Droiddetector: android malware characterization and d

Tsinghua Science and Technology 21, 114-123 DOI: 10.1109/tst.2016.7399288

Citation Report

#	Article	IF	CITATIONS
1	Android security overview: A systematic survey. , 2016, , .		3
2	Deep4MalDroid: A Deep Learning Framework for Android Malware Detection Based on Linux Kernel System Call Graphs. , 2016, , .		131
3	Investigating clustering algorithm DBSCAN to self select locations for power based malicious code detection on smartphones. , 2017, , .		1
4	Detection of malicious behavior in android apps through <scp>API</scp> calls and permission uses analysis. Concurrency Computation Practice and Experience, 2017, 29, e4172.	1.4	24
5	DeepFlow: Deep learning-based malware detection by mining Android application for abnormal usage of sensitive data. , 2017, , .		24
6	Session-Based Network Intrusion Detection Using a Deep Learning Architecture. Lecture Notes in Computer Science, 2017, , 144-155.	1.0	36
7	Metamorphic Malware Detection by PE Analysis with the Longest Common Sequence. Lecture Notes in Computer Science, 2017, , 262-272.	1.0	2
8	Classification of Android apps and malware using deep neural networks. , 2017, , .		81
9	Evolving Deep Neural Networks architectures for Android malware classification. , 2017, , .		22
10	XGBoost-Based Android Malware Detection. , 2017, , .		9
11	Towards 3-level hybrid security model for Android Operating Systems. , 2017, , .		0
12	Deep android malware detection and classification. , 2017, , .		52
13	Android malware detection a survey. , 2017, , .		19
14	Improving the effectiveness and efficiency of dynamic malware analysis with machine learning. , 2017, ,		23
15	An improved recommender system using two-level matrix factorization for product ontologies. , 2017, , .		4
16	Mlifdect: Android Malware Detection Based on Parallel Machine Learning and Information Fusion. Security and Communication Networks, 2017, 2017, 1-14.	1.0	25
17	CNN-Based Android Malware Detection. , 2017, , .		36
18	Intrusion Detection in Contemporary Environments. , 2017, , 109-130.		9

ATION RED

#	Article	IF	CITATIONS
19	Detecting Android malware using Long Short-term Memory (LSTM). Journal of Intelligent and Fuzzy Systems, 2018, 34, 1277-1288.	0.8	101
20	SAMADroid: A Novel 3-Level Hybrid Malware Detection Model for Android Operating System. IEEE Access, 2018, 6, 4321-4339.	2.6	133
21	A New Malware Detection System Using Machine Learning Techniques for API Call Sequences. Journal of Applied Security Research, 2018, 13, 45-62.	0.8	52
22	A state-of-the-art survey of malware detection approaches using data mining techniques. Human-centric Computing and Information Sciences, 2018, 8, .	6.1	241
23	DDefender: Android application threat detection using static and dynamic analysis. , 2018, , .		26
24	HADM: Hybrid Analysis for Detection of Malware. Lecture Notes in Networks and Systems, 2018, , 702-724.	0.5	33
25	Malware classification using self organising feature maps and machine activity data. Computers and Security, 2018, 73, 399-410.	4.0	104
26	Bio-inspired for Features Optimization and Malware Detection. Arabian Journal for Science and Engineering, 2018, 43, 6963-6979.	1.7	34
27	An Android Malware Detection Technique Using Optimized Permission and API with PCA. , 2018, , .		4
28	An Android Malware Detection Method Based on Deep AutoEncoder. , 2018, , .		14
29	CDGDroid: Android Malware Detection Based on Deep Learning Using CFG and DFG. Lecture Notes in Computer Science, 2018, , 177-193.	1.0	31
30	A Dynamic and Static Combined Android Malicious Code Detection Model based on SVM. , 2018, , .		3
31	Android Malware Detection: A Survey. Communications in Computer and Information Science, 2018, , 255-266.	0.4	42
32	Large-scale Malware Automatic Detection Based On Multiclass Features and Machine Learning. , 2018, ,		0
33	Applying deep learning techniques for Android malware detection. , 2018, , .		24
34	DeepDetector: Android Malware Detection using Deep Neural Network. , 2018, , .		7
35	Early-stage malware prediction using recurrent neural networks. Computers and Security, 2018, 77, 578-594.	4.0	190
36	CANDYMAN: Classifying Android malware families by modelling dynamic traces with Markov chains. Engineering Applications of Artificial Intelligence, 2018, 74, 121-133.	4.3	67

IF ARTICLE CITATIONS The Spyware Used in Intimate Partner Violence., 2018,,. 37 58 Protecting contacts against privacy leaks in smartphones. PLoS ONE, 2018, 13, e0191502. 1.1 39 DeepRefiner: Multi-layer Android Malware Detection System Applying Deep Neural Networks., 2018, , . 70 Static and Dynamic Analysis for Android Malware Detection. Advances in Intelligent Systems and Computing, 2018, , 147-155. EvoDeep: A new evolutionary approach for automatic Deep Neural Networks parametrisation. Journal 41 2.7 70 of Parallel and Distributed Computing, 2018, 117, 180-191. A Detailed Investigation and Analysis of Using Machine Learning Techniques for Intrusion Detection. IEEE Communications Surveys and Tutorials, 2019, 21, 686-728. 24.8 386 DRTHIS: Deep ransomware threat hunting and intelligence system at the fog layer. Future Generation 43 4.9 102 Computer Systems, 2019, 90, 94-104. A Multimodal Deep Learning Method for Android Malware Detection Using Various Features. IEEE 44 4.5 312 Transactions on Information Forensics and Security, 2019, 14, 773-788. 45 Neural malware analysis with attention mechanism. Computers and Security, 2019, 87, 101592. 4.0 35 Using Deep Learning to Detect Malicious URLs., 2019, , . Explainable Artificial Intelligence Applications in NLP, Biomedical, and Malware Classification: A 47 0.5 79 Literature Review. Advances in Intelligent Systems and Computing, 2019, , 1269-1292. Android malware detection through generative adversarial networks. Transactions on Emerging 30 Telecommunications Technologies, 2022, 33, e3675. Optimization and abstraction: a synergistic approach for analyzing neural network robustness., 2019, 49 49 **,** • Selective Adversarial Learning for Mobile Malware., 2019, , . Detection of Permission Driven Malware in Android Using Deep Learning Techniques., 2019,,. 51 5 Android Malware Detection Based on Convolutional Neural Networks., 2019,,. 53 Android Malware Detection using Deep Learning., 2019, , . 17 Generating Adversarial Examples in One Shot With Image-to-Image Translation GAN. IEEE Access, 2019, 7, 54 151103-151119.

#	Article	IF	CITATIONS
55	DroidEvolver: Self-Evolving Android Malware Detection System. , 2019, , .		72
56	Mobile Malware Detection: An Analysis of Deep Learning Model. , 2019, , .		5
57	Proposing Automatic Dataset Generation System to Support Android Sensitive Data Leakage Detection Systems. , 2019, , .		0
58	LAB to SOC: Robust Features for Dynamic Malware Detection. , 2019, , .		7
59	Detecting Malicious Android Apps using the Popularity and Relations of APIs. , 2019, , .		2
60	The Android malware detection systems between hope and reality. SN Applied Sciences, 2019, 1, 1.	1.5	20
61	An Improved SSD Algorithm and Its Mobile Terminal Implementation. , 2019, , .		2
62	Accelerating convolutional neural network-based malware traffic detection through ant-colony clustering. Journal of Intelligent and Fuzzy Systems, 2019, 37, 409-423.	0.8	8
63	Constructing Features for Detecting Android Malicious Applications: Issues, Taxonomy and Directions. IEEE Access, 2019, 7, 67602-67631.	2.6	69
64	A Multimodal Malware Detection Technique for Android IoT Devices Using Various Features. IEEE Access, 2019, 7, 64411-64430.	2.6	101
65	A multi-level deep learning system for malware detection. Expert Systems With Applications, 2019, 133, 151-162.	4.4	57
66	Application of deep learning to cybersecurity: A survey. Neurocomputing, 2019, 347, 149-176.	3.5	191
67	Deep Learning in Mobile and Wireless Networking: A Survey. IEEE Communications Surveys and Tutorials, 2019, 21, 2224-2287.	24.8	1,010
68	A Survey of Deep Learning Methods for Cyber Security. Information (Switzerland), 2019, 10, 122.	1.7	306
69	Malware Detection Based on Deep Learning of Behavior Graphs. Mathematical Problems in Engineering, 2019, 2019, 1-10.	0.6	58
70	A Deep Reinforcement Learning Malware Detection Method Based on PE Feature Distribution. , 2019, , .		4
71	PACE: Platform for Android Malware Classification and Performance Evaluation. , 2019, , .		1
72	A Novel Preprocessing Method for Solving Long Sequence Problem in Android Malware Detection. , 2019, , .		6

ARTICLE IF CITATIONS Static Analysis of Android Malware Detection using Deep Learning., 2019,,. 14 73 FSNet: Android Malware Detection with Only One Feature., 2019,,. 74 75 MobiDroid: A Performance-Sensitive Malware Detection System on Mobile Platform., 2019,,. 22 Identifying Malicious Software Using Deep Residual Long-Short Term Memory. IEEE Access, 2019, 7, 163128-163137. Robust Malware Defense in Industrial IoT Applications using Machine Learning with Selective 77 3.3 14 Adversarial Samples. IEEE Transactions on Industry Applications, 2019, , 1-1. "Less Give More†Evaluate and zoning Android applications. Measurement: Journal of the International Measurement Confederation, 2019, 133, 396-411. 2.5 A joint deep model of entities and documents for cumulative citation recommendation. Cluster 79 3.5 2 Computing, 2019, 22, 5435-5446. Robust Malware Detection for Internet of (Battlefield) Things Devices Using Deep Eigenspace Learning. IEEE Transactions on Sustainable Computing, 2019, 4, 88-95. Effective android malware detection with a hybrid model based on deep autoencoder and convolutional neural network. Journal of Ambient Intelligence and Humanized Computing, 2019, 10, 3.3 200 81 3035-3043. A survey of swarm and evolutionary computing approaches for deep learning. Artificial Intelligence 104 Review, 2020, 53, 1767-1812. Learning to detect Android malware via opcode sequences. Neurocomputing, 2020, 396, 599-608. 83 3.5 54 Deep learning for effective Android malware detection using API call graph embeddings. Soft 2.1 Computing, 2020, 24, 1027-1043. Review of intrusion detection systems based on deep learning techniques: coherent taxonomy, 85 challenges, motivations, recommendations, substantial analysis and future directions. Neural 3.2 50 Computing and Applications, 2020, 32, 9827-9858. SysDroid: a dynamic ML-based android malware analyzer using system call traces. Cluster Computing, 2020, 23, 2789-2808. 3.5 Deep learning and big data technologies for IoT security. Computer Communications, 2020, 151, 495-517. 87 3.1 209 DL-Droid: Deep learning based android malware detection using real devices. Computers and Security, 233 2020, 89, 101663. Malware detection in mobile environments based on Autoencoders and API-images. Journal of Parallel 89 2.7 76 and Distributed Computing, 2020, 137, 26-33. Combining multi-features with a neural joint model for Android malware detection. Journal of Intelligent and Fuzzy Systems, 2020, 38, 2151-2163.

#	Article	IF	CITATIONS
91	Similarity-based Android malware detection using Hamming distance of static binary features. Future Generation Computer Systems, 2020, 105, 230-247.	4.9	120
92	An improved two-hidden-layer extreme learning machine for malware hunting. Computers and Security, 2020, 89, 101655.	4.0	57
93	A Lightweight On-Device Detection Method for Android Malware. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 5600-5611.	5.9	19
94	Statistically-driven Coral Reef metaheuristic for automatic hyperparameter setting and architecture design of Convolutional Neural Networks. , 2020, , .		2
95	MDEA: Malware Detection with Evolutionary Adversarial Learning. , 2020, , .		7
96	Cryptocurrency malware hunting: A deep Recurrent Neural Network approach. Applied Soft Computing Journal, 2020, 96, 106630.	4.1	78
97	Functionality-based mobile application recommendation system with security and privacy awareness. Computers and Security, 2020, 97, 101972.	4.0	7
98	OpCode-Level Function Call Graph Based Android Malware Classification Using Deep Learning. Sensors, 2020, 20, 3645.	2.1	29
99	A Review of Android Malware Detection Approaches Based on Machine Learning. IEEE Access, 2020, 8, 124579-124607.	2.6	169
100	Feature indexing and search optimization for enhancing the forensic analysis of mobile cloud environment. Information Security Journal, 2021, 30, 235-256.	1.3	2
101	SOMDROID: android malware detection by artificial neural network trained using unsupervised learning. Evolutionary Intelligence, 2022, 15, 407-437.	2.3	17
102	Review of Android Malware Detection Based on Deep Learning. IEEE Access, 2020, 8, 181102-181126.	2.6	42
103	Android Malware Detection Based on a Hybrid Deep Learning Model. Security and Communication Networks, 2020, 2020, 1-11.	1.0	41
104	A detection method for android application security based on TF-IDF and machine learning. PLoS ONE, 2020, 15, e0238694.	1.1	22
105	Malicious Code Detection Based on Code Semantic Features. IEEE Access, 2020, 8, 176728-176737.	2.6	11
106	The Many Kinds of Creepware Used for Interpersonal Attacks. , 2020, , .		9
107	Automatic Uncovering of Hidden Behaviors From Input Validation in Mobile Apps. , 2020, , .		14
108	A Survey on Machine Learning Techniques for Cyber Security in the Last Decade. IEEE Access, 2020, 8, 222310-222354.	2.6	187

#	Article	IF	CITATIONS
109	A Study on the Digital Forensic Investigation Method of Clever Malware in IoT Devices. IEEE Access, 2020, 8, 224487-224499.	2.6	6
110	Revealing Similarities in Android Malware by Dissecting their Methods. , 2020, , .		1
111	PAM Clustering Aided Android Malicious Apps Detection. IOP Conference Series: Materials Science and Engineering, 2020, 928, 032041.	0.3	0
112	Deep Feature Extraction and Classification of Android Malware Images. Sensors, 2020, 20, 7013.	2.1	51
113	Research and application of intrusion detection method based on hierarchical features. Concurrency Computation Practice and Experience, 2020, , e5799.	1.4	3
114	An Enhanced Stacked LSTM Method With No Random Initialization for Malware Threat Hunting in Safety and Time-Critical Systems. IEEE Transactions on Emerging Topics in Computational Intelligence, 2020, 4, 630-640.	3.4	50
115	A Systematic Literature Review of Android Malware Detection Using Static Analysis. IEEE Access, 2020, 8, 116363-116379.	2.6	80
116	Performance Comparison and Current Challenges of Using Machine Learning Techniques in Cybersecurity. Energies, 2020, 13, 2509.	1.6	137
117	A Lightweight Android Malware Classifier Using Novel Feature Selection Methods. Symmetry, 2020, 12, 858.	1.1	27
118	Towards using unstructured user input request for malware detection. Computers and Security, 2020, 93, 101783.	4.0	7
119	Code analysis for intelligent cyber systems: A data-driven approach. Information Sciences, 2020, 524, 46-58.	4.0	25
120	Android malware detection based on image-based features and machine learning techniques. SN Applied Sciences, 2020, 2, 1.	1.5	24
121	Malware Detection Techniques Based on Deep Learning. , 2020, , .		8
122	Android Malware Family Classification and Analysis: Current Status and Future Directions. Electronics (Switzerland), 2020, 9, 942.	1.8	30
123	ByteDroid: Android Malware Detection Using Deep Learning on Bytecode Sequences. Communications in Computer and Information Science, 2020, , 159-176.	0.4	9
124	Image-Based malware classification using ensemble of CNN architectures (IMCEC). Computers and Security, 2020, 92, 101748.	4.0	211
125	An adaptive framework against android privilege escalation threats using deep learning and semi-supervised approaches. Applied Soft Computing Journal, 2020, 89, 106089.	4.1	25
126	Graph Convolutional Networks for Android Malware Detection with System Call Graphs. , 2020, , .		25

#	Article	IF	CITATIONS
127	A novel hybrid method to analyze security vulnerabilities in Android applications. Tsinghua Science and Technology, 2020, 25, 589-603.	4.1	26
128	AMalNet: A deep learning framework based on graph convolutional networks for malware detection. Computers and Security, 2020, 93, 101792.	4.0	73
129	PACER: Platform for Android Malware Classification, Performance Evaluation and Threat Reporting. Future Internet, 2020, 12, 66.	2.4	8
131	DeepAMD: Detection and identification of Android malware using high-efficient Deep Artificial Neural Network. Future Generation Computer Systems, 2021, 115, 844-856.	4.9	112
132	Component identification and defect detection in transmission lines based onÂdeep learning. Journal of Intelligent and Fuzzy Systems, 2021, 40, 3147-3158.	0.8	19
133	Android security assessment: A review, taxonomy and research gap study. Computers and Security, 2021, 100, 102087.	4.0	13
134	A Performance-Sensitive Malware Detection System Using Deep Learning on Mobile Devices. IEEE Transactions on Information Forensics and Security, 2021, 16, 1563-1578.	4.5	66
135	A Survey of Deep Learning Techniques for Cybersecurity in Mobile Networks. IEEE Communications Surveys and Tutorials, 2021, 23, 1920-1955.	24.8	22
136	Revisiting the Approaches, Datasets and Evaluation Parameters to Detect Android Malware: A Comparative Study from State-of-Art. Studies in Big Data, 2021, , 125-141.	0.8	1
137	Multi-Deep Net Based Hyperspectral Image Classification. Engineering Applications of Computational Methods, 2021, , 119-158.	0.5	1
138	Q-learning and LSTM based deep active learning strategy for malware defense in industrial IoT applications. Multimedia Tools and Applications, 2021, 80, 14637-14663.	2.6	15
139	PEDAM: Priority Execution Based Approach for Detecting Android Malware. Lecture Notes in Networks and Systems, 2021, , 152-165.	0.5	0
140	Research on Intelligent Analysis Technology of Network Security Risk Based on Big Data. Journal of Physics: Conference Series, 2021, 1792, 012036.	0.3	2
141	Windows PE Malware Detection Using Ensemble Learning. Informatics, 2021, 8, 10.	2.4	47
142	Towards a systematic description of the field using bibliometric analysis: malware evolution. Scientometrics, 2021, 126, 2013-2055.	1.6	15
143	Hybroid: A Novel Hybrid Android Malware Detection Framework. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2021, 14, 331-356.	0.1	1
144	A survey on analysis and detection of Android ransomware. Concurrency Computation Practice and Experience, 2021, 33, e6272.	1.4	21
145	A new machine learning-based method for android malware detection on imbalanced dataset. Multimedia Tools and Applications, 2021, 80, 24533.	2.6	13

	CITATION REF	PORT	
# 146	ARTICLE Mining String Feature for Malicious Binary Detection Based on Normalized CNN. , 2021, , .	IF	CITATIONS
147	Auto-Icon: An Automated Code Generation Tool for Icon Designs Assisting in UI Development. , 2021, , .		19
148	Multi-view deep learning for zero-day Android malware detection. Journal of Information Security and Applications, 2021, 58, 102718.	1.8	38
149	RansomDroid: Forensic analysis and detection of Android Ransomware using unsupervised machine learning technique. Forensic Science International: Digital Investigation, 2021, 37, 301168.	1.2	14
150	An Enhanced Novel GA-based Malware Detection in End Systems Using Structured and Unstructured Data by Comparing Support Vector Machine and Neural Network. Revista GEINTEC, 2021, 11, 1514-1525.	0.2	1
151	New Visual Expression of Anime Film Based on Artificial Intelligence and Machine Learning Technology. Journal of Sensors, 2021, 2021, 1-10.	0.6	11
152	Review of NLP-based Systems in Digital Forensics and Cybersecurity. , 2021, , .		9
153	Malware detection employed by visualization and deep neural network. Computers and Security, 2021, 105, 102247.	4.0	41
154	Graph-Based Malware Detection Using Opcode Sequences. , 2021, , .		10
155	Towards an interpretable deep learning model for mobile malware detection and family identification. Computers and Security, 2021, 105, 102198.	4.0	50
156	Robustness of Image-based Android Malware Detection Under Adversarial Attacks. , 2021, , .		9
157	Optimal feature configuration for dynamic malware detection. Computers and Security, 2021, 105, 102250.	4.0	14
158	Detection of Malicious Software by Analyzing Distinct Artifacts Using Machine Learning and Deep Learning Algorithms. Electronics (Switzerland), 2021, 10, 1694.	1.8	8
159	Android Zararlı Yazılımlarının Derin Öğrenme ile Kategorilerine ve Ailelerine Göre Sınıflandırı Teknik Bilimler Dergisi, 0, , .	lması. 0.0	0
160	A review of artificial intelligence based malware detection using deep learning. Materials Today: Proceedings, 2023, 80, 2678-2683.	0.9	7
161	Deep Learning Based Android Anomaly Detection Using a Combination of Vulnerabilities Dataset. Applied Sciences (Switzerland), 2021, 11, 7538.	1.3	2
162	Deep learning algorithms for cyber security applications: A survey. Journal of Computer Security, 2021, 29, 447-471.	0.5	9
163	Learning-Based Detection for Malicious Android Application Using Code Vectorization. Security and Communication Networks, 2021, 2021, 1-11.	1.0	0

#	ARTICLE	IF	CITATIONS
164	Mitigation of Malware Effect using Cyber Threat Analysis using Ensemble Deep Belief Networks. International Journal of Innovative Technology and Exploring Engineering, 2021, 10, 40-46.	0.2	0
165	Survey for Detection and Analysis of Android Malware(s) Through Artificial Intelligence Techniques. Lecture Notes on Data Engineering and Communications Technologies, 2022, , 321-337.	0.5	2
166	Android Malware Detection Using Extreme Learning Machine Optimized with Swarm Intelligence. Lecture Notes on Data Engineering and Communications Technologies, 2022, , 31-43.	0.5	2
167	A Multi-Perspective malware detection approach through behavioral fusion of API call sequence. Computers and Security, 2021, 110, 102449.	4.0	31
168	Exploring Potential of Transfer Deep Learning for Malicious Android Applications Detection. EAI/Springer Innovations in Communication and Computing, 2021, , 65-84.	0.9	0
169	DexRay: A Simple, yet Effective Deep Learning Approach to Android Malware Detection Based on Image Representation of Bytecode. Communications in Computer and Information Science, 2021, , 81-106.	0.4	14
170	HybriDroid: an empirical analysis on effective malware detection model developed using ensemble methods. Journal of Supercomputing, 2021, 77, 8209-8251.	2.4	14
171	Data-Driven Android Malware Intelligence: A Survey. Lecture Notes in Computer Science, 2019, , 183-202.	1.0	14
173	A Survey on Different Approaches for Malware Detection Using Machine Learning Techniques. Lecture Notes on Data Engineering and Communications Technologies, 2020, , 389-398.	0.5	3
174	Explaining Concept Drift of Deep Learning Models. Lecture Notes in Computer Science, 2019, , 524-534.	1.0	5
175	Enhancing Network Security Via Machine Learning: Opportunities and Challenges. , 2020, , 165-189.		12
176	PerbDroid: Effective Malware Detection Model Developed Using Machine Learning Classification Techniques. Intelligent Systems Reference Library, 2020, , 103-139.	1.0	10
177	Malware Detection Method Based on CNN. Communications in Computer and Information Science, 2019, , 608-617.	0.4	1
178	An Exploration of Changes Addressed in the Android Malware Detection Walkways. Communications in Computer and Information Science, 2020, , 61-84.	0.4	2
179	Android malware detection method based on naive Bayes and permission correlation algorithm. Cluster Computing, 2018, 21, 955-966.	3.5	30
180	A TAN based hybrid model for android malware detection. Journal of Information Security and Applications, 2020, 54, 102483.	1.8	43
181	Detecting android malware using an improved filter based technique in embedded software. Microprocessors and Microsystems, 2020, 76, 103115.	1.8	13
182	DANdroid. , 2020, , .		36

#	Article	IF	CITATIONS
183	Unblind your apps. , 2020, , .		71
184	A Systematical Study for Deep Learning Based Android Malware Detection. , 2020, , .		7
185	Analysis of Android Malware Detection Techniques: A Systematic Review. International Journal of Cyber-Security and Digital Forensics, 2019, 8, 177-187.	0.4	15
186	Apk2Img4AndMal: Android Malware Detection Framework Based on Convolutional Neural Network. , 2021, , .		5
187	Botnet attack detection in Internet of Things devices over cloud environment via machine learning. Concurrency Computation Practice and Experience, 2022, 34, e6662.	1.4	40
188	MADS Based on DL Techniques on the Internet of Things (IoT): Survey. Electronics (Switzerland), 2021, 10, 2598.	1.8	2
189	Applications of deep learning for mobile malware detection: A systematic literature review. Neural Computing and Applications, 0, , 1.	3.2	5
190	FGFDect: A Fine-Grained Features Classification Model for Android Malware Detection. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2018, , 281-293.	0.2	0
191	DroidDetector: a traffic-based platform to detect android malware using machine learning. , 2018, , .		3
192	A Visualization-Based Analysis on Classifying Android Malware. Lecture Notes in Computer Science, 2019, , 304-319.	1.0	1
193	An Intrusion Detection Method Based on Hierarchical Feature Learning and Its Application. Lecture Notes in Computer Science, 2019, , 13-20.	1.0	3
195	Host-Server-Based Malware Detection System for Android Platforms Using Machine Learning. Advances in Intelligent Systems and Computing, 2021, , 195-205.	0.5	6
196	Personalized system for human gym activity recognition using an RGB camera. , 2020, , .		13
197	DNNIDS: A Novel Network Intrusion Detection Based on Deep Neural Network. , 2021, , .		0
198	Evolving the Architecture and Hyperparameters of DNNs for Malware Detection. Natural Computing Series, 2020, , 357-377.	2.2	1
199	Empirical Study on Intelligent Android Malware Detection based on Supervised Machine Learning. International Journal of Advanced Computer Science and Applications, 2020, 11, .	0.5	9
200	Android Vault Application Behavior Analysis and Detection. Communications in Computer and Information Science, 2020, , 428-439.	0.4	2
201	A Survey of Intelligent Techniques for Android Malware Detection. , 2021, , 121-162.		5

ARTICLE IF CITATIONS # Challenges and Trends of Android Malware Detection in the Era of Deep Learning., 2020,,. 203 1 RGB-based Android Malware Detection and Classification Using Convolutional Neural Network., 204 2020,,. Android malware detection system integrating block feature extraction and multi-head attention 205 2 mechanism., 2020, , . Using Capsule Networks for Android Malware Detection Through Orientation-Based Features. 206 Computers, Materials and Continua, 2022, 70, 5345-5362. Malware and Anomaly Detection Using Machine Learning and Deep Learning Methods. Advances in 208 0.4 1 Information Security, Privacy, and Ethics Book Series, 2020, , 104-131. PICAndro: Packet InspeCtion-Based Android Malware Detection. Security and Communication 209 1.0 Networks, 2021, 2021, 1-11. A Robust Framework for MADS Based on DL Techniques on the IoT. Electronics (Switzerland), 2021, 10, 210 1.8 0 2723. Android malware classification based on permission categories using extreme gradient boosting., 2020,,. Research on threat detection in cyber security based on machine learning. Journal of Physics: 213 0.3 1 Conference Series, 2021, 2113, 012074. Determinants of adoption of latest version smartphones: Theory and evidence. Technological 214 6.2 Forecasting and Social Change, 2022, 175, 121410. Al and machine learning: A mixed blessing for cybersecurity., 2020,,. 215 9 An Intelligent Malware Detection and Classification System Using Apps-to-Images Transformations and Convolutional Neural Networks., 2020, , . DroidTKM: Detection of Trojan Families using the KNN Classifier Based on Manhattan Distance Metric., 217 8 2020,,. A Comparative Analysis of Machine Learning Techniques for Classification and Detection of Malware., 2020, , . Android Malware Detection Using Hybrid-Based Analysis & amp; Deep Neural Network., 2020,,. 219 2 An Efficient implementation of Network Malicious Traffic Screening based on Big Data Analytics., Familial Analysis ofÂMalicious Android Apps Controlling IOT Devices. Lecture Notes in Networks and 222 0.5 1 Systems, 2022, , 205-214. An Efficient Deep Unsupervised Domain Adaptation for Unknown Malware Detection. Symmetry, 2022, 1.1 14, 296.

#	Article	IF	Citations
224	Malware Detection: A Framework for Reverse Engineered Android Applications Through Machine Learning Algorithms. IEEE Access, 2022, 10, 89031-89050.	2.6	17
225	MAPAS: a practical deep learning-based android malware detection system. International Journal of Information Security, 2022, 21, 725-738.	2.3	35
226	The role of artificial intelligence and machine learning in wireless networks security: principle, practice and challenges. Artificial Intelligence Review, 2022, 55, 5215-5261.	9.7	38
227	Intelligent Malware Defenses. Lecture Notes in Computer Science, 2022, , 217-253.	1.0	2
228	Sniffing Android Malware Using Deep Learning. Lecture Notes in Electrical Engineering, 2022, , 489-505.	0.3	2
229	A Malware Detection Approach Using Autoencoder in Deep Learning. IEEE Access, 2022, 10, 25696-25706.	2.6	25
230	A Deep Learning Method for Android Application Classification Using Semantic Features. Security and Communication Networks, 2022, 2022, 1-16.	1.0	4
231	Android malware detection: Investigating the impact of imbalanced data-sets on the performance of machine learning models. , 2022, , .		4
232	The rise of obfuscated Android malware and impacts on detection methods. PeerJ Computer Science, 2022, 8, e907.	2.7	9
233	Android Malware Detection Technology Based on Lightweight Convolutional Neural Networks. Security and Communication Networks, 2022, 2022, 1-12.	1.0	5
234	Robust deep learning early alarm prediction model based on the behavioural smell for android malware. Computers and Security, 2022, 116, 102670.	4.0	27
235	A Systematic Evaluation of Android Anti-Malware Tools for Detection of Contemporary Malware. , 2021, , .		5
236	AdversarialDroid: A Deep Learning based Malware Detection Approach for Android System Against Adversarial Example Attacks. , 2021, , .		2
237	Android Malware Identification and Polymorphic Evolution Via Graph Representation Learning. , 2021, , \cdot		2
238	Classifying Android Applications Via System Stats. , 2021, , .		0
239	Particle Swarm Optimized Federated Learning For Securing IoT Devices. , 2021, , .		1
240	Detection of circuit components on hand-drawn circuit images by using faster R-CNN method. International Advanced Researches and Engineering Journal, 2021, 5, 372-378.	0.4	1
241	Android Malware Family Classification: What Works – API Calls, Permissions or API Packages?. , 2021, , .		1

#	Article	IF	CITATIONS
242	A GAN Based Malware Adversaries Detection Model. , 2021, , .		0
243	MsDroid: Identifying Malicious Snippets for Android Malware Detection. IEEE Transactions on Dependable and Secure Computing, 2023, 20, 2025-2039.	3.7	8
244	FGL_Droid: An Efficient Android Malware Detection Method Based on Hybrid Analysis. Security and Communication Networks, 2022, 2022, 1-11.	1.0	6
245	Malware Attacks: Dimensions, Impact, and Defenses. EAI/Springer Innovations in Communication and Computing, 2022, , 157-179.	0.9	2
246	A Hybrid Feature Selection Approach-Based Android Malware Detection Framework Using Machine Learning Techniques. Lecture Notes in Networks and Systems, 2022, , 347-356.	0.5	7
247	Debiasing Android Malware Datasets: How Can I Trust Your Results If Your Dataset Is Biased?. IEEE Transactions on Information Forensics and Security, 2022, 17, 2182-2197.	4.5	4
248	Op2Vec: An Opcode Embedding Technique and Dataset Design for End-to-End Detection of Android Malware. Security and Communication Networks, 2022, 2022, 1-15.	1.0	2
249	Evaluation of adversarial attacks sensitivity of classifiers with occluded input data. Neural Computing and Applications, 0, , .	3.2	3
250	MLNN: A Novel Network Intrusion Detection Based on Multilayer Neural Network. , 2021, , .		1
251	Web-based Malware Detection for Android OS. , 2021, , .		0
252	Mobile Operating System (Android) Vulnerability Analysis Using Machine Learning. Lecture Notes in Networks and Systems, 2022, , 159-169.	0.5	52
254	AMDetector: Detecting Large-Scale and Novel Android Malware Traffic with Meta-learning. Lecture Notes in Computer Science, 2022, , 387-401.	1.0	4
255	Deep Learning for Android Malware Defenses: A Systematic Literature Review. ACM Computing Surveys, 2023, 55, 1-36.	16.1	24
256	DroidFDR: Automatic Classification of Android Malware Using Model Checking. Electronics (Switzerland), 2022, 11, 1798.	1.8	2
257	LiDAR: A Light-Weight Deep Learning-Based Malware Classifier for Edge Devices. Wireless Communications and Mobile Computing, 2022, 2022, 1-9.	0.8	1
258	A Low Computational Cost Method for Mobile Malware Detection Using Transfer Learning and Familial Classification Using Topic Modelling. Applied Computational Intelligence and Soft Computing, 2022, 2022, 1-22.	1.6	3
259	DroidMalwareDetector: A novel Android malware detection framework based on convolutional neural network. Expert Systems With Applications, 2022, 206, 117833.	4.4	21
260	IoT-Based Android Malware Detection Using Graph Neural Network With Adversarial Defense. IEEE Internet of Things Journal, 2023, 10, 8432-8444.	5.5	20

#	ARTICLE	IF	CITATIONS
261	Dro-Mal Detector: A Novel Method of Android Malware Detection. , 2022, , .		2
262	Malware and Anomaly Detection Using Machine Learning and Deep Learning Methods. , 2022, , 149-176.		2
263	Data-Driven Android Malware Analysis Intelligence. Advances in Information Security, Privacy, and Ethics Book Series, 2022, , 181-200.	0.4	0
264	A Comprehensive Review of Android Security: Threats, Vulnerabilities, Malware Detection, and Analysis. Security and Communication Networks, 2022, 2022, 1-34.	1.0	7
265	ROOTECTOR: Robust Android Rooting Detection Framework Using Machine Learning Algorithms. Arabian Journal for Science and Engineering, 2023, 48, 1771-1791.	1.7	4
266	An in-depth review of machine learning based Android malware detection. Computers and Security, 2022, 121, 102833.	4.0	25
267	Investigation of Android Malware Using Deep Learning Approach. Intelligent Automation and Soft Computing, 2023, 35, 2413-2429.	1.6	3
268	On building machine learning pipelines for Android malware detection: a procedural survey of practices, challenges and opportunities. Cybersecurity, 2022, 5, .	3.1	6
269	Androscanreg 2.0. International Journal of Software Innovation, 2022, 10, 1-28.	0.3	2
270	Android malware detection using hybrid ANFIS architecture with low computational cost convolutional layers. PeerJ Computer Science, 0, 8, e1092.	2.7	5
271	Cyber security for federated learning environment using Al technique. Expert Systems, 2023, 40, .	2.9	3
272	Security Hardened and Privacy Preserved Android Malware Detection Using Fuzzy Hash of Reverse Engineered Source Code. Security and Communication Networks, 2022, 2022, 1-11.	1.0	3
273	AndroOBFS. , 2022, , .		2
274	TrojanDetector: A Multi-Layer Hybrid Approach for Trojan Detection in Android Applications. Applied Sciences (Switzerland), 2022, 12, 10755.	1.3	7
275	Deep Learning Methods for Malware and Intrusion Detection: A Systematic Literature Review. Security and Communication Networks, 2022, 2022, 1-31.	1.0	7
276	Towards a fair comparison and realistic evaluation framework of android malware detectors based on static analysis and machine learning. Computers and Security, 2023, 124, 102996.	4.0	10
277	A Method for Automatic Android Malware Detection Based on Static Analysis and Deep Learning. IEEE Access, 2022, 10, 117334-117352.	2.6	14
278	A comprehensive survey on deep learning based malware detection techniques. Computer Science Review, 2023, 47, 100529.	10.2	36

ARTICLE IF CITATIONS # SHIELD: A Multimodal Deep Learning Framework for Android Malware Detection. Lecture Notes in 279 1.0 1 Computer Science, 2022, , 64-83. Malicious Applications Detection in Android Using Machine Learning. International Journal of 0.1 Artificial Intelligence and Machine Learning, 2022, 2, 21-34. 281 Android Malware Detection Using Deep Learning., 2023, , 209-246. 0 Improved Domain Generation Algorithm To Detect Cyber-Attack With Deep Learning Techniques. , 2022, Android malware detection method based on highly distinguishable static features and DenseNet. 283 1.1 3 PLoS ONE, 2022, 17, e0276332. A Survey ofÂAndroid Malware Detection Based onÂDeep Learning. Lecture Notes in Computer Science, 2023, , 228-242. 284 1.0 EnsembleDroid: A Malware Detection Approach for Android System based on Ensemble Learning., 2022, 285 2 ,. Android Malware Detection Based on Heterogeneous Information Network with Cross-Layer Features. 286 DroidRL: Feature selection for android malware detection with reinforcement learning. Computers 287 4.0 15 and Security, 2023, 128, 103126. A review of deep learning models to detect malware in Android applications., 2023, 1, 100014. Enhanced Malware Detection Using Deep Learning with Image Processing Techniques. Advances in 289 0.2 1 Science and Technology, 0, , . Association Rules Based Feature Extraction forÂDeep Learning Classification. Communications in 0.4 Computer and Information Science, 2023, , 72-83. HashDroid:Extraction of malicious features of Android applications based on function call graph 291 0 pruning., 2022,,. Android malware detection: An in-depth investigation of the impact of the use of imbalance datasets on the efficiency of machine learning models., 2023, , . Family Classification of Malicious Applications using Hybrid Analysis and Computationally Economical 295 1 Machine Learning Techniques., 2022,,. Federated Learning forÂtheÂEfficient Detection ofÂSteganographic Threats Hidden inÂlmage Icons. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications 297 0.2 Engineering, 2023, , 83-95. 301 Classification and Detection of Malware in Android: An Analysis., 2023, , . 0 HYBRIDROID: Using Hierarchical Machine Learning Algorithms to Spot Malicious Applications on Linux-Powered Smart phones: Deep Survey., 2023, , .

#	Article	IF	CITATIONS
305	Android Malware Classification and Optimisation Based on BM25 Score of Android API. , 2023, , .		1
307	An Al-Powered Network Intrusion Detection System in Industrial IoT Devices via Deep Learning. Lecture Notes in Mechanical Engineering, 2024, , 1149-1156.	0.3	1
308	A Graph-Representation-Learning Framework for Supporting Android Malware Identification and Polymorphic Evolution. , 2023, , .		0
310	Novel Visual Effects in Computer Vision of Animation Film Based on Artificial Intelligence. Lecture Notes in Networks and Systems, 2023, , 993-1007.	0.5	0
311	Defensive Randomization Against Adversarial Attacks in Image-Based Android Malware Detection. , 2023, , .		0
313	Android Malware Detection Based on Network Analysis and Federated Learning. Security Informatics and Law Enforcement, 2024, , 23-39.	0.4	0
314	Automated generation of adaptive perturbed images based on GAN for motivated adversaries on deep learning models: Automated generation of adaptive perturbed images based on GAN. , 2023, , .		0
315	Text preprocessing for optimal accuracy in Indonesian sentiment analysis using a deep learning model with word embedding. AIP Conference Proceedings, 2023, , .	0.3	0
316	MDLDroid: Multimodal Deep Learning Based Android Malware Detection. Lecture Notes in Computer Science, 2023, , 159-177.	1.0	0
320	Android Operating System. Progress in IS, 2024, , 25-42.	0.5	0
321	Android Malware: Comprehensive Study and a Cross-Feature Light Weight Proposed Solution. , 2023, , .		0
322	Dynamic Android Malware Detection Using Temporal Convolutional Networks. , 2023, , .		0
323	A Comparative Analysis of IoT Malware Detection Using CNN and Deep Learning. , 2023, , .		0