Phase transition kinetics and surface binding states of r perovskite

Physical Chemistry Chemical Physics 18, 7284-7292 DOI: 10.1039/c5cp06232b

Citation Report

#	Article	IF	CITATIONS
2	In situ investigation of degradation at organometal halide perovskite surfaces by X-ray photoelectron spectroscopy at realistic water vapour pressure. Chemical Communications, 2017, 53, 5231-5234.	2.2	78
3	Unveiling the Crystal Formation of Cesium Lead Mixed-Halide Perovskites for Efficient and Stable Solar Cells. Journal of Physical Chemistry Letters, 2017, 8, 2936-2940.	2.1	169
4	Rapid, stable and self-powered perovskite detectors via a fast chemical vapor deposition process. RSC Advances, 2017, 7, 18224-18230.	1.7	57
5	Understanding surface chemistry during MAPbI ₃ spray deposition and its effect on photovoltaic performance. Journal of Materials Chemistry C, 2017, 5, 902-916.	2.7	89
6	Pillars of assembled pyridyl bis-urea macrocycles: a robust synthon to organize diiodotetrafluorobenzenes. CrystEngComm, 2017, 19, 484-491.	1.3	10
7	Communication—Large Electron-Hole Diffusion Lengths in Methylammonium Lead Triiodide Perovskite Films Prepared by an Electrochemical-Chemical Approach. ECS Journal of Solid State Science and Technology, 2017, 6, P819-P821.	0.9	1
8	Oxygen-induced defects at the lead halide perovskite/graphene oxide interfaces. Journal of Materials Chemistry A, 2018, 6, 1423-1442.	5.2	26
9	Revealing the Selfâ€Degradation Mechanisms in Methylammonium Lead Iodide Perovskites in Dark and Vacuum. ChemPhysChem, 2018, 19, 1507-1513.	1.0	56
10	Architecture of Biperovskite-Based LaCrO ₃ /PbTiO ₃ p–n Heterojunction with a Strong Interface for Enhanced Charge Anti-recombination Process and Visible Light-Induced Photocatalytic Reactions. Inorganic Chemistry, 2018, 57, 15133-15148.	1.9	52
11	Improving the stability of methylammonium lead iodide perovskite solar cells by cesium doping. Thin Solid Films, 2018, 667, 40-47.	0.8	24
12	Chemical interaction dictated energy level alignment at the N,N′-dipentyl-3,4,9,10-perylenedicarboximide/CH3NH3PbI3 interface. Applied Physics Letters, 2018, 113, .	1.5	11
13	Type-I alignment in MAPbI3 based solar devices with doped-silicon nanocrystals. Nano Energy, 2018, 50, 245-255.	8.2	22
14	Enhanced solar cell stability by hygroscopic polymer passivation of metal halide perovskite thin film. Energy and Environmental Science, 2018, 11, 2609-2619.	15.6	276
15	Highly efficient hydrogen generation of Bil3 nanoplates decorated with Ag nanoparticles. International Journal of Hydrogen Energy, 2018, 43, 15962-15974.	3.8	10
16	Lightâ€Induced Anomalous Resistive Switches Based on Individual Organic–Inorganic Halide Perovskite Microâ€/Nanofibers. Advanced Electronic Materials, 2018, 4, 1800206.	2.6	26
17	Effect of depositing PCBM on perovskite-based metal–oxide–semiconductor field effect transistors. Chinese Physics B, 2018, 27, 047208.	0.7	3
18	Predominant Stable MAPbI ₃ Films Deposited via Chemical Vapor Deposition: Stability Studies in Illuminated and Darkened States Coupled with Temperature under an Open-Air Atmosphere. ACS Applied Energy Materials, 2018, 1, 3301-3312.	2.5	16
19	Long-Term Chemical Aging of Hybrid Halide Perovskites. Nano Letters, 2019, 19, 5604-5611.	4.5	13

#	Article	IF	CITATIONS
20	Studies on CH3NH3PbI3 prepared by low-cost wet chemical technique. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	10
21	Synthesis of CH3NH3PbI3–Cl perovskite by the three-step route consisting of chemical solution deposition followed by gas–solid reaction transformations: Film quality and photodetector performance evaluation. Organic Electronics, 2019, 73, 76-86.	1.4	7
22	Degradation of CH ₃ NH ₃ PbI ₃ perovskite materials by localized charges and its polarity dependency. Journal of Materials Chemistry A, 2019, 7, 12075-12085.	5.2	23
23	An atomistic mechanism for the degradation of perovskite solar cells by trapped charge. Nanoscale, 2019, 11, 11369-11378.	2.8	45
24	Open atmospheric processed perovskite solar cells using dopant-free, highly hydrophobic hole-transporting materials: Influence of thiophene and selenophene I€-spacers on charge transport and recombination properties. Solar Energy Materials and Solar Cells, 2019, 199, 66-74.	3.0	14
25	3D hybrid perovskite solid solutions: a facile approach for deposition of nanoparticles and thin films <i>via</i> B-site substitution. New Journal of Chemistry, 2019, 43, 5448-5454.	1.4	5
26	Open Atmosphere-Processed Stable Perovskite Solar Cells Using Molecular Engineered, Dopant-Free, Highly Hydrophobic Polymeric Hole-Transporting Materials: Influence of Thiophene and Alkyl Chain on Power Conversion Efficiency. Journal of Physical Chemistry C, 2019, 123, 8560-8568.	1.5	18
27	Multi-shaped cationic gold nanoparticle-l-cysteine-ZnSeS quantum dots hybrid nanozyme as an intrinsic peroxidase mimic for the rapid colorimetric detection of cocaine. Sensors and Actuators B: Chemical, 2019, 287, 416-427.	4.0	27
28	Doping and Photon Induced Defect Healing of Hybrid Perovskite Thin Films: An Approach Towards Efficient Light Emitting Diodes. ChemNanoMat, 2019, 5, 666-673.	1.5	5
29	Formation of a photoactive quasi-2D formamidinium lead iodide perovskite in water. Journal of Materials Chemistry A, 2019, 7, 25785-25790.	5.2	24
30	The synergistic effect of cooperating solvent vapor annealing for high-efficiency planar inverted perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 27267-27277.	5.2	24
31	Influence of Lewis base HMPA on the properties of efficient planar MAPbI3 solar cells fabricated by one-step process assisted by Lewis acid-base adduct approach. Chemical Engineering Journal, 2020, 380, 122436.	6.6	24
32	Solar perovskite thin films with enhanced mechanical, thermal, UV, and moisture stability via vacuum-assisted deposition. Journal of Materials Science, 2020, 55, 3484-3494.	1.7	14
33	Rapid Characterization and Parameter Space Exploration of Perovskites Using an Automated Routine. ACS Combinatorial Science, 2020, 22, 6-17.	3.8	10
34	Unravelling the Photocatalytic Behavior of All-Inorganic Mixed Halide Perovskites: The Role of Surface Chemical States. ACS Applied Materials & Interfaces, 2020, 12, 914-924.	4.0	55
35	Effect of CdSe/ZnS quantum dots on temperature-dependent luminescence properties in mixed halide perovskites. Journal of Luminescence, 2020, 219, 116940.	1.5	5
36	Effects of Thermal Annealing Duration on the Film Morphology of Methylamine Lead Triiodide (MAPbI3) Perovskite Thin Films in Ambient Air. Journal of Nanoscience and Nanotechnology, 2020, 20, 3795-3801.	0.9	4
37	Optimal intermediate adducts regulate low-temperature CsPbI ₂ Br crystallization for efficient inverted all-inorganic perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 25336-25344	5.2	27

CITATION REPORT

#	Article	IF	CITATIONS
38	The compositional engineering of organic–inorganic hybrid perovskites for high-performance perovskite solar cells. Emergent Materials, 2020, 3, 727-750.	3.2	10
39	XPS of the surface chemical environment of CsMAFAPbBrI trication-mixed halide perovskite film. Surface Science Spectra, 2020, 27, .	0.3	17
40	5-Ammonium Valeric Acid Iodide to Stabilize MAPbI ₃ via a Mixed-Cation Perovskite with Reduced Dimension. Journal of Physical Chemistry Letters, 2020, 11, 8170-8176.	2.1	17
41	Novel Quasi-2D Perovskites for Stable and Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 51744-51755.	4.0	34
42	Ethylammonium Lead Iodide Formation in MAPbI3 Precursor Solutions by DMF Decomposition and Organic Cation Exchange Reaction. Crystals, 2020, 10, 162.	1.0	4
43	Synthesis of air-stable two-dimensional nanoplatelets of Ruddlesden–Popper organic–inorganic hybrid perovskites. Nanoscale, 2020, 12, 10072-10081.	2.8	10
44	A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. Science, 2020, 369, 96-102.	6.0	461
45	Passivating silicon-based hybrid solar cells through tuning PbI2 content of perovskite coatings. Applied Surface Science, 2020, 511, 145541.	3.1	10
46	Impact of Dimensionality on Optoelectronic Properties of Hybrid Perovskites. International Journal of Photoenergy, 2021, 2021, 1-7.	1.4	0
47	Surface capacitive charge storage in carbon nanodots-anchored hybrid halide perovskites. Carbon, 2021, 173, 1048-1058.	5.4	12
48	Dielectric relaxation, XPS and structural studies of polyethylene oxide/iodine complex composite films. Polymer Bulletin, 2022, 79, 3759-3778.	1.7	20
49	Interfacial Defect Passivation and Stress Release via Multi-Active-Site Ligand Anchoring Enables Efficient and Stable Methylammonium-Free Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 2526-2538.	8.8	170
50	Impact of Drying Temperature on Morphology and the Crystallinity of CH3NH3PbI3 Thin Films. , 2021, , .		0
51	Combination of optical transitions of polarons with Rashba effect in methylammonium lead trihalide perovskites under high magnetic fields. Physical Review B, 2021, 104, .	1.1	2
52	Effects of Structural Phase Transitions on Hysteresis in Airâ€Processed Organic–Inorganic Halide Perovskite Thinâ€Film Transistors. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100211.	1.2	3
53	CO2 dual roles in food scraps-derived biochar activation to enhance lead adsorption capacity. Science of the Total Environment, 2021, 784, 147218.	3.9	7
54	Interfacial and Permeating Modification Effect of n-type Non-fullerene Acceptors toward High-Performance Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 40778-40787.	4.0	17
55	Magnetic optical rotary dispersion and magnetic circular dichroism in methylammonium lead halide perovskites. Chirality, 2021, 33, 610-617.	1.3	8

	CITATION	ITATION REPORT	
#	ARTICLE	IF	CITATIONS
56	Enhancing Performance and Stability of Tin Halide Perovskite Light Emitting Diodes via Coordination Engineering of Lewis Acid–Base Adducts. Advanced Functional Materials, 2021, 31, 2106974.	7.8	37
57	Effect of Annealing on Innovative CsPbI3-QDs Doped Perovskite Thin Films. Crystals, 2021, 11, 101.	1.0	5
58	IngenierÃas de aditivos en celdas solares tipo perovskita. Ingenierias, 2021, 24, 3-12.	0.2	0
59	Scalable Flexible Perovskite Solar Cells Based on a Crystalline and Printable Template with Intelligent Temperature Sensitivity. Solar Rrl, 2022, 6, .	3.1	9
60	MAPbl ₃ Photodetectors with 4.7 MHz Bandwidth and Their Application in Organic Optocouplers. Journal of Physical Chemistry Letters, 2022, 13, 815-821.	2.1	5
61	A comprehensive analysis of PV cell parameters with varying halides stoichiometry in mixed halide perovskite solar cells. Optical Materials, 2022, 123, 111905.	1.7	6
62	Understanding the impact of SrI2 additive on the properties of Sn-based halide perovskites. Optical Materials, 2022, 123, 111806.	1.7	3
63	Enhanced resistive switching behavior of CH3NH3PbI3 based resistive random access memory by nickel doping. Vacuum, 2022, 198, 110862.	1.6	16
64	Magnetism in a 2D Hybrid Ruddlesden–Popper Perovskite through Charge Redistribution Driven by an Organic Functional Spacer. Journal of Physical Chemistry Letters, 2022, , 1406-1415.	2.1	6
65	Hybrid Organic–Inorganic Perovskite Halide Materials for Photovoltaics towards Their Commercialization. Polymers, 2022, 14, 1059.	2.0	18
66	A universal ionic liquid solvent for non-halide lead sources in perovskite solar cells. Journal of Energy Chemistry, 2022, 71, 445-451.	7.1	8
67	Discovering equations that govern experimental materials stability under environmental stress using scientific machine learning. Npj Computational Materials, 2022, 8, .	3.5	6
68	Microstrain and Urbach Energy Relaxation in FAPbI ₃ -Based Solar Cells through Powder Engineering and Perfluoroalkyl Phosphate Ionic Liquid Additives. ACS Applied Materials & Interfaces, 2022, 14, 24546-24556.	4.0	10
69	Analysis of electrical parameters of p-i-n perovskites solar cells during passivation via N-doped graphene quantum dots. Surfaces and Interfaces, 2022, 31, 102066.	1.5	5
71	Thermally-induced drift of A-site cations at solid–solid interface in physically paired lead halide perovskites. Scientific Reports, 2022, 12, .	1.6	2
72	An internal encapsulating layer for efficient, stable, repairable and low-lead-leakage perovskite solar cells. Energy and Environmental Science, 2022, 15, 3891-3900.	15.6	32
73	Optical and electrical properties of perovskite microrods. Materialwissenschaft Und Werkstofftechnik, 2022, 53, 790-797.	0.5	3
74	Design and Testing of Autonomous Chargeable and Wearable Sweat/Ionic Liquidâ€Based Supercapacitors. Advanced Science, 2022, 9, .	5.6	11

CITATION REPORT

#	Article	IF	CITATIONS
75	Optical, electrical and chemical properties of PEO:12 complex composite films. Polymer Bulletin, 2023, 80, 9611-9625.	1.7	4
76	Crystallization Tailoring for Efficient and Stable Perovskite Solar Cells Via Introduction of Propionic Acid in a Green Anti-Solvent. Journal of Electronic Materials, 0, , .	1.0	0
77	Highâ€throughput compositional mapping of tripleâ€cation tin–lead perovskites for highâ€efficiency solar cells. InformaÄnÃ-Materiály, 2023, 5, .	8.5	5
78	Subsurface Characteristics of Metal-Halide Perovskites Polished by an Argon Ion Beam. Journal of Physical Chemistry C, 2023, 127, 7461-7470.	1.5	0
79	Role of surface terminations in the chemical stability of CH3NH3PbI3 perovskite in combined light, H2O, and O2 environments: DFT/AIMD calculations and experimental validation. Materials Today Advances, 2023, 18, 100370.	2.5	1