CryptoSite: Expanding the Druggable Proteome by Char Cryptic Binding Sites

Journal of Molecular Biology 428, 709-719

DOI: 10.1016/j.jmb.2016.01.029

Citation Report

#	Article	IF	CITATIONS
2	Target fishing: a key to unlock the One-To-Many puzzle in drug discovery. Journal of Pharmaceutical Care $\&$ Health Systems, 2016, 3, .	0.1	0
3	Computational approaches to investigating allostery. Current Opinion in Structural Biology, 2016, 41, 159-171.	2.6	63
4	Understanding Cryptic Pocket Formation in Protein Targets by Enhanced Sampling Simulations. Journal of the American Chemical Society, 2016, 138, 14257-14263.	6.6	151
5	Computation Resources for Molecular Biology: A Special Issue. Journal of Molecular Biology, 2016, 428, 669-670.	2.0	O
6	Predicting Protein Dynamics and Allostery Using Multi-Protein Atomic Distance Constraints. Structure, 2017, 25, 546-558.	1.6	45
7	Exploring Nonâ€obvious Hydrophobic Binding Pockets on Protein Surfaces: Increasing Affinities in Peptide–Protein Interactions. ChemBioChem, 2017, 18, 1396-1407.	1.3	5
8	Identification of Multiple Druggable Secondary Sites by Fragment Screening against DCâ€SIGN. Angewandte Chemie - International Edition, 2017, 56, 7292-7296.	7.2	42
9	Deciphering Cryptic Binding Sites on Proteins by Mixed-Solvent Molecular Dynamics. Journal of Chemical Information and Modeling, 2017, 57, 1388-1401.	2.5	60
10	Allosteric Inhibition of Bacterial Targets: An Opportunity for Discovery of Novel Antibacterial Classes. Topics in Medicinal Chemistry, 2017, , 119-147.	0.4	7
12	Computational Analysis and Predicting Ligand Binding Site in the Rose leaf curl virus and Its Betasatellite Proteins: A Step Forward for Antiviral Agent Designing. , 2017, , 157-168.		5
13	The Too Many Faces of PD-L1: A Comprehensive Conformational Analysis Study. Biochemistry, 2017, 56, 5428-5439.	1.2	23
14	Allosteric Inhibitors, Crystallography, and Comparative Analysis Reveal Network of Coordinated Movement across Human Herpesvirus Proteases. Journal of the American Chemical Society, 2017, 139, 11650-11653.	6.6	13
15	Identifikation sekundÃrer Bindestellen auf DCâ€SIGN mithilfe eines Fragmentâ€Screenings. Angewandte Chemie, 2017, 129, 7398-7402.	1.6	10
16	Targeted Protein Degradation by Small Molecules. Annual Review of Pharmacology and Toxicology, 2017, 57, 107-123.	4.2	140
17	Protein Structure Prediction and Homology Modeling. , 2017, , 120-144.		1
18	An Augmented Pocketome: Detection and Analysis of Small-Molecule Binding Pockets in Proteins of Known 3D Structure. Structure, 2018, 26, 499-512.e2.	1.6	38
20	Optimized allosteric inhibition of engineered protein tyrosine phosphatases with an expanded palette of biarsenical small molecules. Bioorganic and Medicinal Chemistry, 2018, 26, 2610-2620.	1.4	2
21	Molecular Dynamics Simulation and Prediction of Druggable Binding Sites. Methods in Molecular Biology, 2018, 1762, 87-103.	0.4	11

#	Article	IF	CITATIONS
22	Hot-spot analysis for drug discovery targeting protein-protein interactions. Expert Opinion on Drug Discovery, 2018, 13, 327-338.	2.5	64
23	Exploring the structural origins of cryptic sites on proteins. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3416-E3425.	3 . 3	96
24	Structure-based prediction of protein allostery. Current Opinion in Structural Biology, 2018, 50, 1-8.	2.6	90
27	Protein structure and computational drug discovery. Biochemical Society Transactions, 2018, 46, 1367-1379.	1.6	24
28	Structural biology meets data science: does anything change?. Current Opinion in Structural Biology, 2018, 52, 95-102.	2.6	14
29	Exploring Cryptic Pockets Formation in Targets of Pharmaceutical Interest with SWISH. Journal of Chemical Theory and Computation, 2018, 14, 3321-3331.	2.3	45
30	Cryptic binding sites on proteins: definition, detection, and druggability. Current Opinion in Chemical Biology, 2018, 44, 1-8.	2.8	119
31	An expanded allosteric network in PTP1B by multitemperature crystallography, fragment screening, and covalent tethering. ELife, 2018, 7, .	2.8	120
33	Inhibitors of protein–protein interactions (PPIs): an analysis of scaffold choices and buried surface area. Current Opinion in Chemical Biology, 2018, 44, 75-86.	2.8	189
34	Review and comparative assessment of similarity-based methods for prediction of drug–protein interactions in the druggable human proteome. Briefings in Bioinformatics, 2019, 20, 2066-2087.	3.2	19
35	<i>mkgridXf</i> : Consistent Identification of Plausible Binding Sites Despite the Elusive Nature of Cavities and Grooves in Protein Dynamics. Journal of Chemical Information and Modeling, 2019, 59, 3506-3518.	2.5	15
36	Computational and Experimental Druggability Assessment of Human DNA Glycosylases. ACS Omega, 2019, 4, 11642-11656.	1.6	19
37	Cryptic pocket formation underlies allosteric modulator selectivity at muscarinic GPCRs. Nature Communications, 2019, 10, 3289.	5.8	47
38	CTCF-dependent chromatin boundaries formed by asymmetric nucleosome arrays with decreased linker length. Nucleic Acids Research, 2019, 47, 11181-11196.	6.5	44
39	Protein Allostery in Drug Discovery. Advances in Experimental Medicine and Biology, 2019, , .	0.8	11
40	Unraveling allosteric landscapes of allosterome with ASD. Nucleic Acids Research, 2020, 48, D394-D401.	6.5	29
41	Free-energy landscape of molecular interactions between endothelin 1 and human endothelin type B receptor: fly-casting mechanism. Protein Engineering, Design and Selection, 2019, 32, 297-308.	1.0	15
42	Allosteric Methods and Their Applications: Facilitating the Discovery of Allosteric Drugs and the Investigation of Allosteric Mechanisms. Accounts of Chemical Research, 2019, 52, 492-500.	7.6	132

#	Article	IF	Citations
43	Druggability assessment of mammalian Per–Arnt–Sim [PAS] domains using computational approaches. MedChemComm, 2019, 10, 1126-1137.	3.5	10
44	Cosolvent-Enhanced Sampling and Unbiased Identification of Cryptic Pockets Suitable for Structure-Based Drug Design. Journal of Chemical Theory and Computation, 2019, 15, 3331-3343.	2.3	30
45	Conformational landscape alternations promote oncogenic activities of Ras-related C3 botulinum toxin substrate 1 as revealed by NMR. Science Advances, 2019, 5, eaav8945.	4.7	18
46	PDID: Database of Experimental and Putative Drug Targets in Human Proteome. , 2019, , 827-847.		2
47	The Subtle Trade-Off between Evolutionary and Energetic Constraints in Protein–Protein Interactions. Journal of Physical Chemistry Letters, 2019, 10, 1489-1497.	2.1	20
48	Review: Precision medicine and driver mutations: Computational methods, functional assays and conformational principles for interpreting cancer drivers. PLoS Computational Biology, 2019, 15, e1006658.	1.5	83
49	Allostery in Its Many Disguises: From Theory to Applications. Structure, 2019, 27, 566-578.	1.6	285
50	Sequence-Derived Markers of Drug Targets and Potentially Druggable Human Proteins. Frontiers in Genetics, 2019, 10, 1075.	1.1	14
51	Cosolvent Analysis Toolkit (CAT): a robust hotspot identification platform for cosolvent simulations of proteins to expand the druggable proteome. Scientific Reports, 2019, 9, 19118.	1.6	19
52	Advanced Methods for Accessing Protein Shape-Shifting Present New Therapeutic Opportunities. Trends in Biochemical Sciences, 2019, 44, 351-364.	3.7	34
53	On the perturbation nature of allostery: sites, mutations, and signal modulation. Current Opinion in Structural Biology, 2019, 56, 18-27.	2.6	85
54	Redox Systems Biology: Harnessing the Sentinels of the Cysteine Redoxome. Antioxidants and Redox Signaling, 2020, 32, 659-676.	2.5	54
55	Structure-Based Analysis of Cryptic-Site Opening. Structure, 2020, 28, 223-235.e2.	1.6	13
56	Predicting binding sites from unbound versus bound protein structures. Scientific Reports, 2020, 10, 15856.	1.6	17
57	Targeting the cryptic sites: NMR-based strategy to improve protein druggability by controlling the conformational equilibrium. Science Advances, 2020, 6, .	4.7	15
58	Can We Exploit β-Lactamases Intrinsic Dynamics for Designing More Effective Inhibitors?. Antibiotics, 2020, 9, 833.	1.5	6
59	Analyzing In Silico the Relationship Between the Activation of the Edema Factor and Its Interaction With Calmodulin. Frontiers in Molecular Biosciences, 2020, 7, 586544.	1.6	0
60	Structural Fluctuations of Aromatic Residues in an Apo-Form Reveal Cryptic Binding Sites: Implications for Fragment-Based Drug Design. Journal of Physical Chemistry B, 2020, 124, 9977-9986.	1.2	10

#	ARTICLE	IF	CITATIONS
61	NMR fragment screening reveals a novel small molecule binding site near the catalytic surface of the disulfide–dithiol oxidoreductase enzyme DsbA from Burkholderia pseudomallei. Journal of Biomolecular NMR, 2020, 74, 595-611.	1.6	7
62	Allosteric Regulation at the Crossroads of New Technologies: Multiscale Modeling, Networks, and Machine Learning. Frontiers in Molecular Biosciences, 2020, 7, 136.	1.6	44
63	In silico Druggability Assessment of the NUDIX Hydrolase Protein Family as a Workflow for Target Prioritization. Frontiers in Chemistry, 2020, 8, 443.	1.8	16
64	PI3K inhibitors: review and new strategies. Chemical Science, 2020, 11, 5855-5865.	3.7	106
65	PlayMolecule CrypticScout: Predicting Protein Cryptic Sites Using Mixed-Solvent Molecular Simulations. Journal of Chemical Information and Modeling, 2020, 60, 2314-2324.	2.5	15
66	Investigating Cryptic Binding Sites by Molecular Dynamics Simulations. Accounts of Chemical Research, 2020, 53, 654-661.	7.6	106
67	Druggability Assessment in TRAPP Using Machine Learning Approaches. Journal of Chemical Information and Modeling, 2020, 60, 1685-1699.	2.5	29
68	Exploring the computational methods for protein-ligand binding site prediction. Computational and Structural Biotechnology Journal, 2020, 18, 417-426.	1.9	112
69	Computational Insight into the Binding Profile of the Second-Generation PET Tracer Pl2620 with Tau Fibrils. ACS Chemical Neuroscience, 2020, 11, 900-908.	1.7	29
70	Protein-protein interactions: a structural view of inhibition strategies and the IL-23/IL-17 axis. Advances in Protein Chemistry and Structural Biology, 2020, 121, 253-303.	1.0	4
72	AlphaSpace 2.0: Representing Concave Biomolecular Surfaces Using \hat{l}^2 -Clusters. Journal of Chemical Information and Modeling, 2020, 60, 1494-1508.	2.5	7
73	Network topology of LMWG cross-linked xyloglucan hydrogels for embedding hydrophobic nanodroplets: mechanistic insight and molecular dynamics. Drug Delivery and Translational Research, 2020, 10, 1076-1084.	3.0	2
74	Structural dynamics and allostery of Rab proteins: strategies for drug discovery and design. Briefings in Bioinformatics, 2021, 22, 270-287.	3.2	9
75	Predicting cryptic ligand binding sites based on normal modes guided conformational sampling. Proteins: Structure, Function and Bioinformatics, 2021, 89, 416-426.	1.5	18
76	Functional and druggability analysis of the SARS-CoV-2 proteome. European Journal of Pharmacology, 2021, 890, 173705.	1.7	34
77	Druggable Transient Pockets in Protein Kinases. Molecules, 2021, 26, 651.	1.7	18
78	SSnet: A Deep Learning Approach for Protein-Ligand Interaction Prediction. International Journal of Molecular Sciences, 2021, 22, 1392.	1.8	29
79	DeepSurf: a surface-based deep learning approach for the prediction of ligand binding sites on proteins. Bioinformatics, 2021, 37, 1681-1690.	1.8	66

#	Article	IF	CITATIONS
80	Molecular Docking for Natural Product Investigations: Pitfalls and Ways to Overcome Them. , 2021, , 391-405.		0
81	Identification of Cryptic Binding Sites Using MixMD with Standard and Accelerated Molecular Dynamics. Journal of Chemical Information and Modeling, 2021, 61, 1287-1299.	2.5	31
83	Small Glycols Discover Cryptic Pockets on Proteins for Fragment-Based Approaches. Journal of Chemical Information and Modeling, 2021, 61, 1322-1333.	2.5	3
84	Cryptic-site binding mechanism of medium-sized Bcl-xL inhibiting compounds elucidated by McMD-based dynamic docking simulations. Scientific Reports, 2021, 11, 5046.	1.6	11
85	Chemical validation of a druggable site on Hsp27/HSPB1 using in silico solvent mapping and biophysical methods. Bioorganic and Medicinal Chemistry, 2021, 34, 115990.	1.4	1
87	Predicting lipid and ligand binding sites in TRPV1 channel by molecular dynamics simulation and machine learning. Proteins: Structure, Function and Bioinformatics, 2021, 89, 966-977.	1.5	1
90	Rational design of allosteric modulators: Challenges and successes. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1529.	6.2	39
91	Structure-based virtual screening of CYP1A1 inhibitors: towards rapid tier-one assessment of potential developmental toxicants. Archives of Toxicology, 2021, 95, 3031-3048.	1.9	4
92	Finding Druggable Sites in Proteins Using TACTICS. Journal of Chemical Information and Modeling, 2021, 61, 2897-2910.	2.5	13
93	Cryptic Sites in Tau Fibrils Explain the Preferential Binding of the AV-1451 PET Tracer toward Alzheimer's Tauopathy. ACS Chemical Neuroscience, 2021, 12, 2437-2447.	1.7	24
94	Conformational and Structural characterization of carbohydrates and their interactions studied by NMR. Current Medicinal Chemistry, 2021, 28, .	1.2	2
95	Molecular Insights of Nickel Binding to Therapeutic Antibodies as a Possible New Antibody Superantigen. Frontiers in Immunology, 2021, 12, 676048.	2.2	13
96	Comprehensive virtual screening of 4.8Âk flavonoids reveals novel insights into allosteric inhibition of SARS-CoV-2 MPRO. Scientific Reports, 2021, 11, 15452.	1.6	36
97	Exploring the conformational space of a receptor for drug design: An ERα case study. Journal of Molecular Graphics and Modelling, 2021, 108, 107974.	1.3	2
98	Translational researchâ€"from basic science to an approved therapeuticâ€"an overview. , 2021, , 663-681.		1
99	Advances in the Computational Identification of Allosteric Sites and Pathways in Proteins. Advances in Experimental Medicine and Biology, 2019, 1163, 141-169.	0.8	14
104	Advances in methods for atomic resolution macromolecular structure determination. F1000Research, 2020, 9, 667.	0.8	22
105	Unveiling a novel transient druggable pocket in BACE-1 through molecular simulations: Conformational analysis and binding mode of multisite inhibitors. PLoS ONE, 2017, 12, e0177683.	1.1	17

#	ARTICLE	IF	CITATIONS
106	Artificial intelligence in the prediction of protein–ligand interactions: recent advances and future directions. Briefings in Bioinformatics, 2022, 23, .	3.2	78
111	Cosolvent and Dynamic Effects in Binding Pocket Search by Docking Simulations. Journal of Chemical Information and Modeling, 2021, 61, 5508-5523.	2.5	3
113	Opening of a cryptic pocket in \hat{l}^2 -lactamase increases penicillinase activity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	17
114	Big data and artificial intelligence (AI) methodologies for computer-aided drug design (CADD). Biochemical Society Transactions, 2022, 50, 241-252.	1.6	28
115	Pore formation by pore forming membrane proteins towards infections. Advances in Protein Chemistry and Structural Biology, 2022, 128, 79-111.	1.0	1
116	What Features of Ligands Are Relevant to the Opening of Cryptic Pockets in Drug Targets?. Informatics, 2022, 9, 8.	2.4	2
117	Small-molecule modulators of TRMT2A decrease PolyQ aggregation and PolyQ-induced cell death. Computational and Structural Biotechnology Journal, 2022, 20, 443-458.	1.9	11
118	Explaining and Predicting Allostery with Allosteric Database and Modern Analytical Techniques. Journal of Molecular Biology, 2022, 434, 167481.	2.0	10
119	Accelerated Ligand-Mapping Molecular Dynamics Simulations for the Detection of Recalcitrant Cryptic Pockets and Occluded Binding Sites. Journal of Chemical Theory and Computation, 2022, 18, 1969-1981.	2.3	4
120	Coarse-graining protein structures into their dynamic communities with DCI, a dynamic community identifier. Bioinformatics, 2022, 38, 2727-2733.	1.8	2
121	Glycosylation is key for enhancing drug recognition into spike glycoprotein of SARS-CoV-2. Computational Biology and Chemistry, 2022, 98, 107668.	1.1	0
122	Hidden allosteric sites and De-Novo drug design. Expert Opinion on Drug Discovery, 2022, 17, 283-295.	2.5	13
123	FTMove: A Web Server for Detection and Analysis of Cryptic and Allosteric Binding Sites by Mapping Multiple Protein Structures. Journal of Molecular Biology, 2022, 434, 167587.	2.0	12
128	A cryptic pocket in Ebola VP35 allosterically controls RNA binding. Nature Communications, 2022, 13, 2269.	5.8	19
130	Mapping the binding sites of challenging drug targets. Current Opinion in Structural Biology, 2022, 75, 102396.	2.6	8
133	Allosteric Hotspots in the Main Protease of SARS-CoV-2. Journal of Molecular Biology, 2022, 434, 167748.	2.0	10
135	FPocketWeb: protein pocket hunting in a web browser. Journal of Cheminformatics, 2022, 14, .	2.8	6
136	Structure- and Dynamics-guided Drug Development Using NMR and its Application to Diverse Pharmaceutical Modalities. New Developments in NMR, 2022, , 411-448.	0.1	0

#	Article	IF	CITATIONS
137	Applications of machine learning in computer-aided drug discovery, QRB Discovery, 2022, 3, .	0.6	5
146	Towards design of drugs and delivery systems with the Martini coarse-grained model. QRB Discovery, 2022, 3, .	0.6	8
147	AHoJ: rapid, tailored search and retrieval of apo and holo protein structures for user-defined ligands. Bioinformatics, 0, , .	1.8	1
153	Data-driven analysis and druggability assessment methods to accelerate the identification of novel cancer targets. Computational and Structural Biotechnology Journal, 2023, 21, 46-57.	1.9	0
154	Room-temperature serial synchrotron crystallography of the human phosphatase PTP1B. Acta Crystallographica Section F, Structural Biology Communications, 2023, 79, 23-30.	0.4	7
155	Computer simulation of molecular recognition in biomolecular system: from in silico screening to generalized ensembles. Biophysical Reviews, 2022, 14, 1423-1447.	1.5	9
156	Comprehensive Survey of Consensus Docking for High-Throughput Virtual Screening. Molecules, 2023, 28, 175.	1.7	15
157	A Guide to In Silico Drug Design. Pharmaceutics, 2023, 15, 49.	2.0	22
158	Drug specificity and affinity are encoded in the probability of cryptic pocket opening in myosin motor domains. ELife, $0,12,.$	2.8	16
159	Identification of a new class of proteasome inhibitors based on a naphtyl-azotricyclic-urea-phenyl scaffold. RSC Medicinal Chemistry, 0, , .	1.7	0
160	Development of Novel siRNA Therapeutics: A Review with a Focus on Inclisiran for the Treatment of Hypercholesterolemia. International Journal of Molecular Sciences, 2023, 24, 4019.	1.8	11
161	Predicting locations of cryptic pockets from single protein structures using the PocketMiner graph neural network. Nature Communications, 2023, 14, .	5.8	27
162	Predicting allosteric sites using fast conformational sampling as guided by coarse-grained normal modes. Journal of Chemical Physics, 2023, 158, 124127.	1.2	0
163	Mutual induced-fit mechanism drives binding between intrinsically disordered Bim and cryptic binding site of Bcl-xL. Communications Biology, 2023, 6, .	2.0	4
164	Structure-based Design for Medicinal Chemists. , 2023, , 137-187.		0
185	Cryptic binding site prediction with protein language models. , 2023, , .		0