Aquaporins 7 and 11 in boar spermatozoa: detection, loc sperm quality

Reproduction, Fertility and Development 28, 663

DOI: 10.1071/rd14237

Citation Report

#	Article	IF	CITATIONS
1	Membrane Stress During Thawing Elicits Redistribution of Aquaporin 7 But Not of Aquaporin 9 in Boar Spermatozoa. Reproduction in Domestic Animals, 2016, 51, 665-679.	1.4	22
2	Aquaporins in the male reproductive tract and sperm: Functional implications and cryobiology. Reproduction in Domestic Animals, 2017, 52, 12-27.	1.4	62
3	First evidence for the presence of aquaporins in stallion sperm. Reproduction in Domestic Animals, 2017, 52, 61-64.	1.4	24
4	Relationship of aquaporins 3 (<scp>AQP</scp> 3), 7 (<scp>AQP</scp> 7), and 11 (<scp>AQP</scp> 11) with boar sperm resilience to withstand freeze–thawing procedures. Andrology, 2017, 5, 1153-1164.	3 . 5	40
5	Adipocyte aquaporin 7 (AQP7) expression in lean children and children with obesity. Possible involvement in molecular mechanisms of childhood obesity. Journal of Pediatric Endocrinology and Metabolism, 2018, 31, 1081-1089.	0.9	10
6	Expression and localization of aquaporins 3 and 7 in bull spermatozoa and their relevance to sperm motility after cryopreservation. Journal of Reproduction and Development, 2018, 64, 327-335.	1.4	15
7	Aquaporin 11 is related to cryotolerance and fertilising ability of frozen–thawed bull spermatozoa. Reproduction, Fertility and Development, 2018, 30, 1099.	0.4	21
8	In-depth proteomic analysis of boar spermatozoa through shotgun and gel-based methods. BMC Genomics, 2018, 19, 62.	2.8	26
9	Aquaglyceroporins but not orthodox aquaporins are involved in the cryotolerance of pig spermatozoa. Journal of Animal Science and Biotechnology, 2019, 10, 77.	5.3	20
10	Cryotolerance of Stallion Spermatozoa Relies on Aquaglyceroporins rather than Orthodox Aquaporins. Biology, 2019, 8, 85.	2.8	12
11	Effect of AQP Inhibition on Boar Sperm Cryotolerance Depends on the Intrinsic Freezability of the Ejaculate. International Journal of Molecular Sciences, 2019, 20, 6255.	4.1	10
12	Irradiating frozen-thawed stallion sperm with red-light increases their resilience to withstand post-thaw incubation at 38°C. Theriogenology, 2020, 157, 85-95.	2.1	8
13	Role of Aquaporins in Spermatogenesis and Testicular Steroidogenesis. Journal of Membrane Biology, 2020, 253, 109-114.	2.1	5
14	The synergistic effect of trehalose and low concentrations of cryoprotectants can improve post-thaw ram sperm parameters. Cryobiology, 2020, 95, 157-163.	0.7	25
15	Aquaporin3 expression and the potential role of aquaporins in motility and mitochondrial membrane potential in human spermatozoa. Andrologia, 2020, 52, e13588.	2.1	11
16	The Effects of Red Light on Mammalian Sperm Rely upon the Color of the Straw and the Medium Used. Animals, 2021, 11, 122.	2.3	4
17	Aquaporins and (in)fertility: More than just water transport. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166039.	3.8	15
18	Aquaporins: New markers for male (in)fertility in livestock and poultry?. Animal Reproduction Science, 2021, 231, 106807.	1.5	6

#	Article	IF	CITATIONS
19	Aquaporins Are Essential to Maintain Motility and Membrane Lipid Architecture During Mammalian Sperm Capacitation. Frontiers in Cell and Developmental Biology, 2021, 9, 656438.	3.7	5
20	Combination of trehalose and low boron in presence of decreased glycerol improves postâ€thawed ram sperm parameters: A model study in boron research. Andrology, 2022, 10, 585-594.	3.5	6
21	Aquaporins and Animal Gamete Cryopreservation: Advances and Future Challenges. Animals, 2022, 12, 359.	2.3	11
22	Relevance of Aquaporins for Gamete Function and Cryopreservation. Animals, 2022, 12, 573.	2.3	9
23	Expression of Aquaglyceroporins in Spermatozoa from Wild Ruminants Is Influenced by Photoperiod and Thyroxine Concentrations. International Journal of Molecular Sciences, 2022, 23, 2903.	4.1	6
24	Changes in aquaporins mRNA expression and liquid storage at 17°C: A potential biomarker of boar sperm quality?. Reproduction in Domestic Animals, 2022, , .	1.4	1
25	Differential Expressions of Aquaporin Subtypes in the Adult Mouse Testis. Development & Reproduction, 2022, 26, 59-69.	0.4	4
26	Proteomic analysis of donkey sperm reveals changes in acrosome enzymes and redox regulation during cryopreservation. Journal of Proteomics, 2022, 267, 104698.	2.4	2
27	Molecular Markers: A New Paradigm in the Prediction of Sperm Freezability. International Journal of Molecular Sciences, 2023, 24, 3379.	4.1	5
28	Location of aquaporins 3, 7 and 10 in frozen-thawed ejaculated and cauda epididymal spermatozoa from the Iberian ibex, mouflon, and chamois. , 2023, 2, 100025.		2
29	Proton pump inhibitors affect sperm parameters by regulating aquaporins. Heliyon, 2023, 9, e17911.	3.2	0
30	Cryopreservation of Domestic and Wild Animal Spermatozoa: Update of Knowledge. Veterinary Medicine and Science, 0, , .	0.0	0
31	An updated review on the application of proteomics to explore sperm cryoinjury mechanisms in livestock animals. Animal Reproduction Science, 2024, 263, 107441.	1.5	0