Development of a long-acting, protein-loaded, redox-ac polyion complex for local protein therapeutics

Biomaterials 84, 210-218 DOI: 10.1016/j.biomaterials.2016.01.029

Citation Report

#	Article	IF	CITATIONS
1	Design of Novel PEGylated Materials for Different Approaches to Cancer Immunotherapy. Drug Delivery System, 2016, 31, 320-330.	0.0	0
2	Nanocarrier fabrication and macromolecule drug delivery: challenges and opportunities. Therapeutic Delivery, 2016, 7, 257-278.	1.2	94
3	In situ injection of phenylboronic acid based low molecular weight gels for efficient chemotherapy. Biomaterials, 2016, 105, 1-11.	5.7	53
4	Designing hydrogels for controlled drug delivery. Nature Reviews Materials, 2016, 1, .	23.3	2,817
5	Development of a local anesthetic lidocaine-loaded redox-active injectable gel for postoperative pain management. Acta Biomaterialia, 2017, 57, 127-135.	4.1	9
6	Design, synthesis and characterization of poly (methacrylic acid-niclosamide) and its effect on arterial function. Materials Science and Engineering C, 2017, 77, 352-359.	3.8	14
7	The effect of comb architecture on complex coacervation. Organic and Biomolecular Chemistry, 2017, 15, 7630-7642.	1.5	34
8	Spray drying of silica microparticles for sustained release application with a new sol-gel precursor. International Journal of Pharmaceutics, 2017, 532, 281-288.	2.6	8
9	Alginate hydrogel improves anti-angiogenic bevacizumab activity in cancer therapy. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 119, 271-282.	2.0	42
10	Injectable Pore-Forming Hydrogel Scaffolds for Complex Wound Tissue Engineering: Designing and Controlling Their Porosity and Mechanical Properties. Tissue Engineering - Part B: Reviews, 2017, 23, 183-198.	2.5	35
11	Complex coacervateâ€based materials for biomedicine. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1442.	3.3	185
12	In vitro and in vivo protein release and anti-ischemia/ reperfusion injury properties of bone morphogenetic protein-2-loaded glycyrrhetinic acid-poly(ethylene glycol)-b-poly(L-lysine) nanoparticles. International Journal of Nanomedicine, 2017, Volume 12, 7613-7625.	3.3	14
13	Tough Composite Hydrogels with High Loading and Local Release of Biological Drugs. Advanced Healthcare Materials, 2018, 7, e1701393.	3.9	52
14	Novel angiogenesis therapeutics by redox injectable hydrogel - Regulation of local nitric oxide generation for effective cardiovascular therapy. Biomaterials, 2018, 167, 143-152.	5.7	91
15	A biocompatible betaine-functionalized polycation for coacervation. Soft Matter, 2018, 14, 387-395.	1.2	9
16	Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering. Biomaterials Research, 2018, 22, 27.	3.2	205
17	Design and application of redox polymers for nanomedicine. Polymer Journal, 2018, 50, 821-836.	1.3	26
18	Reactive oxygen species scavenging with a biodegradable, thermally responsive hydrogel compatible with soft tissue injection. Biomaterials, 2018, 177, 98-112.	5.7	128

#	ARTICLE	IF	CITATIONS
19	Injectable sustained release PLA microparticles prepared by solvent evaporation-media milling technology. Drug Development and Industrial Pharmacy, 2018, 44, 1591-1597.	0.9	11
20	Instant Strong Adhesive Behavior of Nanocomposite Gels toward Hydrophilic Porous Materials. Langmuir, 2018, 34, 8480-8488.	1.6	11
21	Supramolecular Assembly of Peptide and Metallopeptide Gelators and Their Stimuliâ€Responsive Properties in Biomedical Applications. Chemistry - A European Journal, 2018, 24, 14316-14328.	1.7	77
22	A Robust Aqueous Core–Shell–Shell Coconut-like Nanostructure for Stimuli-Responsive Delivery of Hydrophilic Cargo. ACS Nano, 2019, 13, 9016-9027.	7.3	74
23	Recent development in biodegradable nanovehicle delivery system-assisted immunotherapy. Biomaterials Science, 2019, 7, 4414-4443.	2.6	22
24	Injectable Hydrogels for Cancer Therapy over the Last Decade. Pharmaceutics, 2019, 11, 486.	2.0	69
25	Surgery-free injectable macroscale biomaterials for local cancer immunotherapy. Biomaterials Science, 2019, 7, 733-749.	2.6	41
26	Encapsulation of tissue plasminogen activator in pH-sensitive self-assembled antioxidant nanoparticles for ischemic stroke treatment – Synergistic effect of thrombolysis and antioxidant –. Biomaterials, 2019, 215, 119209.	5.7	80
27	Engineering Protein Delivery Depots for Cancer Immunotherapy. Bioconjugate Chemistry, 2019, 30, 515-524.	1.8	20
28	Determination of association constants between water-soluble phospholipid polymer bearing phenylboronic acid group and polyol compounds for reversible formation of three-dimensional networks. Reactive and Functional Polymers, 2019, 135, 113-120.	2.0	8
29	Redox Polyion Complex Micelle-Based Injectable Hydrogel as Local Reactive Oxygen Species Scavenging Therapeutics. ACS Symposium Series, 2019, , 287-307.	0.5	1
30	The preparation and morphology control of heparin-based pH sensitive polyion complexes and their application as drug carriers. Carbohydrate Polymers, 2019, 211, 370-379.	5.1	20
31	Redoxâ€active injectable gel using polyion complex to achieve sustained release of exenatide and enhance therapeutic efficacy for the treatment of type 2 diabetes. Journal of Biomedical Materials Research - Part A, 2019, 107, 1107-1113.	2.1	5
32	Ferrocene Peptide-based Supramolecular Gels. , 2019, , 57-74.		7
33	Self-assembled small molecule natural product gel for drug delivery: a breakthrough in new application of small molecule natural products. Acta Pharmaceutica Sinica B, 2020, 10, 913-927.	5.7	57
34	Emerging Biomimetic Materials for Studying Tumor and Immune Cell Behavior. Annals of Biomedical Engineering, 2020, 48, 2064-2077.	1.3	10
35	Glucose Oxidaseâ€Related Cancer Therapies. Advanced Therapeutics, 2020, 3, 2000110.	1.6	42
36	Immunostimulatory biomaterials to boost tumor immunogenicity. Biomaterials Science, 2020, 8, 5516-5537.	2.6	11

CITATION REPORT

.

CITATION REPORT

#	Article	IF	CITATIONS
37	The benefit of poor mixing: kinetics of coacervation. Physical Chemistry Chemical Physics, 2020, 22, 20643-20657.	1.3	13
38	Engineered biomaterials for cancer immunotherapy. MedComm, 2020, 1, 35-46.	3.1	52
39	Advanced biomaterials for cancer immunotherapy. Acta Pharmacologica Sinica, 2020, 41, 911-927.	2.8	62
40	Advances in engineering local drug delivery systems for cancer immunotherapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1632.	3.3	35
41	Thermoresponsive Hemostatic Hydrogel with a Biomimetic Nanostructure Constructed from Aggregated Collagen Nanofibers. Biomacromolecules, 2021, 22, 319-329.	2.6	21
42	Engineering Strategies for Immunomodulatory Cytokine Therapies: Challenges and Clinical Progress. Advanced Therapeutics, 2021, 4, 2100035.	1.6	42
43	Sustained Release Systems for Delivery of Therapeutic Peptide/Protein. Biomacromolecules, 2021, 22, 2299-2324.	2.6	24
44	Translational Applications of Hydrogels. Chemical Reviews, 2021, 121, 11385-11457.	23.0	438
45	Inducible Tertiary Lymphoid Structures: Promise and Challenges for Translating a New Class of Immunotherapy. Frontiers in Immunology, 2021, 12, 675538.	2.2	16
46	Sustained-Release Hydrogel-Based Rhynchophylline Delivery System Improved Injured Tendon Repair. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111876.	2.5	11
48	Localized delivery of immunotherapeutics: A rising trend in the field. Journal of Controlled Release, 2021, 340, 149-167.	4.8	14
49	Biomedical applications of hydrogels in drug delivery system: An update. Journal of Drug Delivery Science and Technology, 2021, 66, 102914.	1.4	68
50	Liver trauma: An Insight into Therapeutic Approach. Journal of Nanotechnology and Materials Science, 2016, 3, 1-3.	0.1	0
51	Injectable In Situ-Forming Hydrogels for Protein and Peptide Delivery. Advances in Experimental Medicine and Biology, 2020, 1250, 35-48.	0.8	2
52	Precision biomaterials in cancer theranostics and modelling. Biomaterials, 2022, 280, 121299.	5.7	26
53	Injectable liposome-based supramolecular hydrogels for the programmable release of multiple protein drugs. Matter, 2022, 5, 1816-1838.	5.0	18
54	Sustained Drug Release from Biopolymer-Based Hydrogels and Hydrogel Coatings. , 0, , .		1
55	Advanced Formulations/Drug Delivery Systems for Subcutaneous Delivery of Protein-Based Biotherapeutics. Journal of Pharmaceutical Sciences, 2022, 111, 2968-2982.	1.6	6

#	Article	IF	CITATIONS
56	In Situ Hydrogels for Effective Treatment of Cancer: Strategies and Polymers Used. Recent Advances in Drug Delivery and Formulation, 2022, 16, 287-308.	0.3	0
57	An oral hydrogel carrier for delivering resveratrol into intestine-specific target released with high encapsulation efficiency and loading capacity based on structure-selected alginate and pectin. Food and Function, 2022, 13, 12051-12066.	2.1	1
58	Jammed microgels fabricated via various methods for biological studies. Korean Journal of Chemical Engineering, 0, , .	1.2	0
59	Engineered nanomedicines for augmenting the efficacy of colorectal cancer immunotherapy. Nanomedicine, 0, , .	1.7	0
60	Recent advances in natural small molecules as drug delivery systems. Journal of Materials Chemistry B, 2023, 11, 4584-4599.	2.9	4