Towards dial-a-molecule by integrating continuous flow

Chemical Society Reviews 45, 2032-2043 DOI: 10.1039/c5cs00793c

Citation Report

#	Article	IF	CITATIONS
1	Soluble polymer supports for homogeneous catalysis in flow reactions. Pure and Applied Chemistry, 2016, 88, 953-960.	0.9	5
2	Engineering chemistry: integrating batch and flow reactions on a single, automated reactor platform. Reaction Chemistry and Engineering, 2016, 1, 629-635.	1.9	50
3	Customisable 3D printed microfluidics for integrated analysis and optimisation. Lab on A Chip, 2016, 16, 3362-3373.	3.1	61
4	Enantioselective reaction monitoring utilizing two-dimensional heart-cut liquid chromatography on an integrated microfluidic chip. Lab on A Chip, 2016, 16, 4648-4652.	3.1	40
5	Optimizing the Heck–Matsuda Reaction in Flow with a Constraint-Adapted Direct Search Algorithm. Organic Process Research and Development, 2016, 20, 1979-1987.	1.3	67
6	A benchtop NMR spectrometer as a tool for monitoring mesoscale continuous-flow organic synthesis: equipment interface and assessment in four organic transformations. RSC Advances, 2016, 6, 101171-101177.	1.7	17
7	Advanced reactor engineering with 3D printing for the continuous-flow synthesis of silver nanoparticles. Reaction Chemistry and Engineering, 2017, 2, 129-136.	1.9	56
8	Continuous Flow ¹ H and ¹³ C NMR Spectroscopy in Microfluidic Stripline NMR Chips. Analytical Chemistry, 2017, 89, 2296-2303.	3.2	34
9	Hierarchy of Pyrophosphate-Functionalized Uranyl Peroxide Nanocluster Synthesis. Inorganic Chemistry, 2017, 56, 5478-5487.	1.9	22
10	Mass spectrometric directed system for the continuous-flow synthesis and purification of diphenhydramine. Chemical Science, 2017, 8, 4363-4370.	3.7	30
11	On-chip integration of organic synthesis and HPLC/MS analysis for monitoring stereoselective transformations at the micro-scale. Lab on A Chip, 2017, 17, 76-81.	3.1	45
12	From Ligand to Phosphor: Rapid, Machineâ€Assisted Synthesis of Substituted Iridium(III) Pyrazolate Complexes with Tuneable Luminescence. Chemistry - A European Journal, 2017, 23, 9407-9418.	1.7	23
13	An autonomous organic reaction search engine for chemical reactivity. Nature Communications, 2017, 8, 15733.	5.8	66
14	The Hitchhiker's Guide to Flow Chemistry. Chemical Reviews, 2017, 117, 11796-11893.	23.0	1,410
15	Design and Scaling Up of Microchemical Systems: A Review. Annual Review of Chemical and Biomolecular Engineering, 2017, 8, 285-305.	3.3	208
16	Integrated flow processing — challenges in continuous multistep synthesis. Journal of Flow Chemistry, 2017, 7, 129-136.	1.2	27
17	A personal perspective on the future of flow photochemistry. Journal of Flow Chemistry, 2017, 7, 87-93.	1.2	85
18	Integration of Bromine and Cyanogen Bromide Generators for the Continuousâ€Flow Synthesis of Cyclic Guanidines. Angewandte Chemie, 2017, 129, 13974-13977.	1.6	7

#	Article	IF	CITATIONS
19	Integration of Bromine and Cyanogen Bromide Generators for the Continuousâ€Flow Synthesis of Cyclic Guanidines. Angewandte Chemie - International Edition, 2017, 56, 13786-13789.	7.2	43
20	Metal-Free [2 + 2]-Photocycloaddition of (<i>Z</i>)-4-Aryliden-5(4 <i>H</i>)-Oxazolones as Straightforward Synthesis of 1,3-Diaminotruxillic Acid Precursors: Synthetic Scope and Mechanistic Studies. ACS Sustainable Chemistry and Engineering, 2017, 5, 8370-8381.	3.2	20
21	From dynamic self-assembly to networked chemical systems. Chemical Society Reviews, 2017, 46, 5647-5678.	18.7	241
22	Microflow extraction: A review of recent development. Chemical Engineering Science, 2017, 169, 18-33.	1.9	175
23	Process analytical tools for flow analysis: A perspective. Journal of Flow Chemistry, 2017, 7, 82-86.	1.2	42
24	Flow chemistry in space–a unique opportunity to perform extraterrestrial research. Journal of Flow Chemistry, 2017, 7, 151-156.	1.2	11
25	3D printed fluidics with embedded analytic functionality for automated reaction optimisation. Beilstein Journal of Organic Chemistry, 2017, 13, 111-119.	1.3	37
26	Biomimetic molecular design tools that learn, evolve, and adapt. Beilstein Journal of Organic Chemistry, 2017, 13, 1288-1302.	1.3	6
27	NMR reaction monitoring in flow synthesis. Beilstein Journal of Organic Chemistry, 2017, 13, 285-300.	1.3	66
28	Self-optimisation and model-based design of experiments for developing a C–H activation flow process. Beilstein Journal of Organic Chemistry, 2017, 13, 150-163.	1.3	70
29	The Molecular Industrial Revolution: Automated Synthesis of Small Molecules. Angewandte Chemie - International Edition, 2018, 57, 4192-4214.	7.2	150
30	Enhanced process development using automated continuous reactors by self-optimisation algorithms and statistical empirical modelling. Tetrahedron, 2018, 74, 3158-3164.	1.0	34
31	Shining a light on the photo-sensitisation of organic–inorganic hybrid polyoxometalates. Dalton Transactions, 2018, 47, 5120-5136.	1.6	66
32	Optimum catalyst selection over continuous and discrete process variables with a single droplet microfluidic reaction platform. Reaction Chemistry and Engineering, 2018, 3, 301-311.	1.9	69
33	The Green ChemisTREE: 20 years after taking root with the 12 principles. Green Chemistry, 2018, 20, 1929-1961.	4.6	499
34	Quality-In(Process)Line (QuIProLi) process intensification for a micro-flow UV-photo synthesis enabled by online UHPLC analysis. Tetrahedron, 2018, 74, 3143-3151.	1.0	13
35	Engineering chemistry for the future of chemical synthesis. Tetrahedron, 2018, 74, 3087-3100.	1.0	62
36	A novel micro-flow system under microwave irradiation for continuous synthesis of 1,4-dihydropyridines in the absence of solvents via Hantzsch reaction. Chemical Engineering Journal, 2018. 331. 161-168.	6.6	39

CITATION REPORT

DT
RT
ļ

#	Article	IF	CITATIONS
37	Batch–flow hybrid synthesis of the antipsychotic clozapine. Reaction Chemistry and Engineering, 2018, 3, 17-24.	1.9	17
38	Real-Time Spectroscopic Analysis Enabling Quantitative and Safe Consumption of Fluoroform during Nucleophilic Trifluoromethylation in Flow. ACS Sustainable Chemistry and Engineering, 2018, 6, 1489-1495.	3.2	48
39	Die molekulare industrielle Revolution: zur automatisierten Synthese organischer Verbindungen. Angewandte Chemie, 2018, 130, 4266-4288.	1.6	21
40	Digitalisation of Development and Supply Networks: Sequential and Platform-Driven Innovations. SSRN Electronic Journal, 0, , .	0.4	2
41	Acrossâ€theâ€World Automated Optimization and Continuousâ€Flow Synthesis of Pharmaceutical Agents Operating Through a Cloudâ€Based Server. Angewandte Chemie - International Edition, 2018, 57, 15128-15132.	7.2	70
42	Acrossâ€theâ€World Automated Optimization and Continuousâ€Flow Synthesis of Pharmaceutical Agents Operating Through a Cloudâ€Based Server. Angewandte Chemie, 2018, 130, 15348-15352.	1.6	13
43	An Autonomous Self-Optimizing Flow Reactor for the Synthesis of Natural Product Carpanone. Journal of Organic Chemistry, 2018, 83, 14286-14299.	1.7	86
44	Reconfigurable system for automated optimization of diverse chemical reactions. Science, 2018, 361, 1220-1225.	6.0	339
45	A continuous flow-batch hybrid reactor for commodity chemical synthesis enabled by inline NMR and temperature monitoring. Tetrahedron, 2018, 74, 5503-5509.	1.0	12
46	Machine learning meets continuous flow chemistry: Automated optimization towards the Pareto front of multiple objectives. Chemical Engineering Journal, 2018, 352, 277-282.	6.6	221
47	Integrating continuous flow synthesis with in-line analysis and data generation. Organic and Biomolecular Chemistry, 2018, 16, 5946-5954.	1.5	34
48	Controlling an organic synthesis robot with machine learning to search for new reactivity. Nature, 2018, 559, 377-381.	13.7	462
49	The Evolving State of Continuous Processing in Pharmaceutical API Manufacturing: A Survey of Pharmaceutical Companies and Contract Manufacturing Organizations. Organic Process Research and Development, 2018, 22, 1143-1166.	1.3	72
50	OpenFlowChem – a platform for quick, robust and flexible automation and self-optimisation of flow chemistry. Reaction Chemistry and Engineering, 2018, 3, 769-780.	1.9	56
51	Design and construction of an open source-based photometer and its applications in flow chemistry. Reaction Chemistry and Engineering, 2018, 3, 478-486.	1.9	14
52	Flow reactors integrated with in-line monitoring using benchtop NMR spectroscopy. Reaction Chemistry and Engineering, 2018, 3, 399-413.	1.9	82
53	Coupling Continuous Flow Microreactors to MicroNIR Spectroscopy: Ultracompact Device for Facile In-Line Reaction Monitoring. Organic Process Research and Development, 2018, 22, 780-788.	1.3	18
54	Algorithms for the self-optimisation of chemical reactions. Reaction Chemistry and Engineering, 2019, 4, 1545-1554.	1.9	92

#	Article	IF	CITATIONS
55	Continuous-flow crystallisation in 3D-printed compact devices. Reaction Chemistry and Engineering, 2019, 4, 1682-1688.	1.9	12
56	Virtual Reaction Condition Optimization based on Machine Learning for a Small Number of Experiments in High-dimensional Continuous and Discrete Variables. Chemistry Letters, 2019, 48, 961-964.	0.7	7
57	Memory of Chirality in Flow Electrochemistry: Fast Optimisation with DoE and Online 2Dâ€HPLC. Chemistry - A European Journal, 2019, 25, 16230-16235.	1.7	34
58	Reconfigurable Flow Platform for Automated Reagent Screening and Autonomous Optimization for Bioinspired Lignans Synthesis. Journal of Organic Chemistry, 2019, 84, 14101-14112.	1.7	26
59	Counting bubbles: precision process control of gas–liquid reactions in flow with an optical inline sensor. Reaction Chemistry and Engineering, 2019, 4, 112-121.	1.9	13
60	An autonomous microreactor platform for the rapid identification of kinetic models. Reaction Chemistry and Engineering, 2019, 4, 1623-1636.	1.9	49
61	Intuition-Enabled Machine Learning Beats the Competition When Joint Human-Robot Teams Perform Inorganic Chemical Experiments. Journal of Chemical Information and Modeling, 2019, 59, 2664-2671.	2.5	25
62	Automated platforms for reaction self-optimization in flow. Reaction Chemistry and Engineering, 2019, 4, 1536-1544.	1.9	101
63	An autonomous self-optimizing flow machine for the synthesis of pyridine–oxazoline (PyOX) ligands. Reaction Chemistry and Engineering, 2019, 4, 1608-1615.	1.9	19
64	Inline Reaction Monitoring of Amine-Catalyzed Acetylation of Benzyl Alcohol Using a Microfluidic Stripline Nuclear Magnetic Resonance Setup. Journal of the American Chemical Society, 2019, 141, 5369-5380.	6.6	28
65	Laboratory of the future: a modular flow platform with multiple integrated PAT tools for multistep reactions. Reaction Chemistry and Engineering, 2019, 4, 1571-1578.	1.9	90
66	Experimental Methods in Chemical Engineering: Nuclear Magnetic Resonance. Canadian Journal of Chemical Engineering, 2019, 97, 628-635.	0.9	9
67	Divergent Multistep Continuous Synthetic Transformations of Allylic Alcohol Enabled by Catalysts Immobilized in Ionic Liquid Phases ChemSusChem, 2019, 12, 1684-1691.	3.6	6
68	Application of Tubular Meso- and Micro-reactors in Organic Synthesis and Photochemistry – Go With the Flow!. Kemija U Industriji, 2019, 68, 477-485.	0.2	0
69	Computational fluid dynamic enabled design optimisation of miniaturised continuous oscillatory baffled reactors in chemical processing. International Journal of Computational Fluid Dynamics, 2019, 33, 317-331.	0.5	4
70	Hochdurchsatzstrategien zur Entdeckung und Optimierung katalytischer Reaktionen. Angewandte Chemie, 2019, 131, 7254-7267.	1.6	16
71	High Throughput Strategies for the Discovery and Optimization of Catalytic Reactions. Angewandte Chemie - International Edition, 2019, 58, 7180-7191.	7.2	95
72	Formation mechanisms of Caprolactam-tetraalkyl ammonium halide deep eutectic and its hydrate. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 211, 189-194.	2.0	6

	Сітат	CITATION REPORT	
#	Article	IF	CITATIONS
73	Evolving embodied intelligence from materials to machines. Nature Machine Intelligence, 2019, 1, 12-19.	8.3	91
74	Precise Polymer Synthesis by Autonomous Selfâ€Optimizing Flow Reactors. Angewandte Chemie - International Edition, 2019, 58, 3183-3187.	7.2	111
75	Precise Polymer Synthesis by Autonomous Selfâ€Optimizing Flow Reactors. Angewandte Chemie, 2019, 1 3215-3219.	131, 1.6	11
76	Autonomous Discovery in the Chemical Sciences Partâ€l: Progress. Angewandte Chemie - International Edition, 2020, 59, 22858-22893.	7.2	180
77	Autonome Entdeckung in den chemischen Wissenschaften, Teilâ€I: Fortschritt. Angewandte Chemie, 2020, 132, 23054-23091.	1.6	11
78	Rational Design of Continuous Flow Processes for Synthesis of Functional Molecules. , 2020, , 415-433.		1
79	Automated self-optimisation of multi-step reaction and separation processes using machine learning. Chemical Engineering Journal, 2020, 384, 123340.	6.6	97
80	Exploration of flow reaction conditions using machine-learning for enantioselective organocatalyzed Rauhut–Currier and [3+2] annulation sequence. Chemical Communications, 2020, 56 1259-1262.	, 2.2	39
81	A streamlined synthesis of the neurosteroid 3β-methoxypregnenolone assisted by a statistical experimental design and automation. Reaction Chemistry and Engineering, 2020, 5, 300-307.	1.9	5
82	Flow Synthesis of Metal Halide Perovskite Quantum Dots: From Rapid Parameter Space Mapping to Al-Guided Modular Manufacturing. Matter, 2020, 3, 1053-1086.	5.0	45
83	Continuous Flow Upgrading of Selected C ₂ –C ₆ Platform Chemicals Derived from Biomass. Chemical Reviews, 2020, 120, 7219-7347.	23.0	222
84	Highâ€Throughput Approaches for the Discovery of Supramolecular Organic Cages. ChemPlusChem, 2020, 85, 1813-1823.	1.3	17
85	Digitising chemical synthesis in automated and robotic flow. Chemical Science, 2020, 11, 11973-11988.	3.7	26
87	An Autonomous Chemical Robot Discovers the Rules of Inorganic Coordination Chemistry without Prior Knowledge. Angewandte Chemie, 2020, 132, 11352-11357.	1.6	6
88	The Concept of Chemical Generators: On-Site On-Demand Production of Hazardous Reagents in Continuous Flow. Accounts of Chemical Research, 2020, 53, 1330-1341.	7.6	98
89	Disposable cartridge concept for the on-demand synthesis of turbo Grignards, Knochel–Hauser amides, and magnesium alkoxides. Beilstein Journal of Organic Chemistry, 2020, 16, 1343-1356.	1.3	8
90	Self-optimising processes and real-time-optimisation of organic syntheses in a microreactor system using Nelder–Mead and design of experiments. Reaction Chemistry and Engineering, 2020, 5, 1281-129	99. ^{1.9}	27
91	Automated generation of photochemical reaction data by transient flow experiments coupled with online HPLC analysis. Reaction Chemistry and Engineering, 2020, 5, 912-920.	1.9	17

CITATION REPORT

#	Article	IF	CITATIONS
92	Current and Future Roles of Artificial Intelligence in Medicinal Chemistry Synthesis. Journal of Medicinal Chemistry, 2020, 63, 8667-8682.	2.9	118
93	Assessing the impact of deviations in optimized multistep flow synthesis on the scale-up. Reaction Chemistry and Engineering, 2020, 5, 838-848.	1.9	7
94	Emerging trends in flow chemistry enabled by 3D printing: Robust reactors, biocatalysis and electrochemistry. Current Opinion in Green and Sustainable Chemistry, 2020, 25, 100367.	3.2	27
95	The Medicinal Chemistry in the Era of Machines and Automation: Recent Advances in Continuous Flow Technology. Journal of Medicinal Chemistry, 2020, 63, 6624-6647.	2.9	91
96	Toward "Onâ€Ðemand―Materials Synthesis and Scientific Discovery through Intelligent Robots. Advanced Science, 2020, 7, 1901957.	5.6	42
97	Multivariate analysis of inline benchtop NMR data enables rapid optimization of a complex nitration in flow. Reaction Chemistry and Engineering, 2020, 5, 677-684.	1.9	34
98	Kinetics determination of fast exothermic reactions with infrared thermography in a microreactor. Journal of Flow Chemistry, 2020, 10, 219-226.	1.2	20
99	Continuous Flow Organophosphorus Chemistry. European Journal of Organic Chemistry, 2020, 2020, 5236-5277.	1.2	19
100	Rapid, Heterogeneous Biocatalytic Hydrogenation and Deuteration in a Continuous Flow Reactor. ChemCatChem, 2020, 12, 3913-3918.	1.8	15
101	An Autonomous Chemical Robot Discovers the Rules of Inorganic Coordination Chemistry without Prior Knowledge. Angewandte Chemie - International Edition, 2020, 59, 11256-11261.	7.2	46
102	Recent advances in continuous-flow organocatalysis for process intensification. Reaction Chemistry and Engineering, 2020, 5, 1017-1052.	1.9	62
103	Practical and rapid construction of 2-pyridyl ketone library in continuous flow. Journal of Flow Chemistry, 2021, 11, 91-98.	1.2	4
104	Direct Câ^'H Arylation of Indoleâ€3â€Acetic Acid Derivatives Enabled by an Autonomous Selfâ€Optimizing Flow Reactor. Advanced Synthesis and Catalysis, 2021, 363, 791-799.	2.1	14
105	<i>In situ</i> sensors for flow reactors – a review. Reaction Chemistry and Engineering, 2021, 6, 1497-1507.	1.9	17
106	Green Aspects of Flow Chemistry for Drug Discovery. Topics in Medicinal Chemistry, 2021, , 1.	0.4	0
107	Energy-, time-, and labor-saving synthesis of α-ketiminophosphonates: machine-learning-assisted simultaneous multiparameter screening for electrochemical oxidation. Green Chemistry, 2021, 23, 5825-5831.	4.6	18
108	An automated computational approach to kinetic model discrimination and parameter estimation. Reaction Chemistry and Engineering, 2021, 6, 1404-1411.	1.9	16
109	Advanced Realâ€Time Process Analytics for Multistep Synthesis in Continuous Flow**. Angewandte Chemie, 2021, 133, 8220-8229.	1.6	19

#	Article	IF	CITATIONS
110	Advanced Realâ€Time Process Analytics for Multistep Synthesis in Continuous Flow**. Angewandte Chemie - International Edition, 2021, 60, 8139-8148.	7.2	98
112	3D printed ceramics as solid supports for enzyme immobilization: an automated DoE approach for applications in continuous flow. Journal of Flow Chemistry, 2021, 11, 675-689.	1.2	15
113	Sampling and Analysis in Flow: The Keys to Smarter, More Controllable, and Sustainable Fineâ€Chemical Manufacturing. Angewandte Chemie - International Edition, 2021, 60, 20606-20626.	7.2	49
114	Electrosynthetic Screening and Modern Optimization Strategies for Electrosynthesis of Highly Valueâ€added Products. ChemElectroChem, 2021, 8, 2621-2629.	1.7	41
115	Sampling and Analysis in Flow: The Keys to Smarter, More Controllable, and Sustainable Fine hemical Manufacturing. Angewandte Chemie, 2021, 133, 20774-20794.	1.6	14
116	Simultaneous self-optimisation of yield and purity through successive combination of inline FT-IR spectroscopy and online mass spectrometry in flow reactions. Journal of Flow Chemistry, 2021, 11, 285-302.	1.2	9
117	The Longer Route can be Better: Electrosynthesis in Extended Path Flow Cells. Chemical Record, 2021, 21, 2472-2487.	2.9	9
118	Data-science driven autonomous process optimization. Communications Chemistry, 2021, 4, .	2.0	94
119	In-line Monitoring of Microgel Synthesis: Flow versus Batch Reactor. Organic Process Research and Development, 2021, 25, 2039-2051.	1.3	7
120	Towards the Standardization of Flow Chemistry Protocols for Organic Reactions. Chemistry Methods, 2021, 1, 454-467.	1.8	41
121	<scp>Computerâ€Aided</scp> Living Polymerization Conducted under <scp>Continuousâ€Flow</scp> Conditions ^{â€} . Chinese Journal of Chemistry, 2022, 40, 285-296.	2.6	12
123	Highâ€Throughput and Combinatorial Approaches for the Development of Multifunctional Polymers. Macromolecular Rapid Communications, 2022, 43, e2100400.	2.0	13
124	Analytical settings for in-flow biocatalytic reaction monitoring. TrAC - Trends in Analytical Chemistry, 2021, 143, 116348.	5.8	6
125	Enzymatic pretreatment of recycled grease trap waste in batch and continuous-flow reactors for biodiesel production. Chemical Engineering Journal, 2021, 426, 131703.	6.6	9
126	Automated Experimentation Powers Data Science in Chemistry. Accounts of Chemical Research, 2021, 54, 546-555.	7.6	52
127	Enabling technologies in polymer synthesis: accessing a new design space for advanced polymer materials. Reaction Chemistry and Engineering, 2020, 5, 405-423.	1.9	26
128	Process intensification 4.0: A new approach for attaining new, sustainable and circular processes enabled by machine learning. Chemical Engineering and Processing: Process Intensification, 2022, 180, 108671.	1.8	17
129	Natural Product Synthesis: 30 Years Later. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2018, 76, 510-513.	0.0	0

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
130	NMR Microcoils for On-line Reaction Monitoring. RSC Green Chemistry, 2019, , 340-365.	0.0	1
131	USING METHOD OF MACHINE TRAINING AND ARTIFICIAL INTELLIGENCE IN CHEMICAL TECHNOLOGY. PART I. Oil and Gas Business, 2019, , 243.	0.2	0
132	The roles of computer-aided drug synthesis in drug development. Green Synthesis and Catalysis, 2022, 3, 11-24.	3.7	8
133	Remote Synthesis of Layered Double Hydroxide Nanosheets Through the Automatic Chemical Robot. Chemical Research in Chinese Universities, 2022, 38, 217-222.	1.3	5
134	Continuous stirred-tank reactor cascade platform for self-optimization of reactions involving solids. Reaction Chemistry and Engineering, 2022, 7, 1315-1327.	1.9	22
135	Autonomous polymer synthesis delivered by multi-objective closed-loop optimisation. Polymer Chemistry, 2022, 13, 1576-1585.	1.9	32
136	Developing flow photo-thiol–ene functionalizations of cinchona alkaloids with an autonomous self-optimizing flow reactor. Reaction Chemistry and Engineering, 2022, 7, 1346-1357.	1.9	10
137	Using Oxygen as the Primary Oxidant in a Continuous Process: Application to the Development of an Efficient Route to AZD4635. Organic Process Research and Development, 2022, 26, 1048-1053.	1.3	3
138	Complementary catalysis and analysis within solid state additively manufactured metal micro flow reactors. Scientific Reports, 2022, 12, 5121.	1.6	2
139	Self-Optimization of Continuous Flow Electrochemical Synthesis Using Fourier Transform Infrared Spectroscopy and Gas Chromatography. Applied Spectroscopy, 2022, 76, 38-50.	1.2	9
140	Chemical Knowledge via In Situ Analytics: Advancing Quality and Sustainability. ACS Sustainable Chemistry and Engineering, 2022, 10, 5072-5077.	3.2	4
141	Artificial neural networks and data fusion enable concentration predictions for inline process analytics. , 2022, 1, 405-412.		3
143	智èf½é«~通é‡ç,选技æœ⁻åŠé€ŸåŒ»èēå°å^†ååîæ^î Scientia Sinica Chimica, 2022, , .	0.2	1
144	On-the-Fly Mass Spectrometry in Digital Microfluidics Enabled by a Microspray Hole: Toward Multidimensional Reaction Monitoring in Automated Synthesis Platforms. Journal of the American Chemical Society, 2022, 144, 10353-10360.	6.6	16
145	Analytical Tools Integrated in Continuous-Flow Reactors: Which One for What?. Organic Process Research and Development, 2022, 26, 1766-1793.	1.3	23
149	An integrated resource-efficient microfluidic device for parallelised studies of immobilised chiral catalysts in continuous flow <i>via</i> miniaturized LC/MS-analysis. Reaction Chemistry and Engineering, 0, , .	1.9	1
151	Simultaneous determination of enthalpy of mixing and reaction using milli-scale continuous flow calorimetry. Journal of Flow Chemistry, 2022, 12, 389-396.	1.2	3
152	Autonomous model-based experimental design for rapid reaction development. Reaction Chemistry and Engineering, 2022, 7, 2375-2384.	1.9	11

CITATION REPORT

#	Article	IF	CITATIONS
153	Recent Developments in Process Digitalisation for Advanced Nanomaterial Syntheses. Chemistry Methods, 2022, 2, .	1.8	2
154	Bayesian optimization-driven parallel-screening of multiple parameters for the flow synthesis of biaryl compounds. Communications Chemistry, 2022, 5, .	2.0	11
155	Toward autonomous laboratories: Convergence of artificial intelligence and experimental automation. Progress in Materials Science, 2023, 132, 101043.	16.0	19
156	Autonomous continuous flow reactor synthesis for scalable atom-precision. Carbon Trends, 2023, 10, 100234.	1.4	2
157	A semi-automated material exploration scheme to predict the solubilities of tetraphenylporphyrin derivatives. Communications Chemistry, 2022, 5, .	2.0	2
158	Inline purification in continuous flow synthesis – opportunities and challenges. Beilstein Journal of Organic Chemistry, 0, 18, 1720-1740.	1.3	7
159	Fast Isomerization Before Isomerizationâ€Hydroformylation: Probing the Neglected Period with A Novel Microfluidic Device. Angewandte Chemie - International Edition, 2023, 62, .	7.2	4
160	Quid Pro Flow. Journal of the American Chemical Society, 2023, 145, 4355-4365.	6.6	24
161	Metal-free synthesis of an estetrol key intermediate under intensified continuous flow conditions. Reaction Chemistry and Engineering, 2023, 8, 1565-1575.	1.9	3
162	Fast Isomerization Before Isomerizationâ€Hydroformylation: Probing the Neglected Period with A Novel Microfluidic Device. Angewandte Chemie, 2023, 135, .	1.6	0
163	Accelerated Chemical Reaction Optimization Using Multi-Task Learning. ACS Central Science, 2023, 9, 957-968.	5.3	17
164	Kinetic study in an automatic continuousâ€flow photochemical platform with machine learning. AICHE Journal, 2023, 69, .	1.8	0
168	Synthesize in a Smart Way: A Brief Introduction to Intelligence and Automation in Organic Synthesis. Challenges and Advances in Computational Chemistry and Physics, 2023, , 227-275.	0.6	0
175	Autonomous Synthesis and Self-optimizing Reactors. , 2023, , 319-357.		Ο