Transcriptome profiling of Kentucky bluegrass (Poa pra salt stress

BMC Genomics 17, 48 DOI: 10.1186/s12864-016-2379-x

Citation Report

#	Article	IF	CITATIONS
1	RNAseq analysis reveals pathways and candidate genes associated with salinity tolerance in a spaceflight-induced wheat mutant. Scientific Reports, 2017, 7, 2731.	3.3	63
2	Selection of Candidate Reference Genes for Gene Expression Analysis in Kentucky Bluegrass (Poa) Tj ETQq1	1 0.784314 rg	BT40verlock
3	Comparative transcriptomics with self-organizing map reveals cryptic photosynthetic differences between two accessions of North American Lake cress. Scientific Reports, 2018, 8, 3302.	3.3	19
4	Gene expression differs in codominant prairie grasses under drought. Molecular Ecology Resources, 2018, 18, 334-346.	4.8	6
6	Transcriptome analysis of salt-responsive genes and SSR marker exploration in Carex rigescens using RNA-seq. Journal of Integrative Agriculture, 2018, 17, 184-196.	3.5	8
7	Genomics Assisted Approaches for Improving Abiotic Stress Tolerance in Forage Grasses. Sustainable Development and Biodiversity, 2019, , 91-103.	1.7	0
8	Advances in Understanding the Physiological and Molecular Responses of Sugar Beet to Salt Stress. Frontiers in Plant Science, 2019, 10, 1431.	3.6	59
9	Biosynthesis and Signal Transduction of ABA, JA, and BRs in Response to Drought Stress of Kentucky Bluegrass. International Journal of Molecular Sciences, 2019, 20, 1289.	4.1	59
10	Understanding salt tolerance mechanism using transcriptome profiling and de novo assembly of wild tomato Solanum chilense. Scientific Reports, 2020, 10, 15835.	3.3	35
11	Identification and Expression Analysis of the <i>SWEET</i> Gene Family from <i>Poa pratensis</i> Under Abiotic Stresses. DNA and Cell Biology, 2020, 39, 1606-1620.	1.9	16
12	Response to salt stress imposed on cultivars of three turfgrass species: <i>Poa pratensis</i> , <i>Lolium perenne</i> , and <i>Puccinellia distans</i> . Crop Science, 2020, 60, 1648-1659.	1.8	5
13	Biological mechanisms of cadmium accumulation in edible Amaranth (Amaranthus mangostanus L.) cultivars promoted by salinity: A transcriptome analysis. Environmental Pollution, 2020, 262, 114304.	7.5	20
14	Transcriptomic Profiling of Pomegranate Provides Insights into Salt Tolerance. Agronomy, 2020, 10, 44.	3.0	9
15	Antioxidant enzyme activity and microRNA are associated with growth of Poa pratensis callus under salt stress. Plant Biotechnology Reports, 2020, 14, 429-438.	1.5	9
16	Mechanisms of Environmental Stress Tolerance in Turfgrass. Agronomy, 2020, 10, 522.	3.0	29
17	Gene expression differences for drought stress response in three cool-season turfgrasses. Itsrj, 0, , .	0.3	1
18	Transcriptome analysis of salt stress responsiveness in the seedlings of wild and cultivated Ricinus communis L. Journal of Biotechnology, 2021, 327, 106-116.	3.8	17
19	Transcriptomics and metabolomics reveal the induction of flavonoid biosynthesis pathway in the interaction of Stylosanthes-Colletotrichum gloeosporioides. Genomics, 2021, 113, 2702-2716.	2.9	23

#	Article	IF	CITATIONS
20	Nitrogen assimilation and gene regulation of two Kentucky bluegrass cultivars differing in response to nitrate supply. Scientia Horticulturae, 2021, 288, 110315.	3.6	7
21	The Full-Length Transcriptome of Spartina alterniflora Reveals the Complexity of High Salt Tolerance in Monocotyledonous Halophyte. Plant and Cell Physiology, 2020, 61, 882-896.	3.1	25
23	Transcriptomic characterization of candidate genes responsive to salt tolerance of <i>Miscanthus</i> energy crops. GCB Bioenergy, 2017, 9, 1222-1237.	5.6	13
24	Transcriptome analysis of creeping bentgrass exposed to drought stress and polyamine treatment. PLoS ONE, 2017, 12, e0175848.	2.5	22
25	Transcriptome and Metabolome Analyses Reveal Potential Salt Tolerance Mechanisms Contributing to Maintenance of Water Balance by the Halophytic Grass Puccinellia nuttalliana. Frontiers in Plant Science, 2021, 12, 760863.	3.6	11
26	Transcriptome Analysis Revealed a Positive Role of Ethephon on Chlorophyll Metabolism of Zoysia japonica under Cold Stress. Plants, 2022, 11, 442.	3.5	7
27	De novo assembly provides new insights into the evolution of Elaeagnus angustifolia L Plant Methods, 2022, 18, .	4.3	3
28	Transcriptome Analysis Reveals Molecular Mechanisms under Salt Stress in Leaves of Foxtail Millet (Setaria italica L.). Plants, 2022, 11, 1864.	3.5	6
29	Integrated metabolome, transcriptome analysis, and multi-flux full-length sequencing offer novel insights into the function of lignin biosynthesis as a Sesuvium portulacastrum response to salt stress. International Journal of Biological Macromolecules, 2023, 237, 124222.	7.5	4
30	Improving abiotic stress tolerance of forage grasses – prospects of using genome editing. Frontiers in Plant Science, 0, 14, .	3.6	7
31	Transcriptome Analysis of the Salt-Treated Actinidia deliciosa (A. Chev.) C. F. Liang and A. R. Ferguson Plantlets. Current Issues in Molecular Biology, 2023, 45, 3772-3786.	2.4	1
32	Mining of long non-coding RNAs with target genes in response to rust based on full-length transcriptome in Kentucky bluegrass. Frontiers in Plant Science, 0, 14, .	3.6	3
33	Transcriptomic profiling of Poa pratensis L. under treatment of various phytohormones. Scientific Data, 2024, 11, .	5.3	0

CITATION REPORT