials & Interfaces, 2018, 10, 8451-8464.	4.0	14
41	Carbon Nanotube Paperâ€based Electrode for Electrochemical Detection of Chemicals in Rat Microdialysate. Electroanalysis, 2018, 30, 1022-1027.	1.5	13
42	Intrinsic Triple-Enzyme Mimetic Activity of V ₆ O ₁₃ Nanotextiles: Mechanism Investigation and Colorimetric and Fluorescent Detections. Industrial & Engineering Chemistry Research, 2018, 57, 2416-2425.	1.8	51
43	Sparks fly between ascorbic acid and iron-based nanozymes: A study on Prussian blue nanoparticles. Colloids and Surfaces B: Biointerfaces, 2018, 163, 379-384.	2.5	23
44	Development of a Light-Controlled Nanoplatform for Direct Nuclear Delivery of Molecular and Nanoscale Materials. Journal of the American Chemical Society, 2018, 140, 4062-4070.	6.6	135
45	Specific Oxygenated Groups Enriched Graphene Quantum Dots as Highly Efficient Enzyme Mimics. Small, 2018, 14, e1703710.	5.2	92
46	Facile Deposition of Manganese Dioxide to Albumin-Bound Paclitaxel Nanoparticles for Modulation of Hypoxic Tumor Microenvironment To Improve Chemoradiation Therapy. Molecular Pharmaceutics, 2018, 15, 447-457.	2.3	53
47	Integrated nanozymes: facile preparation and biomedical applications. Chemical Communications, 2018, 54, 6520-6530.	2.2	130
48	Nanozymatic Antioxidant System Based on MoS ₂ Nanosheets. ACS Applied Materials & Interfaces, 2018, 10, 12453-12462.	4.0	148
49	Polydopamine nanoparticles for the treatment of acute inflammation-induced injury. Nanoscale, 2018, 10, 6981-6991.	2.8	178
50	Highly efficient catalytic scavenging of oxygen free radicals with graphene-encapsulated metal nanoshields. Nano Research, 2018, 11, 2821-2835.	5.8	31
51	Copper (II) oxide nanozyme based electrochemical cytosensor for high sensitive detection of circulating tumor cells in breast cancer. Journal of Electroanalytical Chemistry, 2018, 812, 1-9.	1.9	76
52	Gold core/ceria shell-based redox active nanozyme mimicking the biological multienzyme complex phenomenon. Journal of Colloid and Interface Science, 2018, 513, 831-842.	5.0	105
53	Controllable manipulation of bubbles in water by using underwater superaerophobic graphene-oxide/gold-nanoparticle composite surfaces. Nanoscale, 2018, 10, 231-238.	2.8	17
54	An ultrathin iron-porphyrin based nanocapsule with high peroxidase-like activity for highly sensitive glucose detection. Nanoscale, 2018, 10, 22155-22160.	2.8	28
55	Palladium concave nanocrystals with high-index facets accelerate ascorbate oxidation in cancer treatment. Nature Communications, 2018, 9, 4861.	5.8	84
56	Effect of Morphology and Concentration on Crossover between Antioxidant and Pro-oxidant Activity of MgO Nanostructures. Inorganic Chemistry, 2018, 57, 12727-12739.	1.9	52

#	Article	IF	CITATIONS
57	Ultrasmall Nanozymes Isolated within Porous Carbonaceous Frameworks for Synergistic Cancer Therapy: Enhanced Oxidative Damage and Reduced Energy Supply. Chemistry of Materials, 2018, 30, 7831-7839.	3.2	91
58	G-Quadruplex-Based Nanoscale Coordination Polymers to Modulate Tumor Hypoxia and Achieve Nuclear-Targeted Drug Delivery for Enhanced Photodynamic Therapy. Nano Letters, 2018, 18, 6867-6875.	4.5	187
59	What a chemistry student should know about the history of Prussian blue. ChemTexts, 2018, 4, 1.	1.0	24
60	Nanozyme Sensor Arrays for Detecting Versatile Analytes from Small Molecules to Proteins and Cells. Analytical Chemistry, 2018, 90, 11696-11702.	3.2	150
61	Remote activation of nanoparticulate biomimetic activity by light triggered pH-jump. Chemical Communications, 2018, 54, 8641-8644.	2.2	15
62	Progress in Applications of Prussian Blue Nanoparticles in Biomedicine. Advanced Healthcare Materials, 2018, 7, e1800347.	3.9	180
63	Ag ⁺ â€Gated Surface Chemistry of Gold Nanoparticles and Colorimetric Detection of Acetylcholinesterase. Small, 2018, 14, e1801680.	5.2	47
64	Iridium nanocrystals encapsulated liposomes as near-infrared light controllable nanozymes for enhanced cancer radiotherapy. Biomaterials, 2018, 181, 81-91.	5.7	131
65	Visible Light-Activatable Oxidase Mimic of 9-Mesityl-10-Methylacridinium Ion for Colorimetric Detection of Biothiols and Logic Operations. Analytical Chemistry, 2018, 90, 9959-9965.	3.2	65
66	2D-Metal–Organic-Framework-Nanozyme Sensor Arrays for Probing Phosphates and Their Enzymatic Hydrolysis. Analytical Chemistry, 2018, 90, 9983-9989.	3.2	184
67	Molecular and cellular mechanisms for zoledronic acid-loaded magnesium-strontium alloys to inhibit giant cell tumors of bone. Acta Biomaterialia, 2018, 77, 365-379.	4.1	34
68	Polydopamine Nanoparticles as Efficient Scavengers for Reactive Oxygen Species in Periodontal Disease. ACS Nano, 2018, 12, 8882-8892.	7.3	401
69	Prussian Blue Nanozyme with Multienzyme Activity Reduces Colitis in Mice. ACS Applied Materials & Lamp; Interfaces, 2018, 10, 26108-26117.	4.0	157
70	Prussian blue with intrinsic heme-like structure as peroxidase mimic. Nano Research, 2018, 11, 4905-4913.	5.8	98
71	Acidic amino acids: A new-type of enzyme mimics with application to biosensing and evaluating of antioxidant behaviour. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 201, 367-375.	2.0	15
72	Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors. Nature Communications, 2018, 9, 3334.	5. 8	464
73	Nitrogen-Doped Carbon Nanomaterials as Highly Active and Specific Peroxidase Mimics. Chemistry of Materials, 2018, 30, 6431-6439.	3.2	236
74	Formation of Ti–Fe mixed sulfide nanoboxes for enhanced electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2018, 6, 21891-21895.	5. 2	27

#	Article	IF	Citations
75	Synthesis of cobalt-modified MSN as a model enzyme: Evaluation of the peroxidatic performance. Microporous and Mesoporous Materials, 2019, 274, 43-53.	2.2	16
76	Engineered Mn/Co oxides nanocomposites by cobalt doping of Mn-BTC - New oxidase mimetic for colorimetric sensing of acid phosphatase. Sensors and Actuators B: Chemical, 2019, 299, 126928.	4.0	60
77	Organosilica-Based Hollow Mesoporous Bilirubin Nanoparticles for Antioxidation-Activated Self-Protection and Tumor-Specific Deoxygenation-Driven Synergistic Therapy. ACS Nano, 2019, 13, 8903-8916.	7.3	70
78	Fluorescent Graphitic Carbon Nitride-Based Nanozymes with Peroxidase-Like Activities for Ratiometric Biosensing. Analytical Chemistry, 2019, 91, 10648-10656.	3.2	139
79	Nanocatalytic Medicine. Advanced Materials, 2019, 31, e1901778.	11.1	396
80	Porous Ruthenium Selenide Nanoparticle as a Peroxidase Mimic for Glucose Bioassay. Journal of Analysis and Testing, 2019, 3, 253-259.	2.5	14
81	Movable Hollow Nanoparticles as Reactive Oxygen Scavengers. CheM, 2019, 5, 2378-2387.	5.8	68
82	N-Doped Carbon As Peroxidase-Like Nanozymes for Total Antioxidant Capacity Assay. Analytical Chemistry, 2019, 91, 15267-15274.	3.2	126
83	Mechanism of Alkali Metal Compound-Promoted Growth of Monolayer MoS ₂ : Eutectic Intermediates. Chemistry of Materials, 2019, 31, 873-880.	3.2	59
84	Prussian blue analogue nanoenzymes mitigate oxidative stress and boost bio-fermentation. Nanoscale, 2019, 11, 19497-19505.	2.8	22
85	Synergistic antioxidant activity of size controllable chitosan-templated Prussian blue nanoparticle. Nanomedicine, 2019, 14, 2567-2578.	1.7	21
86	Reversible regulation of CdTe quantum dots fluorescence intensity based on Prussian blue with high anti-fatigue performance. Chemical Communications, 2019, 55, 644-647.	2.2	11
87	A manganese oxide nanozyme prevents the oxidative damage of biomolecules without affecting the endogenous antioxidant system. Nanoscale, 2019, 11, 3855-3863.	2.8	100
88	MoS ₂ -quantum dot triggered reactive oxygen species generation and depletion: responsible for enhanced chemiluminescence. Chemical Science, 2019, 10, 497-500.	3.7	89
89	Metal-doped carbon nanoparticles with intrinsic peroxidase-like activity for colorimetric detection of H ₂ O ₂ and glucose. Journal of Materials Chemistry B, 2019, 7, 296-304.	2.9	69
90	New Cubic Phases for T2 M[CN]6 \hat{A} ·x H2 O with T = Ni, Cu and M = Ru, Os: Improving the Robustness and Modulating the Electron Density at the Cavity Surfaces. European Journal of Inorganic Chemistry, 2019, 3023-3032.	1.0	6
91	Carbogenic Nanozyme with Ultrahigh Reactive Nitrogen Species Selectivity for Traumatic Brain Injury. Nano Letters, 2019, 19, 4527-4534.	4.5	126
92	Anchoring of Prussian blue nanoparticles on polydopamine nanospheres as an efficient peroxidase mimetic for colorimetric sensing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 577, 622-629.	2.3	21

#	Article	IF	CITATIONS
93	Self-assembled globular clusters-like cobalt hexacyanoferrate/carbon nanotubes hybrid as efficient nonprecious electrocatalyst for oxygen evolution reaction. Journal of Power Sources, 2019, 434, 126670.	4.0	36
94	CeVO 4 Nanozymes Catalyze the Reduction of Dioxygen to Water without Releasing Partially Reduced Oxygen Species. Angewandte Chemie, 2019, 131, 7879-7883.	1.6	11
95	Nanozyme: new horizons for responsive biomedical applications. Chemical Society Reviews, 2019, 48, 3683-3704.	18.7	1,101
96	Nanozyme-mediated catalytic nanotherapy for inflammatory bowel disease. Theranostics, 2019, 9, 2843-2855.	4.6	149
97	Constructing metal–organic framework nanodots as bio-inspired artificial superoxide dismutase for alleviating endotoxemia. Materials Horizons, 2019, 6, 1682-1687.	6.4	84
98	Fullerene-like MoS ₂ Nanoparticles as Cascade Catalysts Improving Lubricant and Antioxidant Abilities of Artificial Synovial Fluid. ACS Biomaterials Science and Engineering, 2019, 5, 3079-3088.	2.6	29
99	Self-Assembling Peptide Artificial Enzyme as an Efficient Detection Prober and Inhibitor for Cancer Cells. ACS Applied Bio Materials, 2019, 2, 2185-2191.	2.3	13
100	Hollow Prussian Blue Nanozymes Drive Neuroprotection against Ischemic Stroke via Attenuating Oxidative Stress, Counteracting Inflammation, and Suppressing Cell Apoptosis. Nano Letters, 2019, 19, 2812-2823.	4.5	203
101	Catalytic Mechanisms of Nanozymes and Their Applications in Biomedicine. Bioconjugate Chemistry, 2019, 30, 1273-1296.	1.8	113
102	Reactive Oxygen Species (ROS)-Based Nanomedicine. Chemical Reviews, 2019, 119, 4881-4985.	23.0	1,519
103	CeVO ₄ Nanozymes Catalyze the Reduction of Dioxygen to Water without Releasing Partially Reduced Oxygen Species. Angewandte Chemie - International Edition, 2019, 58, 7797-7801.	7.2	67
104	Prussian blue-modified ferritin nanoparticles for effective tumor chemo-photothermal combination therapy via enhancing reactive oxygen species production. Journal of Biomaterials Applications, 2019, 33, 1202-1213.	1.2	17
105	Redox Trimetallic Nanozyme with Neutral Environment Preference for Brain Injury. ACS Nano, 2019, 13, 1870-1884.	7.3	90
106	eg occupancy as an effective descriptor for the catalytic activity of perovskite oxide-based peroxidase mimics. Nature Communications, 2019, 10, 704.	5.8	199
107	Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications. Chemical Reviews, 2019, 119, 4357-4412.	23.0	1,955
108	Prussian Blue Analogue Islands on BiOCl-Se Nanosheets for MR/CT Imaging-Guided Photothermal/Photodynamic Cancer Therapy. ACS Applied Bio Materials, 2019, 2, 1213-1224.	2.3	20
109	Highly stable enzyme-mimicking nanocomposite of antioxidant activity. Journal of Colloid and Interface Science, 2019, 543, 174-182.	5.0	22
110	Ultrasensitive magnetic resonance imaging of systemic reactive oxygen species <i>in vivo</i> for early diagnosis of sepsis using activatable nanoprobes. Chemical Science, 2019, 10, 3770-3778.	3.7	37

#	Article	IF	CITATIONS
111	Nanomaterials-Based Next Generation Synthetic Enzymes. , 2019, , 37-58.		2
112	Recent Advances in Glucoseâ€Oxidaseâ€Based Nanocomposites for Tumor Therapy. Small, 2019, 15, e1903895.	5.2	187
113	Magnetic internal heating-induced high performance Prussian blue nanoparticle preparation and excellent catalytic activity. Dalton Transactions, 2019, 48, 17169-17173.	1.6	16
114	Progress and Trend on the Regulation Methods for Nanozyme Activity and Its Application. Catalysts, 2019, 9, 1057.	1.6	28
115	Unraveling the Multi-Enzyme-Like Activities of Iron Oxide Nanozyme via a First-Principles Microkinetic Study. Journal of Physical Chemistry C, 2019, 123, 30318-30334.	1.5	42
116	Unveiling the effect of 11-MUA coating on biocompatibility and catalytic activity of a gold-core cerium oxide-shell-based nanozyme. RSC Advances, 2019, 9, 33195-33206.	1.7	17
117	Hollow Structures Based on Prussian Blue and Its Analogs for Electrochemical Energy Storage and Conversion. Advanced Materials, 2019, 31, e1706825.	11.1	445
118	Activation of peroxymonosulfate by magnetic carbon supported Prussian blue nanocomposite for the degradation of organic contaminants with singlet oxygen and superoxide radicals. Chemosphere, 2019, 218, 1071-1081.	4.2	121
119	Engineering Nanoceria for Enhanced Peroxidase Mimics: A Solid Solution Strategy. ChemCatChem, 2019, 11, 737-743.	1.8	38
120	Chiral Molecule-mediated Porous Cu _{<i>x</i>} O Nanoparticle Clusters with Antioxidation Activity for Ameliorating Parkinson's Disease. Journal of the American Chemical Society, 2019, 141, 1091-1099.	6.6	264
121	Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chemical Society Reviews, 2019, 48, 1004-1076.	18.7	2,528
122	Copper Tannic Acid Coordination Nanosheet: A Potent Nanozyme for Scavenging ROS from Cigarette Smoke. Small, 2020, 16, e1902123.	5.2	136
123	Heme Cofactorâ€Resembling Fe–N Single Site Embedded Graphene as Nanozymes to Selectively Detect H ₂ O ₂ with High Sensitivity. Advanced Functional Materials, 2020, 30, 1905410.	7.8	171
124	Remote-controlled multi-enzyme system for enhanced tumor therapy <i>via</i> dark/light relay catalysis. Nanoscale Horizons, 2020, 5, 283-293.	4.1	45
125	Highly active metal-free peroxidase mimics based on oxygen-doped carbon nitride by promoting electron transfer capacity. Chemical Communications, 2020, 56, 1409-1412.	2.2	21
126	Enzyme Mimicking Based on the Natural Melanin Particles from Human Hair. IScience, 2020, 23, 100778.	1.9	27
127	In Situ Monitoring of the "Point Discharge―Induced Antibacterial Process by the Onsite Formation of a Raman Probe. Analytical Chemistry, 2020, 92, 2323-2330.	3.2	18
128	Exploring the bactericidal performance and application of novel mimic enzyme Co4S3. Journal of Colloid and Interface Science, 2020, 561, 327-337.	5.0	15

#	Article	IF	CITATIONS
129	Ultrasensitive aptamer-based protein assays based on one-dimensional core-shell nanozymes. Biosensors and Bioelectronics, 2020, 150, 111881.	5.3	84
130	Reviewâ€"Prussian Blue and Its Analogs as Appealing Materials for Electrochemical Sensing and Biosensing. Journal of the Electrochemical Society, 2020, 167, 037510.	1.3	71
131	Monodispersed plasmonic Prussian blue nanoparticles for zero-background SERS/MRI-guided phototherapy. Nanoscale, 2020, 12, 3292-3301.	2.8	45
132	State-of-the-art iron-based nanozymes for biocatalytic tumor therapy. Nanoscale Horizons, 2020, 5, 202-217.	4.1	78
133	Self-assembly hollow manganese Prussian white nanocapsules attenuate Tau-related neuropathology and cognitive decline. Biomaterials, 2020, 231, 119678.	5.7	37
134	Pt nanoparticle-coupled WO2.72 nanoplates as multi-enzyme mimetics for colorimetric detection and radical elimination. Analytical and Bioanalytical Chemistry, 2020, 412, 521-530.	1.9	7
135	Mechanistic Study of Catalase- and Superoxide Dismutation-Mimic Activities of Cobalt Oxide Nanozyme from First-Principles Microkinetic Modeling. Catalysis Surveys From Asia, 2020, 24, 70-85.	1.0	17
136	Integrating Prussian Blue Analog-Based Nanozyme and Online Visible Light Absorption Approach for Continuous Hydrogen Sulfide Monitoring in Brains of Living Rats. Analytical Chemistry, 2020, 92, 662-667.	3.2	24
137	Micro/nano-bubble-assisted ultrasound to enhance the EPR effect and potential theranostic applications. Theranostics, 2020, 10, 462-483.	4.6	154
138	Precise engineering of ultra-thin Fe2O3 decorated Pt-based nanozymes via atomic layer deposition to switch off undesired activity for enhanced sensing performance. Sensors and Actuators B: Chemical, 2020, 305, 127436.	4.0	22
139	Water molecule attachment mode on the dried polysaccharide influences its free radical scavenging ability. Process Biochemistry, 2020, 91, 15-22.	1.8	9
140	Effects of Two Kinds of Iron Nanoparticles as Reactive Oxygen Species Inducer and Scavenger on the Transcriptomic Profiles of Two Human Leukemia Cells with Different Stemness. Nanomaterials, 2020, 10, 1951.	1.9	14
141	A versatile reactive oxygen speciesâ€responsive gels sensor for analysis of metabolic species. Medical Devices & Sensors, 2020, 3, e10131.	2.7	0
142	Peroxidase-like behavior and photothermal effect of chitosan-coated Prussian-blue nanoparticles: dual-modality antibacterial action with enhanced bioaffinity. Materials Advances, 2020, 1, 774-782.	2.6	10
143	Copper Pyrovanadate Nanoribbons as Efficient Multienzyme Mimicking Nanozyme for Biosensing Applications. ACS Applied Nano Materials, 2020, 3, 7917-7929.	2.4	43
144	An artificial metalloenzyme for catalytic cancer-specific DNA cleavage and operando imaging. Science Advances, 2020, 6, eabb1421.	4.7	56
145	Dual detoxification and inflammatory regulation by ceria nanozymes for drug-induced liver injury therapy. Nano Today, 2020, 35, 100925.	6.2	87
146	Integrated cascade nanozyme catalyzes in vivo ROS scavenging for anti-inflammatory therapy. Science Advances, 2020, 6, eabb2695.	4.7	271

#	ARTICLE	IF	CITATIONS
147	Prussian blue nanoparticles induce myeloid leukemia cells to differentiate into red blood cells through nanozyme activities. Nanoscale, 2020, 12, 23084-23091.	2.8	12
148	Nanoenzymes in disease diagnosis and therapy. Chemical Communications, 2020, 56, 15513-15524.	2.2	75
149	Exploiting Fruit Waste Grape Pomace for Silver Nanoparticles Synthesis, Assessing Their Antioxidant, Antidiabetic Potential and Antibacterial Activity Against Human Pathogens: A Novel Approach. Nanomaterials, 2020, 10, 1457.	1.9	50
150	A colorimetric immunoassay based on cobalt hydroxide nanocages as oxidase mimics for detection of ochratoxin A. Analytica Chimica Acta, 2020, 1132, 101-109.	2.6	37
151	Sustainable Nanosheet Antioxidants for Sepsis Therapy <i>via</i> Scavenging Intracellular Reactive Oxygen and Nitrogen Species. ACS Nano, 2020, 14, 10324-10336.	7. 3	87
152	Atomic engineering of single-atom nanozymes for enzyme-like catalysis. Chemical Science, 2020, 11, 9741-9756.	3.7	157
153	Synergy of hypoxia relief and chromatin remodeling to overcome tumor radiation resistance. Biomaterials Science, 2020, 8, 4739-4749.	2.6	14
154	Metal–Organicâ€Frameworkâ€Engineered Enzymeâ€Mimetic Catalysts. Advanced Materials, 2020, 32, e20030	6 5 1.1	183
155	Applications of nanomaterials for scavenging reactive oxygen species in the treatment of central nervous system diseases. Journal of Materials Chemistry B, 2020, 8, 8748-8767.	2.9	44
156	Enhancement of Nanozyme Permeation by Endovascular Interventional Treatment to Prevent Vascular Restenosis via Macrophage Polarization Modulation. Advanced Functional Materials, 2020, 30, 2006581.	7.8	26
157	Construction of a chiral artificial enzyme used for enantioselective catalysis in live cells. Chemical Science, 2020, 11, 11344-11350.	3.7	20
158	Janus nanozyme–drug nanosystems for synergistic anti-inflammatory treatment of nasal polyps. CrystEngComm, 2020, 22, 7800-7807.	1.3	5
159	Intrinsic Peroxidase-Mimicking Ir Nanoplates for Nanozymatic Anticancer and Antibacterial Treatment. ACS Applied Materials & Acs Acc Applied Materials & Acs Applied Materials & Acc Applied & Acc Applied Materials & Acc Applied & Acc	4.0	41
160	Metalâ€Phenolic Networks Nanoplatform to Mimic Antioxidant Defense System for Broadâ€Spectrum Radical Eliminating and Endotoxemia Treatment. Advanced Functional Materials, 2020, 30, 2002234.	7.8	74
161	Progress of Iron-Based Nanozymes for Antitumor Therapy. Frontiers in Chemistry, 2020, 8, 680.	1.8	15
162	A Hepatocellular Carcinoma Targeting Nanostrategy with Hypoxia-Ameliorating and Photothermal Abilities that, Combined with Immunotherapy, Inhibits Metastasis and Recurrence. ACS Nano, 2020, 14, 12679-12696.	7.3	116
163	Synthesis, Catalytic Properties and Application in Biosensorics of Nanozymes and Electronanocatalysts: A Review. Sensors, 2020, 20, 4509.	2.1	61
164	Self-Reducing Prussian Blue on Ti ₃ C ₂ T _{<i>x</i>} MXene Nanosheets as a Dual-Functional Nanohybrid for Hydrogen Peroxide and Pesticide Sensing. Industrial & Sensing Chemistry Research, 2020, 59, 15556-15564.	1.8	31

#	Article	IF	CITATIONS
165	Achieving Ultrasmall Prussian Blue Nanoparticles as High-Performance Biomedical Agents with Multifunctions. ACS Applied Materials & Samp; Interfaces, 2020, 12, 57382-57390.	4.0	48
166	Phosphate-responsive 2D-metal–organic-framework-nanozymes for colorimetric detection of alkaline phosphatase. Journal of Materials Chemistry B, 2020, 8, 6905-6911.	2.9	60
167	Prussian blue nanoparticles: synthesis, surface modification, and biomedical applications. Drug Discovery Today, 2020, 25, 1431-1443.	3. 2	80
168	Oxygen Pathology and Oxygen-Functional Materials for Therapeutics. Matter, 2020, 2, 1115-1147.	5.0	8
169	Single-atom nanozymes: A rising star for biosensing and biomedicine. Coordination Chemistry Reviews, 2020, 418, 213376.	9.5	134
170	Hyaluronic Acid-Modified Au–Ag Alloy Nanoparticles for Radiation/Nanozyme/Ag ⁺ Multimodal Synergistically Enhanced Cancer Therapy. Bioconjugate Chemistry, 2020, 31, 1756-1765.	1.8	43
171	The Feâ€Nâ€C Nanozyme with Both Accelerated and Inhibited Biocatalytic Activities Capable of Accessing Drugâ€"Drug Interactions. Angewandte Chemie, 2020, 132, 14606-14611.	1.6	14
172	The Feâ€Nâ€C Nanozyme with Both Accelerated and Inhibited Biocatalytic Activities Capable of Accessing Drug–Drug Interactions. Angewandte Chemie - International Edition, 2020, 59, 14498-14503.	7.2	87
173	Understanding the Nano–Bio Interactions and the Corresponding Biological Responses. Frontiers in Chemistry, 2020, 8, 446.	1.8	38
174	Multifunctional Prussian blue-based nanomaterials: Preparation, modification, and theranostic applications. Coordination Chemistry Reviews, 2020, 419, 213393.	9.5	62
175	Bioactive silver phosphate/polyindole nanocomposites. RSC Advances, 2020, 10, 11060-11073.	1.7	6
176	Peroxidaseâ€Like Nanozymes Induce a Novel Form of Cell Death and Inhibit Tumor Growth In Vivo. Advanced Functional Materials, 2020, 30, 2000647.	7.8	49
177	Copperâ€Enriched Prussian Blue Nanomedicine for In Situ Disulfiram Toxification and Photothermal Antitumor Amplification. Advanced Materials, 2020, 32, e2000542.	11.1	112
178	Antioxidant Nanotherapies for the Treatment of Inflammatory Diseases. Frontiers in Bioengineering and Biotechnology, 2020, 8, 200.	2.0	59
179	Molecular domino reactor built by automated modular synthesis for cancer treatment. Theranostics, 2020, 10, 4030-4041.	4.6	14
180	Hematite/M (M = Au, Pd) Catalysts Derived from a Double-Hollow Prussian Blue Microstructure: Simultaneous Catalytic Reduction of $\langle i \rangle o \langle i \rangle$ and $\langle i \rangle p \langle i \rangle$ -Nitrophenols. ACS Applied Materials & Interfaces, 2020, 12, 17557-17570.	4.0	22
181	Oxidized Activated Charcoal Nanoparticles as Catalytic Superoxide Dismutase Mimetics: Evidence for Direct Participation of an Intrinsic Radical. ACS Applied Nano Materials, 2020, 3, 6962-6971.	2.4	16
182	Target-Driven Nanozyme Growth in TiO ₂ Nanochannels for Improving Selectivity in Electrochemical Biosensing. Analytical Chemistry, 2020, 92, 10033-10041.	3.2	49

#	Article	IF	CITATIONS
183	Finely tuned Prussian blue-based nanoparticles and their application in disease treatment. Journal of Materials Chemistry B, 2020, 8, 7121-7134.	2.9	22
184	An Ultrasmall RuO ₂ Nanozyme Exhibiting Multienzyme-like Activity for the Prevention of Acute Kidney Injury. ACS Applied Materials & Samp; Interfaces, 2020, 12, 31205-31216.	4.0	70
185	Specific "Unlocking―of a Nanozymeâ€Based Butterfly Effect To Break the Evolutionary Fitness of Chaotic Tumors. Angewandte Chemie - International Edition, 2020, 59, 9491-9497.	7.2	119
186	Nanozymes: A New Disease Imaging Strategy. Frontiers in Bioengineering and Biotechnology, 2020, 8, 15.	2.0	64
187	Bimetallic Fe-Ni phosphide carved nanoframes toward efficient overall water splitting and potassium-ion storage. Chemical Engineering Journal, 2020, 390, 124515.	6.6	45
188	A Hybrid VO _{<i>x</i>} Incorporated Hexacyanoferrate Nanostructured Hydrogel as a Multienzyme Mimetic <i>via</i>	7.3	53
189	Specific "Unlocking―of a Nanozymeâ€Based Butterfly Effect To Break the Evolutionary Fitness of Chaotic Tumors. Angewandte Chemie, 2020, 132, 9578-9584.	1.6	27
190	Wide dynamic range and ultrasensitive detection of hydrogen peroxide based on beneficial role of gold nanoparticles on the electrochemical properties of prussian blue. Journal of Electroanalytical Chemistry, 2020, 862, 114001.	1.9	20
191	Nanozymes for medical biotechnology and its potential applications in biosensing and nanotherapeutics. Biotechnology Letters, 2020, 42, 357-373.	1.1	35
192	Crossover between anti- and pro-oxidant activities of different manganese oxide nanoparticles and their biological implications. Journal of Materials Chemistry B, 2020, 8, 1191-1201.	2.9	41
193	Nanozymology. Nanostructure Science and Technology, 2020, , .	0.1	30
194	An Enzymeâ€Mimicking Singleâ€Atom Catalyst as an Efficient Multiple Reactive Oxygen and Nitrogen Species Scavenger for Sepsis Management. Angewandte Chemie - International Edition, 2020, 59, 5108-5115.	7.2	200
195	Enhancing selective photosensitizer accumulation and oxygen supply for high-efficacy photodynamic therapy toward glioma by 5-aminolevulinic acid loaded nanoplatform. Journal of Colloid and Interface Science, 2020, 565, 483-493.	5.0	34
196	An Enzymeâ€Mimicking Singleâ€Atom Catalyst as an Efficient Multiple Reactive Oxygen and Nitrogen Species Scavenger for Sepsis Management. Angewandte Chemie, 2020, 132, 5146-5153.	1.6	34
197	A robust hybrid nanozyme@hydrogel platform as a biomimetic cascade bioreactor for combination antitumor therapy. Biomaterials Science, 2020, 8, 1830-1839.	2.6	33
198	Selenium-doped two-photon fluorescent carbon nanodots for in-situ free radical scavenging in mitochondria. Journal of Colloid and Interface Science, 2020, 567, 402-409.	5.0	16
199	Recent Progress of Nanozymes in the Detection of Pathogenic Microorganisms. ChemBioChem, 2020, 21, 2572-2584.	1.3	14
200	Enzyme Mimic Nanomaterials and Their Biomedical Applications. ChemBioChem, 2020, 21, 2408-2418.	1.3	29

#	Article	IF	CITATIONS
201	Hydrothermal Recrystallization as a Strategy to Reveal the Structural Diversity in Hexacyanometallates: Nickel and Copper Hexacyanoosmates(II). European Journal of Inorganic Chemistry, 2020, 2020, 1763-1774.	1.0	5
202	Determination of total antioxidant capacity of Cynara Scolymus L. (globe artichoke) by using novel nanoparticle-based ferricyanide/Prussian blue assay. Talanta, 2020, 216, 120960.	2.9	3
203	Point-of-care assay for drunken driving with Pd@Pt core-shell nanoparticles-decorated ploy(vinyl) Tj ETQq0 0 0 rg	gBT_/Overlo	ock 10 Tf 50 6
204	Ironâ€Based Nanozymes in Disease Diagnosis and Treatment. ChemBioChem, 2020, 21, 2722-2732.	1.3	18
205	A colloid approach to decorate latex particles with Prussian blue nanozymes. Journal of Molecular Liquids, 2020, 309, 113066.	2.3	19
206	Stable and Reusable Light-Responsive Reduced Covalent Organic Framework (COF-300-AR) as a Oxidase-Mimicking Catalyst for GSH Detection in Cell Lysate. ACS Applied Materials & Interfaces, 2020, 12, 20414-20422.	4.0	102
207	Advances in nanomaterials for treatment of hypoxic tumor. National Science Review, 2021, 8, nwaa160.	4.6	58
208	A Cerium Vanadate Nanozyme with Specific Superoxide Dismutase Activity Regulates Mitochondrial Function and ATP Synthesis in Neuronal Cells. Angewandte Chemie, 2021, 133, 3158-3167.	1.6	58
209	Ligandâ€Dependent Activity Engineering of Glutathione Peroxidaseâ€Mimicking MILâ€47(V) Metal–Organic Framework Nanozyme for Therapy. Angewandte Chemie, 2021, 133, 1247-1254.	1.6	21
210	Ligandâ€Dependent Activity Engineering of Glutathione Peroxidaseâ€Mimicking MILâ€47(V) Metal–Organic Framework Nanozyme for Therapy. Angewandte Chemie - International Edition, 2021, 60, 1227-1234.	7.2	111
211	Selfâ€Assembled Singleâ€5ite Nanozyme for Tumorâ€5pecific Amplified Cascade Enzymatic Therapy. Angewandte Chemie - International Edition, 2021, 60, 3001-3007.	7.2	156
212	A Cerium Vanadate Nanozyme with Specific Superoxide Dismutase Activity Regulates Mitochondrial Function and ATP Synthesis in Neuronal Cells. Angewandte Chemie - International Edition, 2021, 60, 3121-3130.	7.2	111
213	Antioxidant and anti-inflammatory activities of Prussian blue nanozyme promotes full-thickness skin wound healing. Materials Science and Engineering C, 2021, 119, 111596.	3.8	63
214	Inorganic Nanoparticles Applied as Functional Therapeutics. Advanced Functional Materials, 2021, 31, 2008171.	7.8	51
215	A Nanozymeâ€Based Artificial Peroxisome Ameliorates Hyperuricemia and Ischemic Stroke. Advanced Functional Materials, 2021, 31, 2007130.	7.8	116
216	A hybrid gold-carbyne nanocrystals platform for light-induced crossover of redox enzyme-like activities. Chemical Engineering Journal, 2021, 408, 127244.	6.6	9
217	Incorporation of a Biocompatible Nanozyme in Cellular Antioxidant Enzyme Cascade Reverses Huntington's Like Disorder in Preclinical Model. Advanced Healthcare Materials, 2021, 10, e2001736.	3.9	36
218	Diversity of Mechanisms Underlying Latent TGF- \hat{l}^2 Activation in Recessive Dystrophic Epidermolysis Bullosa. Journal of Investigative Dermatology, 2021, 141, 1450-1460.e9.	0.3	17

#	ARTICLE	IF	CITATIONS
219	<i>Salvia Miltiorrhiza</i> -Derived Carbon Dots as Scavengers of Reactive Oxygen Species for Reducing Oxidative Damage of Plants. ACS Applied Nano Materials, 2021, 4, 113-120.	2.4	44
220	Recent improvements in enzyme-linked immunosorbent assays based on nanomaterials. Talanta, 2021, 223, 121722.	2.9	98
221	Selfâ€Assembled Singleâ€Site Nanozyme for Tumorâ€Specific Amplified Cascade Enzymatic Therapy. Angewandte Chemie, 2021, 133, 3038-3044.	1.6	30
222	CXCR4 and CD44 dual-targeted Prussian blue nanosystem with daunorubicin loaded for acute myeloid leukemia therapy. Chemical Engineering Journal, 2021, 405, 126891.	6.6	18
223	Green biosynthesis of silver nanoparticles using Dregea volubilis flowers: Characterization and evaluation of antioxidant, antidiabetic and antibacterial activity. Inorganic and Nano-Metal Chemistry, 2021, 51, 1066-1079.	0.9	7
224	A multifunctional Fenton nanoagent for microenvironment-selective anti-biofilm and anti-inflammatory therapy. Materials Horizons, 2021, 8, 1264-1271.	6.4	51
225	A flowerlike FePt/MnO ₂ /GOx-based cascade nanoreactor with sustainable O ₂ supply for synergistic starvation-chemodynamic anticancer therapy. Journal of Materials Chemistry B, 2021, 9, 8480-8490.	2.9	18
226	Designing ultrafine PdCo alloys in mesoporous silica nanospheres with peroxidase-like activity and catalase-like activity. Journal of Materials Chemistry B, 2021, 9, 2016-2024.	2.9	15
227	Carbazate-modified cross-linked dextran microparticles suppress the progression of osteoarthritis by ROS scavenging. Biomaterials Science, 2021, 9, 6236-6250.	2.6	7
228	Nanozymes for Environmental Pollutant Monitoring and Remediation. Sensors, 2021, 21, 408.	2.1	44
229	Multienzyme nanoassemblies: from rational design to biomedical applications. Biomaterials Science, 2021, 9, 7323-7342.	2.6	7
230	Bioengineering CXCR4-overexpressing cell membrane functionalized ROS-responsive nanotherapeutics for targeting cerebral ischemia-reperfusion injury. Theranostics, 2021, 11, 8043-8056.	4.6	32
231	Gas-propelled biosensors for quantitative analysis. Analyst, The, 2021, 146, 1115-1126.	1.7	10
232	Triggering photocatalytic activity of carbon dot-based nanocomposites by a self-supplying peroxide. Journal of Materials Chemistry A, 2021, 9, 8991-8997.	5.2	13
233	Multi-shell nanocomposites based multienzyme mimetics for efficient intracellular antioxidation. Nano Research, 2021, 14, 2644-2653.	5.8	32
234	Prussian blue nanozyme-mediated nanoscavenger ameliorates acute pancreatitis via inhibiting TLRs/NF- \hat{I}^{B} B signaling pathway. Theranostics, 2021, 11, 3213-3228.	4.6	58
235	The robust peroxidase mimics within metalâ€"organic frameworks for the sensitivity detection of H ₂ O ₂ and glucose in serum. New Journal of Chemistry, 2021, 45, 19565-19571.	1.4	5
236	<i>In vitro</i> measurement of superoxide dismutase-like nanozyme activity: a comparative study. Analyst, The, 2021, 146, 1872-1879.	1.7	37

#	Article	IF	CITATIONS
237	Synthesis of a new Ag+-decorated Prussian blue analog with high peroxidase-like activity and its application in measuring the content of the antioxidant substances in Lycium ruthenicum Murr RSC Advances, 2021 , 11 , 7913 - 7924 .	1.7	4
238	The uptake mechanism of palladium ions into Prussian-blue nanoparticles in a nitric acid solution toward application for the recycling of precious metals from electronic and nuclear wastes. RSC Advances, 2021, 11, 20701-20707.	1.7	4
239	Catalytic Nanozyme for Radiation Protection. Bioconjugate Chemistry, 2021, 32, 411-429.	1.8	23
240	The Era of Nanomaterials: A Safe Solution or a Risk for Marine Environmental Pollution?. Biomolecules, 2021, 11, 441.	1.8	23
241	Transforming type-II Fe2O3@polypyrrole to Z-scheme Fe2O3@polypyrrole/Prussian blue via Prussian blue as bridge: Enhanced activity in photo-Fenton reaction and mechanism insight. Journal of Hazardous Materials, 2021, 405, 124668.	6.5	45
242	Platinum-Doped Prussian Blue Nanozymes for Multiwavelength Bioimaging Guided Photothermal Therapy of Tumor and Anti-Inflammation. ACS Nano, 2021, 15, 5189-5200.	7.3	111
243	Redox-active nanoparticles for inflammatory bowel disease. Nano Research, 2021, 14, 2535-2557.	5.8	27
244	Ultrasmall FeS ₂ Nanoparticlesâ€Decorated Carbon Spheres with Laserâ€Mediated Ferrous Ion Release for Antibacterial Therapy. Small, 2021, 17, e2005473.	5.2	43
245	Use of a Ferritin L134P Mutant for the Facile Conjugation of Prussian Blue in the Apoferritin Cavity. Inorganic Chemistry, 2021, 60, 4693-4704.	1.9	2
246	Microâ€Bioâ€Chemoâ€Mechanicalâ€Systems: Micromotors, Microfluidics, and Nanozymes for Biomedical Applications. Advanced Materials, 2021, 33, e2007465.	11.1	60
247	Catalytic nanozymes for central nervous system disease. Coordination Chemistry Reviews, 2021, 432, 213751.	9.5	42
248	Prussian Blue Nanoparticles Having Various Sizes and Crystallinities for Multienzyme Catalysis and Magnetic Resonance Imaging. ACS Applied Nano Materials, 2021, 4, 5176-5186.	2.4	21
249	Sensitive colorimetric assay for the determination of alkaline phosphatase activity utilizing nanozyme based on copper nanoparticle-modified Prussian blue. Analytical and Bioanalytical Chemistry, 2021, 413, 3955-3963.	1.9	17
250	2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases. Nature Communications, 2021, 12, 2203.	5.8	222
251	Fe3O4@Pt nanozymes combining with CXCR4 antagonists to synergistically treat acute myeloid leukemia. Nano Today, 2021, 37, 101106.	6.2	33
252	Molybdenum disulfide-based materials with enzyme-like characteristics for biological applications. Colloids and Surfaces B: Biointerfaces, 2021, 200, 111575.	2.5	36
253	Nanozymes and Their Application Progress in Biomedical Detection. Chinese Journal of Analytical Chemistry, 2021, 49, 581-592.	0.9	11
254	A colorimetric sensor for acid phosphatase activity detection based on acridone derivative as visible-light-stimulated oxidase mimic. Analytica Chimica Acta, 2021, 1155, 338357.	2.6	18

#	Article	IF	Citations
255	Na+ inserted metal-organic framework for rapid therapy of bacteria-infected osteomyelitis through microwave strengthened Fenton reaction and thermal effects. Nano Today, 2021, 37, 101090.	6.2	77
256	L-Cysteine as an Irreversible Inhibitor of the Peroxidase-Mimic Catalytic Activity of 2-Dimensional Ni-Based Nanozymes. Nanomaterials, 2021, 11, 1285.	1.9	17
257	Building Zn-Fe bimetal selenides heterostructures caged in nitrogen-doped carbon cubic for lithium and sodium ion batteries. Journal of Alloys and Compounds, 2021, 863, 158329.	2.8	22
258	Nanozyme Impregnated Mesenchymal Stem Cells for Hepatic Ischemia-Reperfusion Injury Alleviation. ACS Applied Materials & Diterfaces, 2021, 13, 25649-25662.	4.0	33
259	Nanozymes: A Promising Horizon for Medical and Environmental Applications. Journal of Cluster Science, 2022, 33, 1275-1297.	1.7	12
260	Reactive oxygen species scavenging and inflammation mitigation enabled by biomimetic prussian blue analogues boycott atherosclerosis. Journal of Nanobiotechnology, 2021, 19, 161.	4.2	62
261	Biocatalytic and Antioxidant Nanostructures for ROS Scavenging and Biotherapeutics. Advanced Functional Materials, 2021, 31, 2101804.	7.8	71
262	Ultrafine Platinum Nanoparticles Supported on Covalent Organic Frameworks As Stable and Reusable Oxidase-Like Catalysts for Cellular Glutathione Detection. ACS Applied Nano Materials, 2021, 4, 5834-5841.	2.4	22
263	Self-synergistic effect of Prussian blue nanoparticles for cancer therapy: driving photothermal therapy and reducing hyperthermia-induced side effects. Journal of Nanobiotechnology, 2021, 19, 126.	4.2	25
264	Endogenous Fe2+-activated ROS nanoamplifier for esterase-responsive and photoacoustic imaging-monitored therapeutic improvement. Nano Research, 2022, 15, 907-918.	5.8	20
265	Nitrogen and boron co-doped graphene nanoribbons as peroxidase-mimicking nanozymes for enhanced biosensing. Chinese Chemical Letters, 2022, 33, 344-348.	4.8	14
266	Reactive-oxygen-species-scavenging nanomaterials for resolving inflammation. Materials Today Bio, 2021, 11, 100124.	2.6	52
267	Construction of Peroxidase-like Metal–Organic Frameworks in TiO ₂ Nanochannels: Robust Free-Standing Membranes for Diverse Target Sensing. Analytical Chemistry, 2021, 93, 9486-9494.	3.2	32
268	Prussian Blue: A Nanozyme with Versatile Catalytic Properties. International Journal of Molecular Sciences, 2021, 22, 5993.	1.8	52
269	Adaptive iron-based magnetic nanomaterials of high performance for biomedical applications. Nano Research, 2022, 15, 1-17.	5.8	36
270	Catalase-like quantum dots of l-lysine polymerization as free radical scavengers for hypoxic brain injury. Materials Today Communications, 2021, 27, 102286.	0.9	4
271	Mn ₃ O ₄ Nanozyme for Inflammatory Bowel Disease Therapy. Advanced Therapeutics, 2021, 4, 2100081.	1.6	31
272	Nanozymes as efficient tools for catalytic therapeutics. View, 2022, 3, 20200147.	2.7	23

#	Article	IF	CITATIONS
273	Bambooâ€Like Nanozyme Based on Nitrogenâ€Doped Carbon Nanotubes Encapsulating Cobalt Nanoparticles for Wound Antibacterial Applications. Advanced Functional Materials, 2021, 31, 2105198.	7.8	56
274	Photoenhanced Dual-Functional Nanomedicine for Promoting Wound Healing: Shifting Focus from Bacteria Eradication to Host Microenvironment Modulation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 32316-32331.	4.0	27
275	Deployment of MIL-88B(Fe)/TiO ₂ Nanotube-Supported Ti Wires as Reusable Electrochemiluminescence Microelectrodes for Noninvasive Sensing of H ₂ O ₂ from Single Cancer Cells. Analytical Chemistry, 2021, 93, 11312-11320.	3.2	28
276	Excavating bioactivities of nanozyme to remodel microenvironment for protecting chondrocytes and delaying osteoarthritis. Bioactive Materials, 2021, 6, 2439-2451.	8.6	49
277	Biomimetic electrochemical sensors: New horizons and challenges in biosensing applications. Biosensors and Bioelectronics, 2021, 185, 113242.	5.3	62
278	Prussian blue-based theranostics for ameliorating acute kidney injury. Journal of Nanobiotechnology, 2021, 19, 266.	4.2	32
279	Improving peroxidase activity of gold nanorod nanozymes by dragging substrates to the catalysis sites via cysteine modification. Nanotechnology, 2021, 32, 485702.	1.3	7
280	Metal Nanozymes: New Horizons in Cellular Homeostasis Regulation. Applied Sciences (Switzerland), 2021, 11, 9019.	1.3	11
281	Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst. Nature Energy, 2021, 6, 904-912.	19.8	305
282	Prussian Blue Nanozymes Prevent Anthracycline-Induced Liver Injury by Attenuating Oxidative Stress and Regulating Inflammation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 42382-42395.	4.0	41
283	A Titanium Nitride Nanozyme for pHâ€Responsive and Irradiationâ€Enhanced Cascadeâ€Catalytic Tumor Therapy. Angewandte Chemie, 2021, 133, 25532-25542.	1.6	8
284	Nanozymes in Point-of-Care Diagnosis: An Emerging Futuristic Approach for Biosensing. Nano-Micro Letters, 2021, 13, 193.	14.4	85
285	A Titanium Nitride Nanozyme for pHâ€Responsive and Irradiationâ€Enhanced Cascadeâ€Catalytic Tumor Therapy. Angewandte Chemie - International Edition, 2021, 60, 25328-25338.	7.2	88
286	Establishment of anti-oxidation platform based on few-layer molybdenum disulfide nanosheet-coated titanium dioxide nanobelt nanocomposite. Journal of Colloid and Interface Science, 2021, 601, 167-176.	5.0	12
287	A dual-targeted multifunctional nanoformulation for potential prevention and therapy of Alzheimer's disease. Innovation(China), 2021, 2, 100160.	5.2	10
288	Photothermal nanozyme-ignited Fenton reaction-independent ferroptosis for breast cancer therapy. Journal of Controlled Release, 2021, 339, 14-26.	4.8	31
289	Multifunctional biomaterials that modulate oxygen levels in the tumor microenvironment. Cancer Letters, 2021, 521, 39-49.	3.2	8
290	Nanozymes: Activity origin, catalytic mechanism, and biological application. Coordination Chemistry Reviews, 2021, 448, 214170.	9.5	136

#	Article	IF	CITATIONS
291	Advances in metal–organic framework-based nanozymes and their applications. Coordination Chemistry Reviews, 2021, 449, 214216.	9.5	122
292	Microfluidic encapsulated manganese organic frameworks as enzyme mimetics for inflammatory bowel disease treatment. Journal of Colloid and Interface Science, 2022, 607, 1382-1390.	5.0	19
293	Multifunctional peptide-assembled micelles for simultaneously reducing amyloid- \hat{l}^2 and reactive oxygen species. Chemical Science, 2021, 12, 6449-6457.	3.7	15
294	Ultrasmall Prussian blue nanoparticles attenuate UVA-induced cellular senescence in human dermal fibroblasts <i>via</i> inhibiting the ERK/AP-1 pathway. Nanoscale, 2021, 13, 16104-16112.	2.8	8
295	Therapeutic applications of nanozymes and their role in cardiovascular disease. International Journal of Nanomaterials Nanotechnology and Nanomedicine, 2021, , 009-018.	0.2	1
296	Dual Effect of Prussian Blue Nanoparticles on A \hat{l}^2 40 Aggregation: \hat{l}^2 -Sheet Fibril Reduction and Copper Dyshomeostasis Regulation. Biomacromolecules, 2021, 22, 430-440.	2.6	11
297	Nature-inspired mineralization of a wood membrane as a sensitive electrochemical sensing device for <i>in situ</i> recognition of chiral molecules. Green Chemistry, 2021, 23, 8685-8693.	4.6	15
298	Zwitterion-functionalized hollow mesoporous Prussian blue nanoparticles for targeted and synergetic chemo-photothermal treatment of acute myeloid leukemia. Journal of Materials Chemistry B, 2021, 9, 5245-5254.	2.9	15
299	Reactive Oxygen Speciesâ€Regulating Strategies Based on Nanomaterials for Disease Treatment. Advanced Science, 2021, 8, 2002797.	5.6	149
300	Kinetics and Mechanisms for Nanozymes. Nanostructure Science and Technology, 2020, , 17-39.	0.1	12
301	Prussian Blue and Other Metal–Organic Framework-based Nanozymes. Nanostructure Science and Technology, 2020, , 141-170.	0.1	4
302	Cerium-mediated photooxidation for tuning pH-dependent oxidase-like activity. Chemical Engineering Journal, 2020, 397, 125471.	6.6	26
303	Bilirubin Nanomedicines for the Treatment of Reactive Oxygen Species (ROS)-Mediated Diseases. Molecular Pharmaceutics, 2020, 17, 2260-2274.	2.3	43
304	Electrochemical assessment of pigments-binding medium interactions in oil paint deterioration: a case study on indigo and Prussian blue. Heritage Science, 2020, 8, .	1.0	10
305	Antioxidant metal oxide nanozymes: role in cellular redox homeostasis and therapeutics. Pure and Applied Chemistry, 2021, 93, 187-205.	0.9	10
306	Metalâ€Polyphenolâ€Network Coated Prussian Blue Nanoparticles for Synergistic Ferroptosis and Apoptosis via Triggered GPX4 Inhibition and Concurrent In Situ Bleomycin Toxification. Small, 2021, 17, e2103919.	5. 2	41
307	Alendronate-Modified Nanoceria with Multiantioxidant Enzyme-Mimetic Activity for Reactive Oxygen Species/Reactive Nitrogen Species Scavenging from Cigarette Smoke. ACS Applied Materials & Samp; Interfaces, 2021, 13, 47394-47406.	4.0	20
308	Therapeutic Nanoparticles from Grape Seed for Modulating Oxidative Stress. Small, 2021, 17, e2102485.	5.2	57

#	Article	IF	Citations
309	Nanozymes Regulate Redox Homeostasis in ROS-Related Inflammation. Frontiers in Chemistry, 2021, 9, 740607.	1.8	24
310	Hollow CeO2 with ROS-Scavenging Activity to Alleviate Colitis in Mice. International Journal of Nanomedicine, 2021, Volume 16, 6889-6904.	3.3	11
311	Potentiality of Nanoenzymes for Cancer Treatment and Other Diseases: Current Status and Future Challenges. Materials, 2021, 14, 5965.	1.3	25
312	Emerging nanolabels-based immunoassays: Principle and applications in food safety. TrAC - Trends in Analytical Chemistry, 2021, 145, 116462.	5.8	22
313	Nanozymes for Therapeutics. Nanostructure Science and Technology, 2020, , 459-488.	0.1	0
314	A novel artificial peroxisome candidate based on nanozyme with excellent catalytic performance for biosensing. Biosensors and Bioelectronics, 2022, 196, 113686.	5.3	24
315	Controllable release ratiometric fluorescent sensor for hyaluronidase via the combination of Cu2+-Fe-N-C nanozymes and degradable intelligent hydrogel. Talanta, 2022, 237, 122961.	2.9	5
317	Nanozymes in Tumor Theranostics. Frontiers in Oncology, 2021, 11, 666017.	1.3	20
319	A treatment combined prussian blue nanoparticles with low-intensity pulsed ultrasound alleviates cartilage damage in knee osteoarthritis by initiating PI3K/Akt/mTOR pathway. American Journal of Translational Research (discontinued), 2021, 13, 3987-4006.	0.0	1
320	Inorganic Nanozymes: Prospects for Disease Treatments and Detection Applications. Frontiers in Chemistry, 2021, 9, 773285.	1.8	11
321	Neurodegenerative disorders management: state-of-art and prospects of nano-biotechnology. Critical Reviews in Biotechnology, 2022, 42, 1180-1212.	5.1	22
322	Engineering Ultrasmall Ferroptosisâ€Targeting and Reactive Oxygen/Nitrogen Speciesâ€Scavenging Nanozyme for Alleviating Acute Kidney Injury. Advanced Functional Materials, 2022, 32, 2109221.	7.8	30
323	Defect engineering in nanozymes. Materials Today, 2022, 52, 327-347.	8.3	91
324	Recent progress in transition metal hexacyanometallates: From structure to properties and functionality. Coordination Chemistry Reviews, 2022, 453, 214274.	9.5	28
325	An oligomeric semiconducting nanozyme with ultrafast electron transfers alleviates acute brain injury. Science Advances, 2021, 7, eabk1210.	4.7	46
326	Hsp90 co-chaperone degradation combined with antioxidation nanostrategy to rescue tauopathy-induced Alzheimer's disease. Chemical Engineering Journal, 2022, 432, 134352.	6.6	3
327	Reactive oxygen species scavenging by hemin-based nanosheets reduces Parkinson's disease symptoms in an animal model. Chemical Engineering Journal, 2022, 432, 134356.	6.6	16
328	Carbon dots as nanocatalytic medicine for anti-inflammation therapy. Journal of Colloid and Interface Science, 2022, 611, 545-553.	5.0	49

#	Article	IF	CITATIONS
329	Prussian blue nanoparticles-enabled sensitive and accurate ratiometric fluorescence immunoassay for histamine. Food Chemistry, 2022, 376, 131907.	4.2	14
331	Exploration of nanozymes in viral diagnosis and therapy. Exploration, 2022, 2, .	5.4	63
332	Hyaluronan-coated Prussian blue nanoparticles relieve LPS-induced peritonitis by suppressing oxidative species generation in tissue-resident macrophages. Biomaterials Science, 2022, 10, 1248-1256.	2.6	16
333	Guiding Transition Metalâ€Doped Hollow Cerium Tandem Nanozymes with Elaborately Regulated Multiâ€Enzymatic Activities for Intensive Chemodynamic Therapy. Advanced Materials, 2022, 34, e2107054.	11.1	150
334	Self-Adaptive Single-Atom Catalyst Boosting Selective Ferroptosis in Tumor Cells. ACS Nano, 2022, 16, 855-868.	7.3	84
335	Peroxidaseâ€Mimetic Copperâ€Doped Carbonâ€Dots for Oxidative Stressâ€Mediated Broadâ€Spectrum and Efficient Antibacterial Activity. Chemistry - A European Journal, 2022, 28, .	1.7	15
336	SOD mimics: From the tool box of the chemists to cellular studies. Current Opinion in Chemical Biology, 2022, 67, 102109.	2.8	32
337	Prussian Blue Nanozyme as a Pyroptosis Inhibitor Alleviates Neurodegeneration. Advanced Materials, 2022, 34, e2106723.	11.1	91
338	Prussian Blue Nanoparticles Stabilize SOD1 from Ubiquitinationâ€Proteasome Degradation to Rescue Intervertebral Disc Degeneration. Advanced Science, 2022, 9, e2105466.	5.6	34
339	Nanozyme-enabled sensing strategies for determining the total antioxidant capacity of food samples. Food Chemistry, 2022, 384, 132412.	4.2	19
340	Neuronal injuries in cerebral infarction and ischemic stroke: From mechanisms to treatment (Review). International Journal of Molecular Medicine, 2021, 49, .	1.8	100
341	Ti ₃ C ₂ nanosheets with broad-spectrum antioxidant activity for cytoprotection against oxidative stress. RSC Advances, 2022, 12, 11128-11138.	1.7	12
342	The uptake characteristics of Prussian-blue nanoparticles for rare metal ions for recycling of precious metals from nuclear and electronic wastes. Scientific Reports, 2022, 12, 5135.	1.6	6
343	Light-responsive nanomaterials with pro-oxidant and anti-oxidant activity. Emergent Materials, 2022, 5, 455-475.	3.2	5
344	Combined Prussian Blue Nanozyme Carriers Improve Photodynamic Therapy and Effective Interruption of Tumor Metastasis. International Journal of Nanomedicine, 2022, Volume 17, 1397-1408.	3.3	11
345	Antithrombotic Therapy by Regulating the ROSâ€Mediated Thrombosis Microenvironment and Specific Nonpharmaceutical Thrombolysis Using Prussian Blue Nanodroplets. Small, 2022, 18, e2106252.	5.2	23
346	Thermosensitive Hydrogel Incorporating Prussian Blue Nanoparticles Promotes Diabetic Wound Healing via ROS Scavenging and Mitochondrial Function Restoration. ACS Applied Materials & Samp; Interfaces, 2022, 14, 14059-14071.	4.0	69
347	Bimetal Biomimetic Engineering Utilizing Metal–Organic Frameworks for Superoxide Dismutase Mimic. , 2022, 4, 751-757.		39

#	Article	IF	CITATIONS
348	Analysis of structural and biomimetic characteristics of the green-synthesized Fe3O4 nanozyme from the fruit peel extract of Punica granatum. Chemical Papers, 2022, 76, 3863-3878.	1.0	8
349	Nanozymes: Versatile Platforms for Cancer Diagnosis and Therapy. Nano-Micro Letters, 2022, 14, 95.	14.4	82
350	Highly effective rheumatoid arthritis therapy by peptide-promoted nanomodification of mesenchymal stem cells. Biomaterials, 2022, 283, 121474.	5.7	9
351	Recent advances in biomedical applications of 2D nanomaterials with peroxidase-like properties. Advanced Drug Delivery Reviews, 2022, 185, 114269.	6.6	27
352	Prussian Blue/Chitosan Micromotors with Intrinsic Enzyme-like Activity for (bio)-Sensing Assays. Analytical Chemistry, 2022, 94, 5575-5582.	3.2	22
353	Supramolecular hydrogel-loaded Prussian blue nanoparticles with photothermal and ROS scavenging ability for tumor postoperative treatments. Composites Part B: Engineering, 2022, 237, 109872.	5.9	22
354	Nanoheterostructures based on nanosized Prussian blue and its Analogues: Design, properties and applications. Coordination Chemistry Reviews, 2022, 461, 214497.	9.5	21
355	Engineering vanadium carbide MXene as multienzyme mimetics for efficient in vivo ischemic stroke treatment. Chemical Engineering Journal, 2022, 440, 135810.	6.6	21
356	Alloyed nanostructures integrated metal-phenolic nanoplatform for synergistic wound disinfection and revascularization. Bioactive Materials, 2022, 16, 95-106.	8.6	17
357	Nanoenzyme engineered neutrophil-derived exosomes attenuate joint injury in advanced rheumatoid arthritis via regulating inflammatory environment. Bioactive Materials, 2022, 18, 1-14.	8.6	45
358	Methods to evaluate the scavenging activity of antioxidants toward reactive oxygen and nitrogen species (IUPAC Technical Report). Pure and Applied Chemistry, 2022, 94, 87-144.	0.9	56
359	Photothermal-enhanced peroxidase-like activity of CDs/PBNPs for the detection of Fe3+ and cholesterol in serum samples. Mikrochimica Acta, 2022, 189, 30.	2.5	7
360	Recent Advances in Nanozymes: From Matters to Bioapplications. Advanced Functional Materials, 2022, 32, .	7.8	143
361	Biochar Nanozyme from Silkworm Excrement for Scavenging Vapor-Phase Free Radicals in Cigarette Smoke. ACS Applied Bio Materials, 2022, 5, 1831-1838.	2.3	6
362	Multifunctional Nanozyme Hydrogel with Mucosal Healing Activity for Single-Dose Ulcerative Colitis Therapy. Bioconjugate Chemistry, 2022, 33, 248-259.	1.8	18
363	Prussian Blue Nanoparticle Supported MoS2 Nanocomposites as a Peroxidase-Like Nanozyme for Colorimetric Sensing of Dopamine. Biosensors, 2022, 12, 260.	2.3	16
364	A Prussian blue alginate microparticles platform based on gas-shearing strategy for antitumor and antibacterial therapy. International Journal of Biological Macromolecules, 2022, 209, 794-800.	3.6	22
367	Magnetically Actuated Reactive Oxygen Species Scavenging Nanoâ€Robots for Targeted Treatment. Advanced Intelligent Systems, 2022, 4, .	3.3	11

#	Article	IF	CITATIONS
368	Prussian Blue Nanozyme Promotes the Survival Rate of Skin Flaps by Maintaining a Normal Microenvironment. ACS Nano, 2022, 16, 9559-9571.	7.3	28
369	Glucose-responsive biomimetic nanoreactor in bacterial cellulose hydrogel for antibacterial and hemostatic therapies. Carbohydrate Polymers, 2022, 292, 119615.	5.1	23
370	Nanomedicines and nanomaterials for cancer therapy: Progress, challenge and perspectives. Chemical Engineering Journal, 2022, 446, 137147.	6.6	35
371	L-cysteine-regulated in situ formation of Prussian blue/Turnbull's blue nanoparticles as the colorimetric probe for the detection of copper ion. Arabian Journal of Chemistry, 2022, , 104000.	2.3	2
372	Prussian Blue Scavenger Ameliorates Hepatic Ischemia-Reperfusion Injury by Inhibiting Inflammation and Reducing Oxidative Stress. Frontiers in Immunology, 0, 13, .	2.2	15
373	Double Enzyme Mimetic Activities of Multifunctional Ag Nanoparticles Decorated Co3v2o8 Hollow Hexagonal Prismatic Pencils for Application in Colorimetric Sensors and Disinfection. SSRN Electronic Journal, 0, , .	0.4	0
374	Synthesis of Prussian Blue Nanoparticles and Their Antibacterial, Antiinflammation and Antitumor Applications. Pharmaceuticals, 2022, 15, 769.	1.7	13
375	Homochiral Multiferroic Cyanidoâ€Bridged Dimetallic Complexes Assembled by C–F···K Interactions. Angewandte Chemie, 0, , .	1.6	0
376	Nanomaterials alleviating redox stress in neurological diseases: mechanisms and applications. Journal of Nanobiotechnology, 2022, 20, .	4.2	22
377	Intrinsic Multienzyme-like Activities of the Nanoparticles of Mn and Fe Cyano-Bridged Assemblies. Nanomaterials, 2022, 12, 2095.	1.9	4
378	Homochiral Multiferroic Cyanidoâ€Bridged Dimetallic Complexes Assembled by Câ^Fâ‹â‹â‹K Interactions. Angewandte Chemie - International Edition, 2022, 61, .	7.2	12
379	Application of Metal-Based Nanozymes in Inflammatory Disease: A Review. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	10
380	Construction Of High Loading Natural Active Substances Nanoplatform and Application in Synergistic Tumor Therapy. International Journal of Nanomedicine, 0, Volume 17, 2647-2659.	3.3	4
381	Carbon dots supported single Fe atom nanozyme for drug-resistant glioblastoma therapy by activating autophagy-lysosome pathway. Nano Today, 2022, 45, 101530.	6.2	79
382	Bioactive material-based nanozymes with multifunctional attributes for biomedicine: Expanding antioxidant therapeutics for neuroprotection, cancer, and anti-inflammatory pathologies. Coordination Chemistry Reviews, 2022, 469, 214685.	9.5	30
383	Paper-Based Colorimetric Glucose Sensor Using Prussian Blue Nanoparticles as Mimic Peroxidase. SSRN Electronic Journal, 0, , .	0.4	0
384	Boosting the peroxidase-like activity of Pt nanozymes by a synergistic effect of Ti ₃ C ₂ nanosheets for dual mechanism detection. Dalton Transactions, 2022, 51, 11693-11702.	1.6	9
385	Nanozyme–Cellulose Hydrogel Composites Enabling Cascade Catalysis for the Colorimetric Detection of Glucose. ACS Applied Nano Materials, 2022, 5, 13845-13853.	2.4	20

#	Article	IF	CITATIONS
386	Prussian Blue Nanozyme Normalizes Microenvironment to Delay Osteoporosis. Advanced Healthcare Materials, 2022, 11 , .	3.9	13
387	Harnessing immune response using reactive oxygen Species-Generating/Eliminating inorganic biomaterials for disease treatment. Advanced Drug Delivery Reviews, 2022, 188, 114456.	6.6	19
388	Polydopamine-Based Nanocomposite as a Biomimetic Antioxidant with a Variety of Enzymatic Activities for Parkinson's Disease. ACS Applied Materials & Samp; Interfaces, 2022, 14, 32901-32913.	4.0	17
389	Enzyme-Mimetic nano-immunosensors for amplified detection of food hazards: Recent advances and future trends. Biosensors and Bioelectronics, 2022, 217, 114577.	5.3	12
390	Nanomaterials-based imaging diagnosis and therapy of cardiovascular diseases. Nano Today, 2022, 45, 101554.	6.2	12
391	Characteristics of Prussian Blue Nanoparticles and Trends in Their Biotechnological Application Research. KSBB Journal, 2022, 37, 41-48.	0.1	0
392	Recent advances in enzyme-related biomaterials for arthritis treatment. Frontiers in Chemistry, 0, 10, .	1.8	4
393	Chiral Nanozymes for Enantioselective Biological Catalysis. Angewandte Chemie, 0, , .	1.6	1
394	Chiral Nanozymes for Enantioselective Biological Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	27
395	Catalaseâ€Like Nanozymes: Classification, Catalytic Mechanisms, and Their Applications. Small, 2022, 18, .	5.2	89
397	Blood-brain barrier Permeable nanoparticles for Alzheimer's disease treatment by selective mitophagy of microglia. Biomaterials, 2022, 288, 121690.	5 . 7	33
398	Synthesis, properties, and applications of carbyne nanocrystals. Materials Science and Engineering Reports, 2022, 151, 100692.	14.8	12
399	Reactive oxygen species scavenging nanofibers with chitosan-stabilized Prussian blue nanoparticles for enhanced wound healing efficacy. International Journal of Biological Macromolecules, 2022, 219, 835-843.	3.6	7
400	Concurrent antibiosis and anti-inflammation against bacterial pneumonia by zinc hexacyanoferrate nanocatalysts. Biomaterials, 2022, 289, 121768.	5.7	9
401	Ultrasensitive and preprocessing-free electrochemical biosensing platform for the detection of cancer-derived exosomes based on spiky-shaped aptamer-magnetic beads. Biosensors and Bioelectronics, 2022, 217, 114705.	5. 3	9
402	Neutrophil membrane camouflaged hybrid nanozymes for enhanced starvation/photothermal tumor therapy. New Journal of Chemistry, 2022, 46, 17456-17468.	1.4	3
403	Nanodrugs alleviate acute kidney injury: Manipulate RONS at kidney. Bioactive Materials, 2023, 22, 141-167.	8.6	30
404	Size-effect on the intracellular antioxidative activity of Prussian blue nanoparticles investigated by atomic force microscopy. Analytica Chimica Acta, 2022, 1227, 340321.	2.6	7

#	Article	IF	Citations
405	A Mini-Review of Diagnostic and Therapeutic Nano-Tools for Pancreatitis. International Journal of Nanomedicine, 0, Volume 17, 4367-4381.	3.3	3
406	Nanozymes for Regenerative Medicine. Small Methods, 2022, 6, .	4.6	37
407	Paper-based colorimetric glucose sensor using Prussian blue nanoparticles as mimic peroxidase. Biosensors and Bioelectronics, 2023, 219, 114787.	5. 3	10
408	Neuroprotective Treatments for Ischemic Stroke: Opportunities for Nanotechnology. Advanced Functional Materials, 2022, 32, .	7.8	12
409	Dual-dynamic-bond cross-linked injectable hydrogel of multifunction for intervertebral disc degeneration therapy. Journal of Nanobiotechnology, 2022, 20, .	4.2	13
410	Protein-sized nanozymes «artificial peroxidase» based on template catalytic synthesis of Prussian Blue. Bioelectrochemistry, 2023, 149, 108275.	2.4	8
411	Hollow prussian blue nanozyme-richened liposome for artificial neural network-assisted multimodal colorimetric-photothermal immunoassay on smartphone. Biosensors and Bioelectronics, 2022, 218, 114751.	5.3	76
412	ROS-Based Cancer Radiotherapy. Nanomedicine and Nanotoxicology, 2022, , 265-309.	0.1	1
413	Medical Nanozymes for Therapeutics. Micro/Nano Technologies, 2022, , 1-46.	0.1	0
414	Harnessing the Power of Nanomaterials to Alleviate Tumor Hypoxia in Favor of Cancer Therapy. Nanomedicine and Nanotoxicology, 2022, , 135-174.	0.1	0
415	Reference material of Prussian blue nanozymes for their peroxidase-like activity. Analyst, The, 2022, 147, 5633-5642.	1.7	9
417	Metal-organic-framework-involved nanobiocatalysis for biomedical applications. Chem Catalysis, 2022, 2, 2552-2589.	2.9	8
418	Nanozymes-Enhanced Cell Therapy. ACS Symposium Series, 0, , 189-209.	0.5	0
419	Photoacoustic image-guided biomimetic nanoparticles targeting rheumatoid arthritis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	22
420	Mesoporous Calcium-Silicate Nanoparticles Loaded with Prussian Blue Promotes Enterococcus Faecalis Ferroptosis-Like Death by Regulating Bacterial Redox Pathway ROS/GSH. International Journal of Nanomedicine, 0, Volume 17, 5187-5205.	3.3	2
421	Advancements of Prussian blue-based nanoplatforms in biomedical fields: Progress and perspectives. Journal of Controlled Release, 2022, 351, 752-778.	4.8	9
422	PEI-coated Prussian blue nanocubes as pH-Switchable nanozyme: Broad-pH-responsive immunoassay for illegal additive. Biosensors and Bioelectronics, 2023, 219, 114797.	5.3	18
423	Metal-organic framework-based nanoplatform enhance fibroblast activity to treat periodontitis. Dental Materials Journal, 2023, , .	0.8	1

#	Article	IF	CITATIONS
424	Enzyme mimic nanomaterials as nanozymes with catalytic attributes. Colloids and Surfaces B: Biointerfaces, 2023, 221, 112950.	2.5	24
425	Engineered tumor cell-derived vaccines against cancer: The art of combating poison with poison. Bioactive Materials, 2023, 22, 491-517.	8.6	15
426	From liver fibrosis to hepatocarcinogenesis: Role of excessive liver H2O2 and targeting nanotherapeutics. Bioactive Materials, 2023, 23, 187-205.	8.6	5
427	Multifunctional Silk Fibroin Methacryloyl Microneedle for Diabetic Wound Healing. Small, 2022, 18, .	5.2	46
428	Targeted Therapy of Atherosclerosis Vulnerable Plaque by ROS-Scavenging Nanoparticles and MR/Fluorescence Dual-Modality Imaging Tracing. International Journal of Nanomedicine, 0, Volume 17, 5413-5429.	3.3	6
429	Nanozymes in the Treatment of Diseases Caused by Excessive Reactive Oxygen Specie. Journal of Inflammation Research, 0, Volume 15, 6307-6328.	1.6	8
430	Engineering Antioxidative Cascade Metal-Phenolic Nanozymes for Alleviating Oxidative Stress during Extracorporeal Blood Purification. ACS Nano, 2022, 16, 18329-18343.	7.3	25
431	Advances in the antimicrobial treatment of osteomyelitis. Composites Part B: Engineering, 2023, 249, 110428.	5.9	13
432	A versatile metal–organic nanoplatform in combination with CXCR4 antagonist and PD-L1 inhibitor for multimodal synergistic cancer therapy and MRI-guided tumor imaging. Nano Today, 2022, 47, 101689.	6.2	10
433	ROS-scavenging biomaterials for periodontitis. Journal of Materials Chemistry B, 2023, 11, 482-499.	2.9	16
434	Breakthroughs in nanozyme-inspired application diversity. Materials Chemistry Frontiers, 2022, 7, 44-64.	3.2	14
435	Microfluidic bioanalysis based on nanozymes. TrAC - Trends in Analytical Chemistry, 2023, 158, 116858.	5.8	3
436	Influence of the chemically reduced graphene oxide interface on the antioxidant multienzyme properties of Prussian blue nanoparticles. Colloids and Interface Science Communications, 2023, 52, 100689.	2.0	1
437	Stable enzymatic curve platform and ultrafast catalytic kinetic endows MnSiO3 oxidase mimic with high reliability and supersensitivity. Chemical Engineering Journal, 2023, 456, 140999.	6.6	3
438	Electrochemical deposition of Prussian blue on Nb2CT MXene modified carbon cloth for the non-enzymatic electrochemical detection of hydrogen peroxide. Microchemical Journal, 2023, 185, 108301.	2.3	7
439	Covalent organic framework linked with amination luminol derivative as enhanced ECL luminophore for ultrasensitive analysis of cytochrome <i>c</i> . Analytical Methods, 2022, 14, 4767-4774.	1.3	3
440	Functionalized Prussian Blue Nanozyme as Dual-Responsive Drug Therapeutic Nanoplatform Against Maxillofacial Infection via Macrophage Polarization. International Journal of Nanomedicine, 0, Volume 17, 5851-5868.	3.3	7
441	Copper-rich multifunctional Prussian blue nanozymes for infected wound healing. International Journal of Biological Macromolecules, 2023, 227, 1258-1270.	3.6	10

#	Article	IF	CITATIONS
442	Size-Controllable Prussian Blue Nanoparticles Using Pluronic Series for Improved Antioxidant Activity and Anti-Inflammatory Efficacy. Antioxidants, 2022, 11, 2392.	2.2	4
443	New horizons for therapeutic applications of nanozymes in oral infection. Particuology, 2023, 80, 61-73.	2.0	4
444	Biomimetic Prussian blue nanozymes with enhanced bone marrow-targeting for treatment of radiation-induced hematopoietic injury. Biomaterials, 2023, 293, 121980.	5.7	6
445	Detection of Glucose Based on Noble Metal Nanozymes: Mechanism, Activity Regulation, and Enantioselective Recognition. Small, 2023, 19, .	5.2	32
446	Magnesium hexacyanoferrate nanocatalysts attenuate chemodrug-induced cardiotoxicity through an anti-apoptosis mechanism driven by modulation of ferrous iron. Nature Communications, 2022, 13, .	5.8	5
447	Medical Nanozymes for Therapeutics. Micro/Nano Technologies, 2023, , 285-329.	0.1	0
448	Engineering ROS-scavenging Prussian blue nanozymes for efficient atherosclerosis nanotherapy. Journal of Materials Chemistry B, 2023, 11, 1881-1890.	2.9	4
449	Engineering a synergistic antioxidant inhibition nanoplatform to enhance oxidative damage in tumor treatment. Acta Biomaterialia, 2023, 158, 625-636.	4.1	8
450	A bioinspired polydopamine–FeS nanocomposite with high antimicrobial efficiency <i>via</i> NIR-mediated Fenton reaction. Dalton Transactions, 2023, 52, 1687-1701.	1.6	4
451	Nanozymes for Improving Anticancer Therapy. Environmental Chemistry for A Sustainable World, 2023, , 107-142.	0.3	0
452	Multienzyme-Mimicking Au@Cu ₂ O with Complete Antioxidant Capacity for Reactive Oxygen Species Scavenging. ACS Applied Materials & Samp; Interfaces, 2023, 15, 378-390.	4.0	9
453	Advances in antioxidative nanozymes for treating ischemic stroke. Engineered Regeneration, 2023, 4, 95-102.	3.0	2
454	Synergistic Effect of Fe ^{II} and Mn ^{II} lons in Cyano-Bridged Heterometallic Coordination Polymers on Catalytic Selectivity of Benzene Oxygenation to Phenol. Journal of Physical Chemistry Letters, 2023, 14, 158-163.	2.1	0
455	Portable Prussian Blue-Based Sensor for Bacterial Detection in Urine. Sensors, 2023, 23, 388.	2.1	1
457	Recent Advances in ROS-Scavenging Metallic Nanozymes for Anti-Inflammatory Diseases: A Review. Chonnam Medical Journal, 2023, 59, 13.	0.5	1
458	Spherical Hydrogel Sensor Based on PB@Fe-COF@Au Nanoparticles with Triplet Peroxidase-like Activity and Multiple Capture Sites for Effective Detection of Organophosphorus Pesticides. ACS Applied Materials & Detection of Organophosphorus Pesticides. ACS Applied Materials & Detection of Organophosphorus Pesticides. ACS Applied Materials & Detection of Organophosphorus Pesticides.	4.0	10
459	Construction of Genetically Encoded Biosensors to Monitor Subcellular Compartment-Specific Glutathione Response to Chemotherapeutic Drugs in Acute Myeloid Leukemia Cells. Analytical Chemistry, 2023, 95, 2838-2847.	3.2	1
460	Red Emissive Carbon Dot Superoxide Dismutase Nanozyme for Bioimaging and Ameliorating Acute Lung Injury. Advanced Functional Materials, 2023, 33, .	7.8	49

#	Article	IF	Citations
461	Progress in the preparation of Prussian blue-based nanomaterials for biomedical applications. Journal of Materials Chemistry B, 2023, 11, 5272-5300.	2.9	12
462	Self-assembled, hemin-functionalized peptide nanotubes: an innovative strategy for detecting glutathione and glucose molecules with peroxidase-like activity. Nano Convergence, 2023, 10 , .	6.3	3
463	Exosomes and ultrasound: The future of theranostic applications. Materials Today Bio, 2023, 19, 100556.	2.6	6
464	Glutathione depletion-mediated <i>in situ </i> i>transformation of Prussian blue nanocubes for enhanced tumor-specific imaging and photoimmunotherapy. Inorganic Chemistry Frontiers, 2023, 10, 4054-4064.	3.0	4
465	Multi-enzyme mimics – cracking the code of subcellular cascade reactions and their potential biological applications. Materials Chemistry Frontiers, 2023, 7, 3037-3072.	3.2	1
466	Recent advances in Prussian blue-based photothermal therapy in cancer treatment. Biomaterials Science, 2023, 11, 4411-4429.	2.6	7
467	ROS Scavenging Nanozyme Modulates Immunosuppression for Sensitized Cancer Immunotherapy. Advanced Healthcare Materials, 2023, 12, .	3.9	3
468	Nanozymes and nanoflower: Physiochemical properties, mechanism and biomedical applications. Colloids and Surfaces B: Biointerfaces, 2023, 225, 113241.	2.5	9
469	Versatile hybrid nanoplatforms for treating periodontitis with chemical/photothermal therapy and reactive oxygen species scavenging. Chemical Engineering Journal, 2023, 463, 142293.	6.6	12
470	Copper nanoparticles incorporated nitrogen-rich carbon nitride as laccase-like nanozyme for colorimetric detection of bisphenol a released from microplastics. Microchemical Journal, 2023, 190, 108682.	2.3	2
471	Synthesis of Mn-Prussian blue analogues with multi-enzyme activity and related application for alcohol detection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 665, 131223.	2.3	2
472	Advances in Nanozymes as a Paradigm for Viral Diagnostics and Therapy. Pharmacological Reviews, 2023, 75, 739-757.	7.1	3
473	NIR responsive nanoenzymes via photothermal ablation and hypoxia reversal to potentiate the STING-dependent innate antitumor immunity. Materials Today Bio, 2023, 19, 100566.	2.6	4
475	Molecular insights of nanozymes from design to catalytic mechanism. Science China Chemistry, 2023, 66, 1318-1335.	4.2	13
476	Current and future outlook of loaded components in hydrogel composites for the treatment of chronic diabetic ulcers. Frontiers in Bioengineering and Biotechnology, 0, 11 , .	2.0	3
477	Multivalent Nanobody Conjugate with Rigid, Reactive Oxygen Species Scavenging Scaffold for Multiâ€∓arget Therapy of Alzheimer's Disease. Advanced Materials, 2023, 35, .	11.1	3
478	V ₂ CT _{<i>x</i>} MXene Nanosheets as Enhanced Free-Radical Scavengers for Alleviating Oxidative Stress. ACS Applied Nano Materials, 2023, 6, 3121-3127.	2.4	2
479	Sulfide-modified nanoscale zero-valent iron as a novel therapeutic remedy for septic myocardial injury. Journal of Advanced Research, 2024, 55, 145-158.	4.4	1

#	Article	IF	CITATIONS
480	Multienzyme‣ike Nanozymes: Regulation, Rational Design, and Application. Advanced Materials, 2024, 36, .	11.1	43
481	Selfâ€Mineralizing Dnazyme Hydrogel as a Multifaceted Bone Microenvironment Amendment for Promoting Osteogenesis in Osteoporosis. Advanced Functional Materials, 2023, 33, .	7.8	0
482	Oxygen-generating biocatalytic nanomaterials for tumor hypoxia relief in cancer radiotherapy. Journal of Materials Chemistry B, 2023, 11, 3071-3088.	2.9	5
483	Double enzyme mimetic activities of multifunctional Ag nanoparticle-decorated Co3V2O8 hollow hexagonal prismatic pencils for application in colorimetric sensors and disinfection. Nano Materials Science, 2023, , .	3.9	1
484	Prussian blue and its analogues as artificial enzymes and prospects for their application. Studia Biologica = БІОзОГІЧĐІ Đ¡Đ¢Đ£Đ"ІЇ Studia Biologica, 2023, 17, 99-114.	0.1	0
485	Dendrimers and Derivatives as Multifunctional Nanotherapeutics for Alzheimer's Disease. Pharmaceutics, 2023, 15, 1054.	2.0	6
486	Nanomaterial-based reactive oxygen species scavengers for osteoarthritis therapy. Acta Biomaterialia, 2023, 162, 1-19.	4.1	6
487	Platinum–Nickel Nanoparticles with Enhanced Oxidase-like Activity for Total Antioxidant Capacity Bioassay. Analytical Chemistry, 2023, 95, 5937-5945.	3.2	15
488	Near-infrared light-controlled kartogenin delivery of multifunctional Prussian blue nanocomposites for cartilage defect repair. Nanoscale, 2023, 15, 9076-9093.	2.8	1
489	3D nanofiber sponge with dimethyloxaloglycine-loaded Prussian blue analogue microspheres to promote wound healing. Biomedical Materials (Bristol), 2023, 18, 035012.	1.7	0
490	Nanohybrid Double Network Hydrogels Based on a Platinum Nanozyme Composite for Antimicrobial and Diabetic Wound Healing. ACS Applied Materials & Samp; Interfaces, 2023, 15, 17612-17626.	4.0	12
491	Nanozymeâ€Based Regulation of Cellular Metabolism and Their Applications. Advanced Materials, 2024, 36, .	11.1	7
492	Rational Atomic Engineering of Prussian Blue Analogues as Peroxidase Mimetics for Colorimetric Urinalysis of Uric Acid. ACS Sustainable Chemistry and Engineering, 2023, 11, 6211-6219.	3.2	7
493	Recent Advances in the Application of Nanozymes in Amperometric Sensors: A Review. Chemosensors, 2023, 11, 233.	1.8	1
494	Prussian Blue Nanozyme Treatment of Ischemic Brain Injury via Reducing Oxidative Stress Inhibits Inflammation, Suppresses Apoptosis, and Promotes Neurological Recovery. ACS Chemical Neuroscience, 0, , .	1.7	0
495	Tumor immunosuppression relief via acidity modulation combined PD-L1 siRNA for enhanced immunotherapy., 2023, 150, 213425.		2
496	Reactive Oxygen Species $\hat{a} \in S$ cavenging Nanosystems in the Treatment of Diabetic Wounds. Advanced Healthcare Materials, 2023, 12, .	3.9	23
497	2D Cobalt Oxyhydroxide Nanozymes Inhibit Inflammation by Targeting the NLRP3 Inflammasome. Advanced Functional Materials, 2023, 33, .	7.8	8

#	ARTICLE	IF	CITATIONS
498	Selective and sensitive on-site colorimetric detection of 4,4′-isopropylidenediphenol using non-enzymatic molecularly imprinted graphitic carbon nitride hybrids in milk and water samples. New Journal of Chemistry, 2023, 47, 9087-9100.	1.4	2
500	Prussian blue nanozymes coated with Pluronic attenuate inflammatory osteoarthritis by blocking c-Jun N-terminal kinase phosphorylation. Biomaterials, 2023, 297, 122131.	5.7	5
523	Nanozyme-Based Remodeling of Disease Microenvironments for Disease Prevention and Treatment: A Review. ACS Applied Nano Materials, 2023, 6, 13792-13823.	2.4	5
526	Stimuli-responsive nanozymes for biomedical applications. Biomaterials Science, 2023, 11, 5769-5780.	2.6	2
544	Antioxidant nanozymes in kidney injury: mechanism and application. Nanoscale, 2023, 15, 13148-13171.	2.8	0
547	Reactive X (where X = O, N, S, C, Cl, Br, and I) species nanomedicine. Chemical Society Reviews, 2023, 52, 6957-7035.	18.7	3
548	Nanozymes for Antioxidant Therapy. , 2023, , 111-164.		0
569	Deep Insight of Design, Mechanism, and Cancer Theranostic Strategy of Nanozymes. Nano-Micro Letters, 2024, 16, .	14.4	2
571	Bioinspired nanomaterials for the treatment of bacterial infections. Nano Research, 2024, 17, 691-714.	5.8	2
595	Drug delivery for Alzheimer's disease using nanotechnology. , 2024, , 361-371.		1
603	Nanoinformatics based insights into the interaction of blood plasma proteins with carbon based nanomaterials: Implications for biomedical applications. Advances in Protein Chemistry and Structural Biology, 2024, , 263-288.	1.0	0