Deciphering the true life cycle environmental impacts a gas-to-olefins projects in the United States

Energy and Environmental Science 9, 820-840 DOI: 10.1039/c5ee02365c

Citation Report

#	Article	IF	CITATIONS
1	Design and optimization of shale gas energy systems: Overview, research challenges, and future directions. Computers and Chemical Engineering, 2017, 106, 699-718.	2.0	91
2	Molecular Insights into the Enhanced Shale Gas Recovery by Carbon Dioxide in Kerogen Slit Nanopores. Journal of Physical Chemistry C, 2017, 121, 10233-10241.	1.5	112
3	Comparative Techno-Economic and Environmental Analysis of Ethylene and Propylene Manufacturing from Wet Shale Gas and Naphtha. Industrial & Engineering Chemistry Research, 2017, 56, 4038-4051.	1.8	104
4	Economic and Environmental Life Cycle Optimization of Noncooperative Supply Chains and Product Systems: Modeling Framework, Mixed-Integer Bilevel Fractional Programming Algorithm, and Shale Gas Application. ACS Sustainable Chemistry and Engineering, 2017, 5, 3362-3381.	3.2	50
5	A systematic simulation-based process intensification method for shale gas processing and NGLs recovery process systems under uncertain feedstock compositions. Computers and Chemical Engineering, 2017, 105, 259-275.	2.0	38
6	Game theory approach to optimal design of shale gas supply chains with consideration of economics and life cycle greenhouse gas emissions. AICHE Journal, 2017, 63, 2671-2693.	1.8	52
7	Can Modular Manufacturing Be the Next Game-Changer in Shale Gas Supply Chain Design and Operations for Economic and Environmental Sustainability?. ACS Sustainable Chemistry and Engineering, 2017, 5, 10046-10071.	3.2	33
8	Techno-economic and environmental analysis of coal-based synthetic natural gas process in China. Journal of Cleaner Production, 2017, 166, 417-424.	4.6	30
9	Effects of Surface Composition on the Microbehaviors of CH ₄ and CO ₂ in Slit-Nanopores: A Simulation Exploration. ACS Omega, 2017, 2, 7600-7608.	1.6	26
10	Shale Gas Process and Supply Chain Optimization. , 2017, , 21-46.		3
11	Analyzing the Learning Path of US Shale Players by Using the Learning Curve Method. Sustainability, 2017, 9, 2232.	1.6	9
12	Process Modeling and Analysis of Manufacturing Pathways for Producing Ethylene and Propylene from Wet Shale Gas and Naphtha. Computer Aided Chemical Engineering, 2017, , 361-366.	0.3	2
13	Life Cycle Optimisation from A Noncooperative Perspective: Game Theory-Based Models and Applications. Computer Aided Chemical Engineering, 2017, 40, 1915-1920.	0.3	0
15	Integrated Hybrid Life Cycle Assessment and Optimization of Shale Gas. ACS Sustainable Chemistry and Engineering, 2018, 6, 1803-1824.	3.2	35
16	Sustainable Process Design Approach for On-Purpose Propylene Production and Intensification. ACS Sustainable Chemistry and Engineering, 2018, 6, 2407-2421.	3.2	58
17	Manufacturing Ethylene from Wet Shale Gas and Biomass: Comparative Technoeconomic Analysis and Environmental Life Cycle Assessment. Industrial & Engineering Chemistry Research, 2018, 57, 5980-5998.	1.8	50
18	Monetizing shale gas to polymers under mixed uncertainty: Stochastic modeling and likelihood analysis. AICHE Journal, 2018, 64, 2017-2036.	1.8	7
19	Systems Design, Modeling, and Thermoeconomic Analysis of Azeotropic Distillation Processes for Organic Waste Treatment and Recovery in Nylon Plants. Industrial & Engineering Chemistry Research 2018, 57, 9994-10010	1.8	9

#	Article	IF	CITATIONS
20	Modular methanol manufacturing from shale gas: Technoâ€economic and environmental analyses of conventional largeâ€scale production versus smallâ€scale distributed, modular processing. AICHE Journal, 2018, 64, 495-510.	1.8	58
21	Integrating Simulation in Optimal Synthesis and Design of Natural Gas Upstream Processing Networks. Industrial & Engineering Chemistry Research, 2018, 57, 5792-5804.	1.8	7
22	A new superstructure optimization paradigm for process synthesis with product distribution optimization: Application to an integrated shale gas processing and chemical manufacturing process. AICHE Journal, 2018, 64, 123-143.	1.8	50
23	Low-carbon roadmap of chemical production: A case study of ethylene in China. Renewable and Sustainable Energy Reviews, 2018, 97, 580-591.	8.2	60
24	Endpoint-oriented Life Cycle Optimization Models for Sustainable Design and Operations of Shale Gas Supply Chains with Modular Manufacturing. Computer Aided Chemical Engineering, 2018, 43, 591-596.	0.3	1
25	Development of a Coke Oven Gas Assisted Coal to Ethylene Glycol Process for High Techno-Economic Performance and Low Emission. Industrial & Engineering Chemistry Research, 2018, 57, 7600-7612.	1.8	35
26	Resilient Design and Operations of Chemical Process Systems. Computer Aided Chemical Engineering, 2018, , 1-6.	0.3	1
27	Dynamic Material Flow Analysis-Based Life Cycle Optimization Framework and Application to Sustainable Design of Shale Gas Energy Systems. ACS Sustainable Chemistry and Engineering, 2018, 6, 11734-11752.	3.2	24
28	Nonlinear Adaptive Robust Optimization Model and Algorithm for Resilience Analysis and Enhancement. , 2018, , .		0
29	Operational Optimization of Shale Gas Processing under Feedstock Uncertainties with Updated Back-off Strategy. , 2018, , .		0
30	Comparative Life Cycle Assessment of Ethylene from Wet Shale Gas and Biomass. Computer Aided Chemical Engineering, 2018, 43, 37-42.	0.3	2
31	Life-cycle assessment and techno-economic analysis of the utilization of bio-oil components for the production of three chemicals. Green Chemistry, 2018, 20, 3287-3301.	4.6	41
32	Energy-environmental implications of shale gas extraction with considering a stochastic decentralized structure. Fuel, 2018, 230, 226-243.	3.4	12
33	Overview of Selective Oxidation of Ethylene to Ethylene Oxide by Ag Catalysts. ACS Catalysis, 2019, 9, 10727-10750.	5.5	104
34	Sustainable Design of Energy Systems by Integrating Life Cycle Optimization With Superstructure Optimization. Computer Aided Chemical Engineering, 2019, 47, 211-220.	0.3	1
35	A novel path for carbon-rich resource utilization with lower emission and higher efficiency: An integrated process of coal gasification and coking to methanol production. Energy, 2019, 177, 304-318.	4.5	77
36	CH3SH conversion in a tubular flow reactor. Experiments and kinetic modelling. Combustion and Flame, 2019, 203, 23-30.	2.8	16
37	Comparative Life-Cycle Assessment of Li-Ion Batteries through Process-Based and Integrated Hybrid Approaches. ACS Sustainable Chemistry and Engineering, 2019, 7, 5082-5094.	3.2	58

#	Article	IF	CITATIONS
38	Efficient Utilization of CO ₂ in a Coal to Ethylene Glycol Process Integrated with Dry/Steam-Mixed Reforming: Conceptual Design and Technoeconomic Analysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 3496-3510.	3.2	35
39	Dataâ€driven distributionally robust optimization of shale gas supply chains under uncertainty. AICHE Journal, 2019, 65, 947-963.	1.8	37
40	Design and optimization of small-scale methanol production from sour natural gas by integrating reforming with hydrogenation. International Journal of Hydrogen Energy, 2020, 45, 34483-34493.	3.8	7
41	Life cycle assessment of global warming potential, resource depletion and acidification potential of fossil, renewable and secondary feedstock for olefin production in Germany. Journal of Cleaner Production, 2020, 250, 119484.	4.6	59
42	Hybrid processes for sustainable chemicals production from shale gas and ethanol. , 2020, , 355-378.		1
43	Oxidation of H2S and CH3SH in a jet-stirred reactor: Experiments and kinetic modeling. Fuel, 2021, 283, 119258.	3.4	5
44	A Novel Process Design for Waste Respirator Processing. Computer Aided Chemical Engineering, 2021, , 37-42.	0.3	0
45	A carbon neutral chemical industry powered by the sun. Discover Chemical Engineering, 2021, 1, 1.	1.1	17
46	A novel coal chemical looping gasification scheme for synthetic natural gas with low energy consumption for CO2 capture: Modelling, parameters optimization, and performance analysis. Energy, 2021, 225, 120249.	4.5	28
47	Simulation-Based Superstructure Optimization for the Synthesis Process of Aromatics Production from Methanol. ACS Sustainable Chemistry and Engineering, 2021, 9, 10205-10219.	3.2	3
48	Environmental Burdens of China's Propylene manufacturing: Comparative life-cycle assessment and scenario analysis. Science of the Total Environment, 2021, 799, 149451.	3.9	24
49	Monitoring shale water uptake using 2D magnetic resonance relaxation correlation and SPRITE MRI. Chemical Engineering Journal, 2022, 428, 131042.	6.6	14
50	Hedging Against Uncertain Feedstock Compositions in Shale Gas Processing System Designs with Intensified Equipment Capacities. Computer Aided Chemical Engineering, 2017, 40, 1051-1056.	0.3	1
51	Indirect methyl acetate production process based on dimethyl ether using seed-derived ferrierite from shale gas. Fuel, 2022, 310, 122408.	3.4	5
52	Simulation-based modeling and optimization for refinery hydrogen network integration with light hydrocarbon recovery. International Journal of Hydrogen Energy, 2022, 47, 4662-4673.	3.8	7
53	Effects of agricultural activities on energy-carbon-water nexus of the Qinghai-Tibet Plateau. Journal of Cleaner Production, 2022, 331, 129995.	4.6	24
54	Environmental life cycle assessment of olefins and by-product hydrogen from steam cracking of natural gas liquids, naphtha, and gas oil. Journal of Cleaner Production, 2022, 359, 131884.	4.6	24
55	System-Level Analysis of Methanol Production from Shale Gas Integrated with Multibed-BTX Production ACS Sustainable Chemistry and Engineering, 2022, 10, 5998-6011	3.2	10

CITATION REPORT

#	Article	IF	CITATIONS
56	Unraveling the Synergistic Reaction and the Deactivation Mechanism for the Catalytic Degradation of Double Components of Sulfur-Containing VOCs over ZSM-5-Based Materials. Environmental Science & Technology, 2023, 57, 1443-1455.	4.6	15
57	Process analysis for the simultaneous production of aromatics and syngas from shale gas and CO2. Energy Conversion and Management, 2023, 276, 116480.	4.4	5
58	Life cycle water consumption of bio-oil fermentation for bio-ethanol production based on a distributed-centralized model. Energy, 2023, 264, 126298.	4.5	3
59	A combined production technology for ethylene and hydrogen with an ethane cracking center and dielectric barrier discharge plasma reactor. Chemical Engineering Journal, 2023, 462, 142155.	6.6	5