The TopoVIB-Like protein family is required for meiotic

Science 351, 943-949 DOI: 10.1126/science.aad5309

Citation Report

#	Article	IF	CITATIONS
1	Meiotic recombination mechanisms. Comptes Rendus - Biologies, 2016, 339, 247-251.	0.1	13
2	P31 ^{comet} , a member of the synaptonemal complex, participates in meiotic DSB formation in rice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10577-10582.	3.3	43
3	The DNA Topoisomerase Vl–B Subunit OsMTOPVIB Is Essential for Meiotic Recombination Initiation in Rice. Molecular Plant, 2016, 9, 1539-1541.	3.9	30
4	Transcription factor ZFP38 is essential for meiosis prophase I in male mice. Reproduction, 2016, 152, 431-437.	1.1	20
5	Phosphorylated CtIP Functions as a Co-factor of the MRE11-RAD50-NBS1 Endonuclease in DNA End Resection. Molecular Cell, 2016, 64, 940-950.	4.5	237
6	Control of Meiotic Crossovers: From Double-Strand Break Formation to Designation. Annual Review of Genetics, 2016, 50, 175-210.	3.2	311
7	OsMTOPVIB Promotes Meiotic DNA Double-Strand Break Formation in Rice. Molecular Plant, 2016, 9, 1535-1538.	3.9	36
8	A new light on the meiotic DSB catalytic complex. Seminars in Cell and Developmental Biology, 2016, 54, 165-176.	2.3	78
9	A DNA topoisomerase VI–like complex initiates meiotic recombination. Science, 2016, 351, 939-943.	6.0	203
10	The TopoVIB-Like protein family is required for meiotic DNA double-strand break formation. Science, 2016, 351, 943-949.	6.0	238
11	Breaking DNA. Science, 2016, 351, 916-917.	6.0	11
12	Evolution of the archaeal and mammalian information processing systems: towards an archaeal model for human disease. Cellular and Molecular Life Sciences, 2017, 74, 183-212.	2.4	12
13	Type I DNA Topoisomerases. Journal of Medicinal Chemistry, 2017, 60, 2169-2192.	2.9	98
14	The PRDM9 KRAB domain is required for meiosis and involved in protein interactions. Chromosoma, 2017, 126, 681-695.	1.0	74
15	Functional characterization of the meiosis-specific DNA double-strand break inducing factor SPO-11 from C. elegans. Scientific Reports, 2017, 7, 2370.	1.6	6
16	In vivo binding of PRDM9 reveals interactions with noncanonical genomic sites. Genome Research, 2017, 27, 580-590.	2.4	67
17	Genomic features shaping the landscape of meiotic double-strand-break hotspots in maize. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12231-12236.	3.3	91
18	Meiosis-like Functions in Oncogenesis: A New View of Cancer. Cancer Research, 2017, 77, 5712-5716.	0.4	53

#	Article	IF	CITATIONS
19	An <i>in vivo</i> genetic screen in <i>Drosophila</i> identifies the orthologue of human cancer/testis gene <i>SPO11</i> among a network of targets to inhibit <i>lethal(3)malignant brain tumour</i> growth. Open Biology, 2017, 7, 170156.	1.5	12
20	MTOPVIB interacts with AtPRD1 and plays important roles in formation of meiotic DNA double-strand breaks in Arabidopsis. Scientific Reports, 2017, 7, 10007.	1.6	22
21	The consequences of sequence erosion in the evolution of recombination hotspots. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160462.	1.8	26
22	Meiotic Chromosome Association 1 Interacts with TOP3α and Regulates Meiotic Recombination in Rice. Plant Cell, 2017, 29, 1697-1708.	3.1	43
23	Interconnections between meiotic recombination and sequence polymorphism in plant genomes. New Phytologist, 2017, 213, 1022-1029.	3.5	12
24	Modification of meiotic recombination by natural variation in plants. Journal of Experimental Botany, 2017, 68, 5471-5483.	2.4	27
25	Tex19.1 promotes Spo11-dependent meiotic recombination in mouse spermatocytes. PLoS Genetics, 2017, 13, e1006904.	1.5	25
27	Female Meiosis: Synapsis, Recombination, and Segregation in <i>Drosophila melanogaster</i> . Genetics, 2018, 208, 875-908.	1.2	110
28	Meiotic Recombination: Mixing It Up in Plants. Annual Review of Plant Biology, 2018, 69, 577-609.	8.6	169
29	Interdependent and separable functions of <i>Caenorhabditis elegans</i> MRN-C complex members couple formation and repair of meiotic DSBs. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4443-E4452.	3.3	31
30	Live cell analyses of synaptonemal complex dynamics and chromosome movements in cultured mouse testis tubules and embryonic ovaries. Chromosoma, 2018, 127, 341-359.	1.0	19
31	Repair of exogenous DNA double-strand breaks promotes chromosome synapsis in SPO11-mutant mouse meiocytes, and is altered in the absence of HORMAD1. DNA Repair, 2018, 63, 25-38.	1.3	37
32	Loss of <i>Drosophila</i> Mei-41/ATR Alters Meiotic Crossover Patterning. Genetics, 2018, 208, 579-588.	1.2	19
33	PRDM9 and Its Role in Genetic Recombination. Trends in Genetics, 2018, 34, 291-300.	2.9	113
34	<i>Arabidopsis thaliana</i> FANCD2 Promotes Meiotic Crossover Formation. Plant Cell, 2018, 30, 415-428.	3.1	42
35	Main steps in DNA double-strand break repair: an introduction to homologous recombination and related processes. Chromosoma, 2018, 127, 187-214.	1.0	242
36	Nucleosomes and DNA methylation shape meiotic DSB frequency in <i>Arabidopsis thaliana</i> transposons and gene regulatory regions. Genome Research, 2018, 28, 532-546.	2.4	190
37	Epigenetic activation of meiotic recombination near <i>Arabidopsis thaliana</i> centromeres via loss of H3K9me2 and non-CG DNA methylation. Genome Research, 2018, 28, 519-531.	2.4	138

#	Article	IF	CITATIONS
38	Type IA DNA Topoisomerases: A Universal Core and Multiple Activities. Methods in Molecular Biology, 2018, 1703, 1-20.	0.4	24
39	Comparative Genomics Supports Sex and Meiosis in Diverse Amoebozoa. Genome Biology and Evolution, 2018, 10, 3118-3128.	1.1	25
40	A chromatin-associated protein required for inducing and limiting meiotic DNA double-strand break formation. Nucleic Acids Research, 2018, 46, 11822-11834.	6.5	17
41	Where to Cross Over? Defining Crossover Sites in Plants. Frontiers in Genetics, 2018, 9, 609.	1.1	22
42	The OsRR24/LEPTO1 Type-B Response Regulator is Essential for the Organization of Leptotene Chromosomes in Rice Meiosis. Plant Cell, 2018, 30, 3024-3037.	3.1	22
43	Causative Mutations and Mechanism of Androgenetic Hydatidiform Moles. American Journal of Human Genetics, 2018, 103, 740-751.	2.6	69
44	PRDM9, a driver of the genetic map. PLoS Genetics, 2018, 14, e1007479.	1.5	85
45	Single-cell RNA-seq uncovers dynamic processes and critical regulators in mouse spermatogenesis. Cell Research, 2018, 28, 879-896.	5.7	253
46	Tackling Plant Meiosis: From Model Research to Crop Improvement. Frontiers in Plant Science, 2018, 9, 829.	1.7	39
47	Topoisomerase VI senses and exploits both DNA crossings and bends to facilitate strand passage. ELife, 2018, 7, .	2.8	19
48	Spo11-Independent Meiosis in Social Amoebae. Annual Review of Microbiology, 2018, 72, 293-307.	2.9	12
49	A putative human infertility allele of the meiotic recombinase DMC1 does not affect fertility in mice. Human Molecular Genetics, 2018, 27, 3911-3918.	1.4	14
50	The dmc1 Mutant Allows an Insight Into the DNA Double-Strand Break Repair During Meiosis in Barley (Hordeum vulgare L.). Frontiers in Plant Science, 2019, 10, 761.	1.7	17
51	A Multiprotein Complex Regulates Interference-Sensitive Crossover Formation in Rice. Plant Physiology, 2019, 181, 221-235.	2.3	20
52	Ba-induced phase segregation and band gap reduction in mixed-halide inorganic perovskite solar cells. Nature Communications, 2019, 10, 4686.	5.8	105
53	Cyclin B3 is dispensable for mouse spermatogenesis. Chromosoma, 2019, 128, 473-487.	1.0	10
54	Unified single-cell analysis of testis gene regulation and pathology in five mouse strains. ELife, 2019, 8,	2.8	102
55	Advances Towards How Meiotic Recombination Is Initiated: A Comparative View and Perspectives for Plant Meiosis Research. International Journal of Molecular Sciences, 2019, 20, 4718.	1.8	7

#	Article	IF	CITATIONS
56	The Fanconi Anemia Pathway and Fertility. Trends in Genetics, 2019, 35, 199-214.	2.9	77
57	Meiocyte-Specific and AtSPO11-1–Dependent Small RNAs and Their Association with Meiotic Gene Expression and Recombination. Plant Cell, 2019, 31, 444-464.	3.1	37
58	Characterizing mutagenic effects of recombination through a sequence-level genetic map. Science, 2019, 363, .	6.0	252
59	Narya, a RING finger domain-containing protein, is required for meiotic DNA double-strand break formation and crossover maturation in Drosophila melanogaster. PLoS Genetics, 2019, 15, e1007886.	1.5	11
60	HSF2BP Interacts with a Conserved Domain of BRCA2 and Is Required for Mouse Spermatogenesis. Cell Reports, 2019, 27, 3790-3798.e7.	2.9	49
61	A segregating human allele of <i>SPO11</i> modeled in mice disrupts timing and amounts of meiotic recombination, causing oligospermia and a decreased ovarian reserveâ€. Biology of Reproduction, 2019, 101, 347-359.	1.2	10
62	Mouse ANKRD31 Regulates Spatiotemporal Patterning of Meiotic Recombination Initiation and Ensures Recombination between X and Y Sex Chromosomes. Molecular Cell, 2019, 74, 1069-1085.e11.	4.5	74
63	Signaling-mediated meiotic recombination in plants. Current Opinion in Plant Biology, 2019, 51, 44-50.	3.5	8
64	Inferring the Evolutionary History of Your Favorite Protein: A Guide for Molecular Biologists. BioEssays, 2019, 41, 1900006.	1.2	14
65	Prdm9 and Meiotic Cohesin Proteins Cooperatively Promote DNA Double-Strand Break Formation in Mammalian Spermatocytes. Current Biology, 2019, 29, 1002-1018.e7.	1.8	33
66	Meiotic recombination within plant centromeres. Current Opinion in Plant Biology, 2019, 48, 26-35.	3.5	26
67	Mutation of the ATPase Domain of MutS Homolog-5 (MSH5) Reveals a Requirement for a Functional MutSÎ ³ Complex for All Crossovers in Mammalian Meiosis. G3: Genes, Genomes, Genetics, 2019, 9, 1839-1850.	0.8	19
68	Reprogramming of Meiotic Chromatin Architecture during Spermatogenesis. Molecular Cell, 2019, 73, 547-561.e6.	4.5	122
69	m6A mRNA modification regulates mammalian spermatogenesis. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 403-411.	0.9	46
70	CDK contribution to DSB formation and recombination in fission yeast meiosis. PLoS Genetics, 2019, 15, e1007876.	1.5	5
71	New insights into the genetics of spermatogenic failure: a review of the literature. Human Genetics, 2019, 138, 125-140.	1.8	67
72	Genetics of Meiotic Chromosome Dynamics and Fertility. , 2019, , 51-84.		2
73	Plant Meiosis. Methods in Molecular Biology, 2020, , .	0.4	1

#	Article	IF	CITATIONS
74	Coupling DNA Damage and Repair: an Essential Safeguard during Programmed DNA Double-Strand Breaks?. Trends in Cell Biology, 2020, 30, 87-96.	3.6	20
75	A TOP6BL mutation abolishes meiotic DNA double-strand break formation and causes human infertility. Science Bulletin, 2020, 65, 2120-2129.	4.3	18
76	Expression of Recombinant SPO11 Genes Locally Alters Crossing Over in Tomato. Russian Journal of Genetics, 2020, 56, 1079-1089.	0.2	2
77	<i>ZmMTOPVIB</i> Enables DNA Double-Strand Break Formation and Bipolar Spindle Assembly during Maize Meiosis. Plant Physiology, 2020, 184, 1811-1822.	2.3	16
78	Meiosis-Specific C19orf57/4930432K21Rik/BRME1 Modulates Localization of RAD51 and DMC1 to DSBs in Mouse Meiotic Recombination. Cell Reports, 2020, 31, 107686.	2.9	49
79	Cyclin N-Terminal Domain-Containing-1 Coordinates Meiotic Crossover Formation with Cell-Cycle Progression in a Cyclin-Independent Manner. Cell Reports, 2020, 32, 107858.	2.9	20
80	<i>Oryza sativa</i> RNA-Dependent RNA Polymerase 6 Contributes to Double-Strand Break Formation in Meiosis. Plant Cell, 2020, 32, 3273-3289.	3.1	20
81	ATR signaling in mammalian meiosis: From upstream scaffolds to downstream signaling. Environmental and Molecular Mutagenesis, 2020, 61, 752-766.	0.9	21
83	Meiotic cohesins mediate initial loading of HORMAD1 to the chromosomes and coordinate SC formation during meiotic prophase. PLoS Genetics, 2020, 16, e1009048.	1.5	33
84	Multilayered mechanisms ensure that short chromosomes recombine in meiosis. Nature, 2020, 582, 124-128.	13.7	50
85	OsATM Safeguards Accurate Repair of Meiotic Double-Strand Breaks in Rice. Plant Physiology, 2020, 183, 1047-1057.	2.3	6
87	MEIOK21: a new component of meiotic recombination bridges required for spermatogenesis. Nucleic Acids Research, 2020, 48, 6624-6639.	6.5	27
88	Super-resolution imaging of RAD51 and DMC1 in DNA repair foci reveals dynamic distribution patterns in meiotic prophase. PLoS Genetics, 2020, 16, e1008595.	1.5	27
89	<i>MutS homologue 4</i> and <i>MutS homologue 5</i> Maintain the Obligate Crossover in Wheat Despite Stepwise Gene Loss following Polyploidization. Plant Physiology, 2020, 183, 1545-1558.	2.3	24
90	Bread wheat TaSPO11â€4 exhibits evolutionarily conserved function in meiotic recombination across distant plant species. Plant Journal, 2020, 103, 2052-2068.	2.8	14
91	SPO11.2 is essential for programmed doubleâ€strand break formation during meiosis in bread wheat (<i>Triticum aestivum</i> L.). Plant Journal, 2020, 104, 30-43.	2.8	20
92	Sexual reproduction potential implied by functional analysis of SPO11 in Phaeodactylum tricornutum. Gene, 2020, 757, 144929.	1.0	5
93	Refined spatial temporal epigenomic profiling reveals intrinsic connection between PRDM9-mediated H3K4me3 and the fate of double-stranded breaks. Cell Research, 2020, 30, 256-268.	5.7	37

#	Article	IF	CITATIONS
94	MEIOSIN Directs the Switch from Mitosis to Meiosis in Mammalian Germ Cells. Developmental Cell, 2020, 52, 429-445.e10.	3.1	114
95	The ectopic expression of meiCT genes promotes meiomitosis and may facilitate carcinogenesis. Cell Cycle, 2020, 19, 837-854.	1.3	17
96	Expanding the type IIB DNA topoisomerase family: identification of new topoisomerase and topoisomerase-like proteins in mobile genetic elements. NAR Genomics and Bioinformatics, 2020, 2, lqz021.	1.5	12
97	Genetic Interactions of Histone Modification Machinery Set1 and PAF1C with the Recombination Complex Rec114-Mer2-Mei4 in the Formation of Meiotic DNA Double-Strand Breaks. International Journal of Molecular Sciences, 2020, 21, 2679.	1.8	7
98	Oocyte Elimination Through DNA Damage Signaling from CHK1/CHK2 to p53 and p63. Genetics, 2020, 215, 373-378.	1.2	35
99	EWSR1 affects PRDM9-dependent histone 3 methylation and provides a link between recombination hotspots and the chromosome axis protein REC8. Molecular Biology of the Cell, 2021, 32, 1-14.	0.9	14
100	DNA topoisomerases: Advances in understanding of cellular roles and multiâ€protein complexes via structureâ€function analysis. BioEssays, 2021, 43, e2000286.	1.2	86
101	Structural and functional characterization of the Spo11 core complex. Nature Structural and Molecular Biology, 2021, 28, 92-102.	3.6	41
102	PRD1, a homologous recombination initiation factor, is involved in spindle assembly in rice meiosis. New Phytologist, 2021, 230, 585-600.	3.5	13
103	Four-pronged negative feedback of DSB machinery in meiotic DNA-break control in mice. Nucleic Acids Research, 2021, 49, 2609-2628.	6.5	26
106	Mechanism and Control of Meiotic DNA Double-Strand Break Formation in S. cerevisiae. Frontiers in Cell and Developmental Biology, 2021, 9, 642737.	1.8	39
107	DNA-driven condensation assembles the meiotic DNA break machinery. Nature, 2021, 592, 144-149.	13.7	71
108	Sycp1 Is Not Required for Subtelomeric DNA Double-Strand Breaks but Is Required for Homologous Alignment in Zebrafish Spermatocytes. Frontiers in Cell and Developmental Biology, 2021, 9, 664377.	1.8	10
109	Centromeres are dismantled by foundational meiotic proteins Spo11 and Rec8. Nature, 2021, 591, 671-676.	13.7	14
110	Meiotic Recombination Defects and Premature Ovarian Insufficiency. Frontiers in Cell and Developmental Biology, 2021, 9, 652407.	1.8	25
111	Diversity and Functions of Type II Topoisomerases. Acta Naturae, 2021, 13, 59-75.	1.7	11
112	HIGH CROSSOVER RATE1 encodes PROTEIN PHOSPHATASE X1 and restricts meiotic crossovers in Arabidopsis. Nature Plants, 2021, 7, 452-467.	4.7	25
113	Archaea: A Gold Mine for Topoisomerase Diversity. Frontiers in Microbiology, 2021, 12, 661411.	1.5	10

#	Article	IF	CITATIONS
114	High Resolution View on the Regulation of Recombinase Accumulation in Mammalian Meiosis. Frontiers in Cell and Developmental Biology, 2021, 9, 672191.	1.8	10
116	RAD51 supports DMC1 by inhibiting the SMC5/6 complex during meiosis. Plant Cell, 2021, 33, 2869-2882.	3.1	30
117	Spoll generates gaps through concerted cuts at sites of topological stress. Nature, 2021, 594, 577-582.	13.7	31
118	The synaptonemal complex central region modulates crossover pathways and feedback control of meiotic double-strand break formation. Nucleic Acids Research, 2021, 49, 7537-7553.	6.5	23
119	Tetrahymena meiosis: Simple yet ingenious. PLoS Genetics, 2021, 17, e1009627.	1.5	22
120	Rewiring Meiosis for Crop Improvement. Frontiers in Plant Science, 2021, 12, 708948.	1.7	18
121	Heterologous Complementation of SPO11-1 and -2 Depends on the Splicing Pattern. International Journal of Molecular Sciences, 2021, 22, 9346.	1.8	4
122	Replication protein A large subunit (RPA1a) limits chiasma formation during rice meiosis. Plant Physiology, 2021, 187, 1605-1618.	2.3	6
123	Meiotic Cohesin and Variants Associated With Human Reproductive Aging and Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 710033.	1.8	10
124	MeiosisOnline: A Manually Curated Database for Tracking and Predicting Genes Associated With Meiosis. Frontiers in Cell and Developmental Biology, 2021, 9, 673073.	1.8	6
125	Conservation and divergence of meiotic DNA double strand break forming mechanisms in <i>Arabidopsis thaliana</i> . Nucleic Acids Research, 2021, 49, 9821-9835.	6.5	33
126	<i>Caenorhabditis elegans</i> DSB-3 reveals conservation and divergence among protein complexes promoting meiotic double-strand breaks. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	23
127	Structure of a meiosis-specific complex central to BRCA2 localization at recombination sites. Nature Structural and Molecular Biology, 2021, 28, 671-680.	3.6	7
128	A pathway for error-free non-homologous end joining of resected meiotic double-strand breaks. Nucleic Acids Research, 2021, 49, 879-890.	6.5	13
129	Chromatin Immunoprecipitation of Meiotically Expressed Proteins from Arabidopsis thaliana Flowers. Methods in Molecular Biology, 2020, 2061, 219-236.	0.4	4
137	Extreme genome diversity in the hyper-prevalent parasitic eukaryote Blastocystis. PLoS Biology, 2017, 15, e2003769.	2.6	99
138	A novel function for CDK2 activity at meiotic crossover sites. PLoS Biology, 2020, 18, e3000903.	2.6	22
139	Mouse REC114 is essential for meiotic DNA double-strand break formation and forms a complex with MEI4. Life Science Alliance, 2018, 1, e201800259.	1.3	74

#	Article	IF	CITATIONS
140	Amplification of a broad transcriptional program by a common factor triggers the meiotic cell cycle in mice. ELife, 2019, 8, .	2.8	78
141	The histone modification reader ZCWPW1 links histone methylation to PRDM9-induced double-strand break repair. ELife, 2020, 9, .	2.8	34
142	The formation and repair of DNA double-strand breaks in mammalian meiosis. Asian Journal of Andrology, 2021, 23, 572.	0.8	11
143	Hyper-Recombinant Plants: An Emerging Field for Plant Breeding. Critical Reviews in Plant Sciences, 2021, 40, 446-458.	2.7	5
145	Meiotic Chromosome Dynamics in Zebrafish. Frontiers in Cell and Developmental Biology, 2021, 9, 757445.	1.8	10
146	Chromatin-Associated Protein Sugp2 Involved in mRNA Alternative Splicing During Mouse Spermatogenesis. Frontiers in Veterinary Science, 2021, 8, 754021.	0.9	1
150	EWSR1 Regulates PRDM9-Dependent Histone 3 Methylation and Links Recombination Hotspots With the Chromosomal Axis. SSRN Electronic Journal, 0, , .	0.4	0
161	The molecular control of meiotic double-strand break (DSB) formation and its significance in human infertility. Asian Journal of Andrology, 2021, 23, 555.	0.8	9
165	Computed structures of core eukaryotic protein complexes. Science, 2021, 374, eabm4805.	6.0	316
166	MEIOSIN directs initiation of meiosis and subsequent meiotic prophase program during spermatogenesis. Genes and Genetic Systems, 2022, 97, 27-39.	0.2	1
167	RAD51AP2 is required for efficient meiotic recombination between X and Y chromosomes. Science Advances, 2022, 8, eabk1789.	4.7	13
168	Topoisomerase VI is a chirally-selective, preferential DNA decatenase. ELife, 2022, 11, .	2.8	7
169	DNA repair, recombination, and damage signaling. Genetics, 2022, 220, .	1.2	26
170	Whole-exome sequencing in patients with maturation arrest: a potential additional diagnostic tool for prevention of recurrent negative testicular sperm extraction outcomes. Human Reproduction, 2022, 37, 1334-1350.	0.4	13
171	Osphs1 is Required for Both Male and Female Gamete Development in Rice. SSRN Electronic Journal, 0, ,	0.4	0
172	ZFP541 maintains the repression of pre-pachytene transcriptional programs and promotes male meiosis progression. Cell Reports, 2022, 38, 110540.	2.9	11
173	Topoisomerase I inhibitors: Challenges, progress and the road ahead. European Journal of Medicinal Chemistry, 2022, 236, 114304.	2.6	29

#	Article	IF	CITATIONS
179	Fragile, unfaithful and persistent Ys—on how meiosis can shape sex chromosome evolution. Heredity, 2022, 129, 22-30.	1.2	4
180	Meiotic recombination: insights into its mechanisms and its role in human reproduction with a special focus on non-obstructive azoospermia. Human Reproduction Update, 2022, 28, 763-797.	5.2	27
181	Chromosomal synapsis defects can trigger oocyte apoptosis without elevating numbers of persistent DNA breaks above wild-type levels. Nucleic Acids Research, 2022, 50, 5617-5634.	6.5	5
182	Coexpression of MEIOTIC-TOPOISOMERASE VIB-dCas9 with guide RNAs specific to a recombination hotspot is insufficient to increase crossover frequency in Arabidopsis. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	5
183	A Brief History of Drosophila (Female) Meiosis. Genes, 2022, 13, 775.	1.0	1
184	MEIOK21 regulates oocyte quantity and quality via modulating meiotic recombination. FASEB Journal, 2022, 36, e22357.	0.2	1
185	Temperature sensitivity of DNA double-strand break repair underpins heat-induced meiotic failure in mouse spermatogenesis. Communications Biology, 2022, 5, .	2.0	18
186	Low Female Gametophyte Fertility Contributes to the Low Seed Formation of the Diploid Loquat [Eriobotrya Japonica (Thunb.) Lindl.] Line H30-6. Frontiers in Plant Science, 2022, 13, .	1.7	2
187	Mechanism of initiation of meiosis in mouse germ cells. Current Topics in Developmental Biology, 2023, , 1-26.	1.0	1
189	Yeast as a Model to Unravel New BRCA2 Functions in Cell Metabolism. Frontiers in Oncology, 0, 12, .	1.3	0
190	A tale of topoisomerases and the knotty genetic material in the backdrop of <i>Plasmodium</i> biology. Bioscience Reports, 2022, 42, .	1.1	2
191	The meiotic topoisomerase VI B subunit (MTOPVIB) is essential for meiotic DNA double-strand break formation in barley (Hordeum vulgare L.). Plant Reproduction, 0, , .	1.3	7
193	Differentiated function and localisation of SPO11-1 and PRD3 on the chromosome axis during meiotic DSB formation in Arabidopsis thaliana. PLoS Genetics, 2022, 18, e1010298.	1.5	9
194	R-Loop Formation in Meiosis: Roles in Meiotic Transcription-Associated DNA Damage. Epigenomes, 2022, 6, 26.	0.8	1
195	DMC1 attenuates RAD51-mediated recombination in Arabidopsis. PLoS Genetics, 2022, 18, e1010322.	1.5	7
196	Oligonucleotide-Recognizing Topoisomerase Inhibitors (OTIs): Precision Gene Editors for Neurodegenerative Diseases?. International Journal of Molecular Sciences, 2022, 23, 11541.	1.8	0
197	Negative supercoils regulate meiotic crossover patterns in budding yeast. Nucleic Acids Research, 2022, 50, 10418-10435.	6.5	3
198	OsPHS1 is required for both male and female gamete development in rice. Plant Science, 2022, 325, 111480.	1.7	2

#	Article	IF	CITATIONS
200	Evolution and diversity of the TopoVI and TopoVI-like subunits with extensive divergence of the TOPOVIBL subunit. Molecular Biology and Evolution, 0, , .	3.5	7
201	Identification, characterization, and rescue of <scp>CRISPR</scp> /Cas9 generated wheat <i>SPO11â€I </i> mutants. Plant Biotechnology Journal, 2023, 21, 405-418.	4.1	12
202	TOPOVIBL-REC114 interaction regulates meiotic DNA double-strand breaks. Nature Communications, 2022, 13, .	5.8	18
203	Cyclins and CDKs in the regulation of meiosis-specific events. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	2
204	<scp>M1AP</scp> interacts with the mammalian <scp>ZZS</scp> complex and promotes male meiotic recombination. EMBO Reports, 2023, 24, .	2.0	6
205	The genome loading model for the origin and maintenance of sex in eukaryotes. Biologia Futura, 2022, 73, 345-357.	0.6	1
206	Chromosome $\hat{a} \in d$ ependent aneuploid formation in Spo $11\hat{a} \in d$ ess meiosis. Genes To Cells, O, , .	0.5	1
207	DNA/RNA helicase DHX36 is required for late stages of spermatogenesis. Journal of Molecular Cell Biology, 0, , .	1.5	0
209	Bi-allelic MEI1 variants cause meiosis arrest and non-obstructive azoospermia. Journal of Human Genetics, 0, , .	1.1	3
210	A homozygous KASH5 frameshift mutation causes diminished ovarian reserve, recurrent miscarriage, and non-obstructive azoospermia in humans. Frontiers in Endocrinology, 0, 14, .	1.5	4
211	Genetic control of meiosis surveillance mechanisms in mammals. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	8
213	The RNA-binding protein FUS/TLS interacts with SPO11 and PRDM9 and localize at meiotic recombination hotspots. Cellular and Molecular Life Sciences, 2023, 80, .	2.4	2
214	Control of meiotic crossing over in plant breeding. Vavilovskii Zhurnal Genetiki I Selektsii, 2023, 27, 99-100.	0.4	0
228	Divergence and conservation of the meiotic recombination machinery. Nature Reviews Genetics, 0, , .	7.7	4