A submarine landslide source for the devastating 1964 C

Earth and Planetary Science Letters 438, 112-121 DOI: 10.1016/j.epsl.2016.01.008

Citation Report

#	Article	IF	CITATIONS
1	Postglacial mass movements and depositional environments in a high-latitude fjord system – Hardangerfjorden, Western Norway. Marine Geology, 2016, 379, 157-175.	2.1	32
2	The influence of overpressure and focused fluid flow on subaquatic slope stability in a formerly glaciated basin: Lake Villarrica (South-Central Chile). Marine Geology, 2017, 383, 35-54.	2.1	20
3	Recent paleoseismicity record in Prince William Sound, Alaska, USA. Geo-Marine Letters, 2017, 37, 527-536.	1.1	5
4	Submarine landslide and tsunami hazards offshore southern Alaska: Seismic strengthening versus rapid sedimentation. Geophysical Research Letters, 2017, 44, 8435-8442.	4.0	20
5	The relationship between ice sheets and submarine mass movements in the Nordic Seas during the Quaternary. Earth-Science Reviews, 2018, 178, 208-256.	9.1	15
6	True Volumes of Slope Failure Estimated From a Quaternary Massâ€Transport Deposit in the Northern South China Sea. Geophysical Research Letters, 2018, 45, 2642-2651.	4.0	33
7	Varve formation during the past three centuries in three large proglacial lakes in south-central Alaska. Bulletin of the Geological Society of America, 2018, 130, 757-774.	3.3	22
8	Submarine Deposition of a Subaerial Landslide in Taan Fiord, Alaska. Journal of Geophysical Research F: Earth Surface, 2018, 123, 2443-2463.	2.8	29
9	Remobilized Cordón Caulle 2011 tephra deposits in north-Patagonian watersheds: Resedimentation at deltaic environments and its implications. Geomorphology, 2019, 341, 140-152.	2.6	9
10	Tsunamigenic Splay Faults Imply a Longâ€Term Asperity in Southern Prince William Sound, Alaska. Geophysical Research Letters, 2019, 46, 3764-3772.	4.0	5
11	Holocene mass movements in west and mid-Norwegian fjords and lakes. Marine Geology, 2019, 407, 192-212.	2.1	24
12	Practical approaches to maximizing the resolution of sparker seismic reflection data. Marine Geophysical Researches, 2019, 40, 279-301.	1.2	16
13	Assessment of the high-resolution paleoseismicity record from sediment gravity flows in Prince William Sound, Alaska. Marine Geology, 2019, 408, 110-122.	2.1	0
14	Tsunamigenic potential of an incipient submarine slope failure in the northern South China Sea. Marine and Petroleum Geology, 2020, 112, 104111.	3.3	15
15	Palaeotsunamis in the Sino-Pacific region. Earth-Science Reviews, 2020, 210, 103352.	9.1	21
16	Submarine Landslide Kinematics Derived From Highâ€Resolution Imaging in Port Valdez, Alaska. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018007.	3.4	0
17	The Santa Cruz Basin Submarine Landslide Complex, Southern California: Repeated Failure of Uplifted Basin Sediment. , 2019, , 117-134.		2
18	Submarine Landslide Susceptibility Mapping in Recently Deglaciated Terrain, Glacier Bay, Alaska. Frontiers in Earth Science, 2022, 10, .	1.8	4

#	Article	IF	CITATIONS
19	Seismic geomorphology of the Chandeleur submarine landslide in the northern Gulf of Mexico. Geological Society Special Publication, 2024, 525, .	1.3	2
20	å¨ç∮åĩæš–å¦,ä¼²•å¼²±å"œµ·åº•稳定性?. Diqiu Kexue - Zhongguo Dizhi Daxue Xuebao/Earth Science - Jour Geosciences, 2022, 47, 3794.	nal of Chi	ną Universit
21	Sediment redistribution processes in Baffin Island fjords. Marine Geology, 2023, 458, 107024.	2.1	1
22	Morphological and seismostratigraphic evidence of Quaternary mass transport deposits in the North Ionian Sea: the Taranto landslide complex (TLC). Frontiers in Earth Science, 0, 11, .	1.8	0
23	New evidence for the 1000-year-old tsunami in the South China Sea. Journal of Asian Earth Sciences, 2023, 257, 105839.	2.3	0
24	How does Global Warming Influence Seafloor Stability?. Journal of Earth Science (Wuhan, China), 2023, 34, 1624-1625.	3.2	1