Biomass resilience of Neotropical secondary forests

Nature 530, 211-214 DOI: 10.1038/nature16512

Citation Report

#	Article	IF	CITATIONS
3	Trade-offs between ecosystem services and alternative pathways toward sustainability in a tropical dry forest region. Ecology and Society, 2016, 21, .	2.3	23
4	Predicting biomass of hyperdiverse and structurally complex central Amazonian forests – a virtual approach using extensive field data. Biogeosciences, 2016, 13, 1553-1570.	3.3	17
5	Hotspots of gross emissions from the land use sector: patterns, uncertainties, and leading emission sources for the period 2000–2005 in the tropics. Biogeosciences, 2016, 13, 4253-4269.	3.3	29
6	Multi-gas and multi-source comparisons of six land use emission datasets and AFOLU estimates in the Fifth Assessment Report, for the tropics for 2000–2005. Biogeosciences, 2016, 13, 5799-5819.	3.3	8
7	Stand structural diversity rather than species diversity enhances aboveground carbon storage in secondary subtropical forests in Eastern China. Biogeosciences, 2016, 13, 4627-4635.	3.3	119
8	Impactos Sociales y Ambientales de la Palma de Aceite: Perspectiva de los Campesinos en Campeche, MÁ©xico. Journal of Latin American Geography, 2016, 15, 123-146.	0.1	9
9	Estimating Aboveground Biomass and Carbon Stocks in Periurban Andean Secondary Forests Using Very High Resolution Imagery. Forests, 2016, 7, 138.	2.1	37
10	Carbon dynamics of mature and regrowth tropical forests derived from a pantropical database (<scp>T</scp> rop <scp>F</scp> or <scp>C</scp> â€db). Global Change Biology, 2016, 22, 1690-1709.	9.5	85
11	Carbon emissions from land cover change in Central Vietnam. Carbon Management, 2016, 7, 333-346.	2.4	16
12	Estimation of aboveground net primary productivity in secondary tropical dry forests using the Carnegie–Ames–Stanford approach (CASA) model. Environmental Research Letters, 2016, 11, 075004.	5.2	44
13	Natural forest regeneration and ecological restoration in humanâ€modified tropical landscapes. Biotropica, 2016, 48, 745-757.	1.6	91
14	Deforestation in Amazonia impacts riverine carbon dynamics. Earth System Dynamics, 2016, 7, 953-968.	7.1	4
15	Recovery trends for multiple ecosystem services reveal non-linear responses and long-term tradeoffs from temperate forest harvesting. Forest Ecology and Management, 2016, 374, 61-70.	3.2	55
16	Carbon sequestration and biodiversity following 18 years of active tropical forest restoration. Forest Ecology and Management, 2016, 373, 44-55.	3.2	88
17	Remotely sensed resilience of tropical forests. Nature Climate Change, 2016, 6, 1028-1031.	18.8	157
18	Emissions from cattle farming in Brazil. Nature Climate Change, 2016, 6, 893-894.	18.8	4
19	Accelerating tropical forest restoration through the selective removal of pioneer species. Forest Ecology and Management, 2016, 381, 209-216.	3.2	61
20	Variation of tropical forest assembly processes across regional environmental gradients. Perspectives in Plant Ecology, Evolution and Systematics, 2016, 23, 52-62.	2.7	32

#	Article	IF	CITATIONS
21	Climate changeâ€associated trends in net biomass change are age dependent in western boreal forests of Canada. Ecology Letters, 2016, 19, 1150-1158.	6.4	89
22	Modelling and projecting the response of local assemblage composition to land use change across Colombia. Diversity and Distributions, 2016, 22, 1099-1111.	4.1	23
23	The drivers of tree cover expansion: Global, temperate, and tropical zone analyses. Land Use Policy, 2016, 58, 502-513.	5.6	48
24	Thermally buffered microhabitats recovery in tropical secondary forests following land abandonment. Biological Conservation, 2016, 201, 385-395.	4.1	42
25	Recovery of floristic diversity and basal area in natural forest regeneration and planted plots in a Costa Rican wet forest. Biotropica, 2016, 48, 798-808.	1.6	58
26	Impacts of climate variability on tree demography in second growth tropical forests: the importance of regional context for predicting successional trajectories. Biotropica, 2016, 48, 780-797.	1.6	50
27	Balancing economic costs and ecological outcomes of passive and active restoration in agricultural landscapes: the case of Brazil. Biotropica, 2016, 48, 856-867.	1.6	121
28	Natural regeneration as a tool for largeâ€scale forest restoration in the tropics: prospects and challenges. Biotropica, 2016, 48, 716-730.	1.6	353
29	Natural regeneration and biodiversity: a global metaâ€analysis and implications for spatial planning. Biotropica, 2016, 48, 844-855.	1.6	55
30	The role of natural regeneration to ecosystem services provision and habitat availability: a case study in the Brazilian Atlantic Forest. Biotropica, 2016, 48, 890-899.	1.6	45
31	Incorporating natural regeneration in forest landscape restoration in tropical regions: synthesis and key research gaps. Biotropica, 2016, 48, 915-924.	1.6	47
32	Tree succession across a seasonally dry tropical forest and forest-savanna ecotone in northern Minas Gerais, Brazil. Journal of Plant Ecology, 0, , rtw091.	2.3	9
33	Forest reference emission level and carbon sequestration in Cambodia. Global Ecology and Conservation, 2016, 7, 82-96.	2.1	20
34	Integrating Li <scp>DAR</scp> â€derived tree height and Landsat satellite reflectance to estimate forest regrowth in a tropical agricultural landscape. Remote Sensing in Ecology and Conservation, 2016, 2, 190-203.	4.3	25
35	Carbon sequestration associated to the land-use and land-cover changes in the forestry sector in Southern Brazil. , 2016, , .		2
36	Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Science Advances, 2016, 2, e1501639.	10.3	423
37	Agricultural land-use diversity and forest regeneration potential in human- modified tropical landscapes. Agriculture, Ecosystems and Environment, 2016, 230, 210-220.	5.3	37
38	Oldâ€growth Neotropical forests are shifting in species and trait composition. Ecological Monographs, 2016, 86, 228-243.	5.4	61

#	Article	IF	CITATIONS
39	Resilience of tropical dry forests – a metaâ€analysis of changes in species diversity and composition during secondary succession. Oikos, 2016, 125, 1386-1397.	2.7	65
40	The Impacts of Droughts in Tropical Forests. Trends in Plant Science, 2016, 21, 584-593.	8.8	161
41	Anthropogenic ecosystem disturbance and the recovery debt. Nature Communications, 2017, 8, 14163.	12.8	213
42	Liana effects on biomass dynamics strengthen during secondary forest succession. Ecology, 2017, 98, 1062-1070.	3.2	31
43	Assessing ecosystem services in Neotropical dry forests: a systematic review. Environmental Conservation, 2017, 44, 34-43.	1.3	30
44	Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed. Nature Geoscience, 2017, 10, 79-84.	12.9	284
45	Tree and bird functional groups as indicators of recovery of regenerating subtropical coastal dune forests. Restoration Ecology, 2017, 25, 788-797.	2.9	13
46	Carbon uptake by mature Amazon forests has mitigated Amazon nations' carbon emissions. Carbon Balance and Management, 2017, 12, 1.	3.2	98
47	Dynamics of avian species and functional diversity in secondary tropical forests. Biological Conservation, 2017, 211, 1-9.	4.1	38
48	Integrating plant richness in forest patches can rescue overall biodiversity in human-modified landscapes. Forest Ecology and Management, 2017, 397, 78-88.	3.2	34
49	Past land-use and ecological resilience in a lowland Brazilian Atlantic Forest: implications for passive restoration. New Forests, 2017, 48, 573-586.	1.7	39
50	Tropical forest restoration: Fast resilience of plant biomass contrasts with slow recovery of stable soil C stocks. Functional Ecology, 2017, 31, 2344-2355.	3.6	39
51	Land-use effects on local biodiversity in tropical forests vary between continents. Biodiversity and Conservation, 2017, 26, 2251-2270.	2.6	75
52	Soil properties and gross nitrogen dynamics in old growth and secondary forest in four types of tropical forest in Thailand. Forest Ecology and Management, 2017, 398, 130-139.	3.2	14
53	Fine litterfall in the Brazilian Atlantic Forest. Biotropica, 2017, 49, 443-451.	1.6	22
54	Beyond hectares: four principles to guide reforestation in the context of tropical forest and landscape restoration. Restoration Ecology, 2017, 25, 491-496.	2.9	101
55	Amazonian forest-savanna bistability and human impact. Nature Communications, 2017, 8, 15519.	12.8	52
56	Fragmentation increases wind disturbance impacts on forest structure and carbon stocks in a western Amazonian landscape. Ecological Applications, 2017, 27, 1901-1915.	3.8	38

#	Article	IF	CITATIONS
57	Forest fragmentation reduced carbon storage in a moist tropical forest in Bangladesh: Implications for policy development. Land Use Policy, 2017, 65, 15-25.	5.6	29
58	Tropical secondary forest regeneration conserves high levels of avian phylogenetic diversity. Biological Conservation, 2017, 209, 432-439.	4.1	43
59	Adapting REDD+ policy to sink conditions. Forest Policy and Economics, 2017, 80, 160-166.	3.4	8
60	Assimilation of repeated woody biomass observations constrains decadal ecosystem carbon cycle uncertainty in aggrading forests. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 528-545.	3.0	41
61	Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nature Communications, 2017, 8, 14681.	12.8	244
62	Soil organic carbon, microbial biomass and enzyme activities responses to natural regeneration in a tropical dry region in Northeast Brazil. Catena, 2017, 151, 137-146.	5.0	54
63	Mapping spatial distribution of forest age in China. Earth and Space Science, 2017, 4, 108-116.	2.6	79
64	Ancient human disturbances may be skewing our understanding of Amazonian forests. Proceedings of the United States of America, 2017, 114, 522-527.	7.1	68
65	Plant communities and ecosystem processes in a succession-altitude matrix after shifting cultivation in the tropical montane forest zone of northern Borneo. Journal of Tropical Ecology, 2017, 33, 33-49.	1.1	8
66	Nutrient limitation in tropical secondary forests following different management practices. Ecological Applications, 2017, 27, 734-755.	3.8	21
67	Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science, 2017, 358, 230-234.	12.6	539
68	Tropical tree species traits drive soil cation dynamics via effects on pH: a proposed conceptual framework. Ecological Monographs, 2017, 87, 685-701.	5.4	18
69	Recovery of woody plant species richness in secondary forests in China: a meta-analysis. Scientific Reports, 2017, 7, 10614.	3.3	9
70	Ecosystem Processes and Biogeochemical Cycles in Secondary Tropical Forest Succession. Annual Review of Ecology, Evolution, and Systematics, 2017, 48, 497-519.	8.3	78
71	Spatial heterogeneity of biomass and forest structure of the Amazon rain forest: Linking remote sensing, forest modelling and field inventory. Global Ecology and Biogeography, 2017, 26, 1292-1302.	5.8	52
72	Land-use dynamics influence estimates of carbon sequestration potential in tropical second-growth forest. Environmental Research Letters, 2017, 12, 074023.	5.2	37
73	An individualâ€based forest model to jointly simulate carbon and tree diversity in Amazonia: description and applications. Ecological Monographs, 2017, 87, 632-664.	5.4	40
74	Nitrogen-fixing trees inhibit growth of regenerating Costa Rican rainforests. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8817-8822.	7.1	52

#	Article	IF	CITATIONS
75	Towards zero deforestation and forest restoration in the Amazon region of Maranhão state, Brazil. Land Use Policy, 2017, 68, 692-698.	5.6	41
76	Landscape Restoration, Natural Regeneration, and the Forests of the Future. Annals of the Missouri Botanical Garden, 2017, 102, 251-257.	1.3	84
77	Research Directions in Tropical Forest Restoration. Annals of the Missouri Botanical Garden, 2017, 102, 237-250.	1.3	51
78	Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Science Advances, 2017, 3, e1701345.	10.3	360
79	Nationally Representative Plot Network Reveals Contrasting Drivers of Net Biomass Change in Secondary and Old-Growth Forests. Ecosystems, 2017, 20, 944-959.	3.4	32
80	Tree size thresholds produce biased estimates of forest biomass dynamics. Forest Ecology and Management, 2017, 400, 468-474.	3.2	32
81	Demographic Drivers of Aboveground Biomass Dynamics During Secondary Succession in Neotropical Dry and Wet Forests. Ecosystems, 2017, 20, 340-353.	3.4	37
82	Individual tree size inequality enhances aboveground biomass in homegarden agroforestry systems in the dry zone of Sri Lanka. Science of the Total Environment, 2017, 575, 6-11.	8.0	40
83	Overlooking what is underground: Root:shoot ratios and coarse root allometric equations for tropical forests. Forest Ecology and Management, 2017, 385, 10-15.	3.2	32
84	Precipitation mediates the effect of human disturbance on the Brazilian Caatinga vegetation. Journal of Ecology, 2017, 105, 828-838.	4.0	158
85	Tree ringâ€based metrics for assessing oldâ€growth forest naturalness. Journal of Applied Ecology, 2017, 54, 737-749.	4.0	49
86	Insights for the Conservation of Native Tree Species Gleaned From the Advance Regeneration Community in a Seasonally Dry Tropical Landscape. Tropical Conservation Science, 2017, 10, 194008291771422.	1.2	5
87	Ancient Amazonian populations left lasting impacts on forest structure. Ecosphere, 2017, 8, e02035.	2.2	36
88	Planes actuales de restauración ecológica en Latinoamérica: Avances y omisiones. Ciencias Ambientales, 2017, 51, 1.	0.3	16
89	Soil Organic Matter Responses to Anthropogenic Forest Disturbance and Land Use Change in the Eastern Brazilian Amazon. Sustainability, 2017, 9, 379.	3.2	51
90	Forest ecosystem-service transitions: the ecological dimensions of the forest transition. Ecology and Society, 2017, 22, .	2.3	70
91	Characteristics of tropical human-modified forests after 20Âyears of natural regeneration. , 2017, 58, 36.		7
92	Tropical Forest Regeneration â ⁻ †. , 2017, , .		1

#	Article	IF	CITATIONS
93	Landscapeâ€scale lidar analysis of aboveground biomass distribution in secondary Brazilian Atlantic Forest. Biotropica, 2018, 50, 520-530.	1.6	20
94	What makes a terrestrial ecosystem resilient?. Science, 2018, 359, 988-989.	12.6	83
95	Nitrogen fixer abundance has no effect on biomass recovery during tropical secondary forest succession. Journal of Ecology, 2018, 106, 1415-1427.	4.0	26
96	Temperature accelerates the rate fields become forests. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4702-4706.	7.1	22
97	Environmental filtering limits functional diversity during succession in a seasonally wet tropical secondary forest. Journal of Vegetation Science, 2018, 29, 511-520.	2.2	38
98	Large uncertainty in carbon uptake potential of landâ€based climateâ€change mitigation efforts. Clobal Change Biology, 2018, 24, 3025-3038.	9.5	56
99	Seeing the woods through the saplings: Using wood density to assess the recovery of humanâ€modified Amazonian forests. Journal of Ecology, 2018, 106, 2190-2203.	4.0	31
100	Long lasting impressions: After decades of regeneration rainforest biodiversity remains differentially affected following selective logging and clearance for agriculture. Global Ecology and Conservation, 2018, 13, e00375.	2.1	6
101	Land use policy as a driver for climate change adaptation: A case in the domain of the Brazilian Atlantic forest. Land Use Policy, 2018, 72, 563-569.	5.6	15
102	Nitrogen cycling during secondary succession in Atlantic Forest of Bahia, Brazil. Scientific Reports, 2018, 8, 1377.	3.3	34
103	Large Ecosystem Service Benefits of Assisted Natural Regeneration. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 676-687.	3.0	48
104	Predicting aboveground forest biomass with topographic variables in humanâ€impacted tropical dry forest landscapes. Ecosphere, 2018, 9, e02063.	2.2	25
105	Wild native trees in tropical homegardens of Southeast Mexico: Fostered by fragmentation, mediated by management. Agriculture, Ecosystems and Environment, 2018, 254, 149-161.	5.3	13
106	Chronosequence predictions are robust in a Neotropical secondary forest, but plots miss the mark. Global Change Biology, 2018, 24, 933-943.	9.5	4
107	Changes in vegetation and soil properties during recovery of a subtropical forest in South China. Journal of Mountain Science, 2018, 15, 46-58.	2.0	13
108	Soil properties and neighbouring forest cover affect aboveâ€ground biomass and functional composition during tropical forest restoration. Applied Vegetation Science, 2018, 21, 179-189.	1.9	19
109	Effective incentives for reforestation: lessons from Australia's carbon farming policies. Current Opinion in Environmental Sustainability, 2018, 32, 38-45.	6.3	51
110	Multi-purpose forest management in the tropics: Incorporating values of carbon, biodiversity and timber in managing Tectona grandis (teak) plantations in Costa Rica. Forest Ecology and Management, 2018, 422, 345-357.	3.2	28

#	Article	IF	CITATIONS
111	Home garden agrobiodiversity in cultural landscapes in the tropical lowlands of Tabasco, México. Agroforestry Systems, 2018, 92, 1329-1339.	2.0	10
112	Carbon Accumulation in Neotropical Dry Secondary Forests: The Roles of Forest Age and Tree Dominance and Diversity. Ecosystems, 2018, 21, 536-550.	3.4	33
113	Ecological outcomes and popular perceptions of urban restored forests in Rio de Janeiro, Brazil. Environmental Conservation, 2018, 45, 155-162.	1.3	4
114	Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems. Biological Reviews, 2018, 93, 439-456.	10.4	137
115	Resilience and vulnerability of herpetofaunal functional groups to natural and human disturbances in a tropical dry forest. Forest Ecology and Management, 2018, 426, 145-157.	3.2	14
116	Lack of evidence of edge age and additive edge effects on carbon stocks in a tropical forest. Forest Ecology and Management, 2018, 407, 57-65.	3.2	17
117	Disentangling competitive vs. climatic drivers of tropical forest mortality. Journal of Ecology, 2018, 106, 1165-1179.	4.0	33
118	Environment and landscape rather than planting design are the drivers of success in longâ€ŧerm restoration of riparian Atlantic forest. Applied Vegetation Science, 2018, 21, 76-84.	1.9	24
119	Negative emissions from stopping deforestation and forest degradation, globally. Global Change Biology, 2018, 24, 350-359.	9.5	119
120	Lowâ€cost agricultural waste accelerates tropical forest regeneration. Restoration Ecology, 2018, 26, 275-283.	2.9	17
121	Canopy height variation and environmental heterogeneity in the tropical dry forests of coastal Oaxaca, Mexico. Biotropica, 2018, 50, 26-38.	1.6	6
122	Mapped aboveground carbon stocks to advance forest conservation and recovery in Malaysian Borneo. Biological Conservation, 2018, 217, 289-310.	4.1	91
123	Response diversity and resilience to extreme events in tropical dry secondary forests. Forest Ecology and Management, 2018, 426, 61-71.	3.2	29
124	Forest transition in developed agricultural regions needs efficient regulatory policy. Forest Policy and Economics, 2018, 86, 67-75.	3.4	17
125	Soil fertility and species traits, but not diversity, drive productivity and biomass stocks in a Guyanese tropical rainforest. Functional Ecology, 2018, 32, 461-474.	3.6	90
126	Biodiversity Observation for Land and Ecosystem Health (BOLEH): A Robust Method to Evaluate the Management Impacts on the Bundle of Carbon and Biodiversity Ecosystem Services in Tropical Production Forests. Sustainability, 2018, 10, 4224.	3.2	12
127	PROGNOSIS OF THE DIAMETER DISTRIBUTION AND CARBON STOCK IN A SECONDARY ATLANTIC FOREST BY MARKOV CHAIN. Revista Arvore, 2018, 42, .	0.5	2
128	Sustained Biomass Carbon Sequestration by China's Forests from 2010 to 2050. Forests, 2018, 9, 689.	2.1	12

<u> </u>			<u> </u>	
(15	ГАТ	ON	REPC	TDT
			NLFC	ואנ

#	Article	IF	CITATIONS
129	Improved tree height estimation of secondary forests in the Brazilian Amazon. Acta Amazonica, 2018, 48, 179-190.	0.7	12
130	Shift in Abundance From Seedling to Juvenile Gives Lianas Advantage Over Trees: A Case Study in the Atlantic Forest Hotspot. Tropical Conservation Science, 2018, 11, 194008291880806.	1.2	3
131	Restoration of ecosystem services in tropical forests: A global meta-analysis. PLoS ONE, 2018, 13, e0208523.	2.5	66
132	Neotropical Forests from their Emergence to the Future Scenario of Climatic Changes. , 0, , .		3
133	Assessing the efficiency of changes in land use for mitigating climate change. Nature, 2018, 564, 249-253.	27.8	333
134	Drought-induced Amazonian wildfires instigate a decadal-scale disruption of forest carbon dynamics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20180043.	4.0	79
135	Canopy structure and topography jointly constrain the microclimate of humanâ€nodified tropical landscapes. Global Change Biology, 2018, 24, 5243-5258.	9.5	158
136	Igap $ ilde{A}^3$ (Black-water flooded forests) of the Amazon Basin. , 2018, , .		5
137	Twenty-Five Years of Restoration of anÂlgap $ ilde{A}^3$ Forest in Central Amazonia, Brazil. , 2018, , 279-294.		3
138	Consequences of a Reduced Number of Plant Functional Types for the Simulation of Forest Productivity. Forests, 2018, 9, 460.	2.1	12
139	A new version of the CABLE land surface model (Subversion revision r4601) incorporating land use and land cover change, woody vegetation demography, and a novel optimisation-based approach to plant coordination of photosynthesis. Geoscientific Model Development, 2018, 11, 2995-3026.	3.6	114
140	Divergent rates of change between tree cover types in a tropical pastoral region. Landscape Ecology, 2018, 33, 2153-2167.	4.2	12
141	Global patterns in wood carbon concentration across the world's trees and forests. Nature Geoscience, 2018, 11, 915-920.	12.9	89
142	Second rate or a second chance? Assessing biomass and biodiversity recovery in regenerating Amazonian forests. Global Change Biology, 2018, 24, 5680-5694.	9.5	107
143	Impacts of REDD+ payments on a coupled human-natural system in Amazonia. Ecosystem Services, 2018, 33, 68-76.	5.4	16
144	Gross changes in forest area shape the future carbon balance of tropical forests. Biogeosciences, 2018, 15, 91-103.	3.3	3
145	Simulation of succession in a neotropical forest: High selective logging intensities prolong the recovery times of ecosystem functions. Forest Ecology and Management, 2018, 430, 517-525.	3.2	17
146	Forest-rainfall cascades buffer against drought across the Amazon. Nature Climate Change, 2018, 8, 539-543.	18.8	191

#	Article	IF	CITATIONS
147	Legume abundance along successional and rainfall gradients in Neotropical forests. Nature Ecology and Evolution, 2018, 2, 1104-1111.	7.8	107
148	Quantifying long-term changes in carbon stocks and forest structure from Amazon forest degradation. Environmental Research Letters, 2018, 13, 065013.	5.2	75
149	Potential value of combining ALOS PALSAR and Landsat-derived tree cover data for forest biomass retrieval in Madagascar. Remote Sensing of Environment, 2018, 213, 206-214.	11.0	25
150	Representing anthropogenic gross land use change, wood harvest, and forest age dynamics in a global vegetation model ORCHIDEE-MICT v8.4.2. Geoscientific Model Development, 2018, 11, 409-428.	3.6	30
151	Smaller global and regional carbon emissions from gross land use change when considering sub-grid secondary land cohorts in aÂglobal dynamic vegetation model. Biogeosciences, 2018, 15, 1185-1201.	3.3	7
152	Composition and Diversity of Woody Plants in Tree Plantations Versus Secondary Forests in Costa Rican Lowlands. Tropical Conservation Science, 2018, 11, 194008291877329.	1.2	12
153	The role of plant functional traits in understanding forest recovery in wet tropical secondary forests. Science of the Total Environment, 2018, 642, 1252-1262.	8.0	21
154	The Guiana Shield rainforests—overlooked guardians of South American climate. Environmental Research Letters, 2018, 13, 074029.	5.2	46
155	Quantifying carbon stocks in shifting cultivation landscapes under divergent management scenarios relevant to <scp>REDD</scp> +. Ecological Applications, 2018, 28, 1581-1593.	3.8	22
156	Past and Future Climate Changes. , 0, , 116-134.		0
157	Forest Commodity and Non-Commodity Values. , 0, , 445-458.		0
158	Methodological uncertainties in estimating carbon storage in temperate forests and grasslands. Ecological Indicators, 2018, 95, 331-342.	6.3	19
159	Hurricane disturbance and forest dynamics in east Caribbean mangroves. Ecosphere, 2018, 9, e02231.	2.2	51
160	Loss of biodiversity and shifts in aboveground biomass drivers in tropical rainforests with different disturbance histories. Biodiversity and Conservation, 2018, 27, 3215-3231.	2.6	31
161	The tropical forest carbon cycle and climate change. Nature, 2018, 559, 527-534.	27.8	425
162	Factors Affecting Natural Regeneration of Tropical Forests across a Precipitation Gradient in Myanmar. Forests, 2018, 9, 143.	2.1	28
163	National REDD+ Implications for Tenured Indigenous Communities in Guyana, and Communities' Impact on Forest Carbon Stocks. Forests, 2018, 9, 231.	2.1	7
164	Land use policies and deforestation in Brazilian tropical dry forests between 2000 and 2015. Environmental Research Letters, 2018, 13, 035008.	5.2	31

ARTICLE IF CITATIONS # Drought and climate change incidence on hotspot Cedrela forests from the Mata Atl¢ntica biome in 2.1 10 165 southeastern Brazil. Global Ecology and Conservation, 2018, 15, e00408. Limits to growth of forest biomass carbon sink under climate change. Nature Communications, 2018, 12.8 74 9,2709. Assessing timber volume recovery after disturbance in tropical forests – A new modelling 167 2.5 24 framework. Ecological Modelling, 2018, 384, 353-369. Intensification of shifting cultivation reduces forest resilience in the northern Amazon. Forest Ecology and Management, 2018, 430, 312-320. Woody species diversity as an indicator of the forest recovery after shifting cultivation disturbance 169 6.3 38 in the northern Amazon. Ecological Indicators, 2018, 95, 687-694. Lands at risk: Land use/land cover change in two contrasting tropical dry regions of Mexico. Applied 3.7 Geography, 2018, 99, 22-30. Quantifying aboveground components of Picea sitchensis for allometric comparisons among tall 171 3.2 25 conifers in North American rainforests. Forest Ecology and Management, 2018, 430, 59-77. Lower land-use emissions responsible for increased net land carbon sink during the slow warming 12.9 period. Nature Geoscience, 2018, 11, 739-743. Effects of long-term inter-annual rainfall variation on the dynamics of regenerative communities 173 during the old-field succession of a neotropical dry forest. Forest Ecology and Management, 2018, 3.2 31 426, 91-100. Measuring resilience and assessing vulnerability of terrestrial ecosystems to climate change in South 174 2.5 39 America. PLoS ONE, 2018, 13, e0194654. Actively restoring resilience in selectively logged tropical forests. Journal of Applied Ecology, 2019, 175 4.036 56, 107-118. Combining LiDAR and hyperspectral data for aboveground biomass modeling in the Brazilian Amazon 11.0 89 using different regression algorithms. Remote Sensing of Environment, 2019, 232, 111323. Important role of forest disturbances in the global biomass turnover and carbon sinks. Nature 177 12.9 105 Geoscience, 2019, 12, 730-735. Land use drives change in amazonian tree species. Anais Da Academia Brasileira De Ciencias, 2019, 91, 178 0.8 e20190186. 179 Satellite-observed pantropical carbon dynamics. Nature Plants, 2019, 5, 944-951. 9.3 141 Alternative functional trajectories along succession after different land uses in central Amazonia. Journal of Applied Ecology, 2019, 56, 2472-2481. Estimating aboveground net biomass change for tropical and subtropical forests: Refinement of IPCC 181 9.5 78 default rates using forest plot data. Global Change Biology, 2019, 25, 3609-3624. Modeling the impact of liana infestation on the demography and carbon cycle of tropical forests. Global Change Biology, 2019, 25, 3767-3780.

#	Article	IF	CITATIONS
183	The 2005 Amazon Drought Legacy Effect Delayed the 2006 Wet Season Onset. Geophysical Research Letters, 2019, 46, 9082-9090.	4.0	10
184	Aboveground biomass quantification and tree-level prediction models for the Brazilian subtropical Atlantic Forest. Southern Forests, 2019, 81, 261-271.	0.7	10
185	Assessing regionalâ€scale variability in deforestation and forest degradation rates in a tropical biodiversity hotspot. Remote Sensing in Ecology and Conservation, 2019, 5, 346-359.	4.3	10
186	Longâ€ŧerm influence of early human occupations on current forests of the Guiana Shield. Ecology, 2019, 100, e02806.	3.2	26
187	Clobal restoration opportunities in tropical rainforest landscapes. Science Advances, 2019, 5, eaav3223.	10.3	286
188	Conservation of Tropical Forests in the Anthropocene. Current Biology, 2019, 29, R1008-R1020.	3.9	81
189	Functional attributes of two Croton species in different successional stages of tropical dry forest: effects on herbivory and fluctuating asymmetry patterns. Tropical Ecology, 2019, 60, 238-251.	1.2	4
190	Main and interactive effects of increased precipitation and nitrogen addition on growth, morphology, and nutrition of Cinnamomum burmanni seedlings in a tropical forest. Global Ecology and Conservation, 2019, 20, e00734.	2.1	15
191	Restoring natural forests is the best way to remove atmospheric carbon. Nature, 2019, 568, 25-28.	27.8	508
192	Carbon recovery following selective logging in tropical rainforests in Kalimantan, Indonesia. Forest Ecosystems, 2019, 6, .	3.1	15
193	Soil is the main predictor of secondary rain forest estimated aboveground biomass across a Neotropical landscape. Biotropica, 2019, 51, 10-17.	1.6	16
194	Successional dynamics of nitrogen fixation and forest growth in regenerating Costa Rican rainforests. Ecology, 2019, 100, e02637.	3.2	44
195	Main ecological drivers of woody plant species richness recovery in secondary forests in China. Scientific Reports, 2019, 9, 250.	3.3	5
196	Models ignoring spatial heterogeneities of forest age will significantly overestimate the climate effects on litterfall in China. Science of the Total Environment, 2019, 661, 492-503.	8.0	11
197	Biogeochemical recuperation of lowland tropical forest during succession. Ecology, 2019, 100, e02641.	3.2	19
198	Potential for low-cost carbon dioxide removal through tropical reforestation. Nature Climate Change, 2019, 9, 463-466.	18.8	129
199	Soil nutrient stocks are maintained over multiple rotations in Brazilian Eucalyptus plantations. Forest Ecology and Management, 2019, 448, 364-375.	3.2	24
200	Historical landscape domestication in ancestral forests with nutrient-poor soils in northwestern Amazonia. Forest Ecology and Management, 2019, 446, 317-330.	3.2	29

#	Article	IF	CITATIONS
201	Tropical Dry Forest Diversity, Climatic Response, and Resilience in a Changing Climate. Forests, 2019, 10, 443.	2.1	51
202	Accurate Measurement of Tropical Forest Canopy Heights and Aboveground Carbon Using Structure From Motion. Remote Sensing, 2019, 11, 928.	4.0	46
203	Bigâ€sized trees overrule remaining trees' attributes and species richness as determinants of aboveground biomass in tropical forests. Global Change Biology, 2019, 25, 2810-2824.	9.5	89
204	Natural disturbance and soils drive diversity and dynamics of seasonal dipterocarp forest in Southern Thailand. Journal of Tropical Ecology, 2019, 35, 95-107.	1.1	3
205	Atlantic Forest topsoil nutrients can be resistant to disturbance and forest clearing. Biotropica, 2019, 51, 342-354.	1.6	11
206	Projected social costs of CO2 emissions from forest losses far exceed the sequestration benefits of forest gains under global change. Ecosystem Services, 2019, 37, 100935.	5.4	13
207	Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nature Ecology and Evolution, 2019, 3, 928-934.	7.8	120
210	Securing the climate benefits of stable forests. Climate Policy, 2019, 19, 845-860.	5.1	31
211	Longâ€ŧerm recovery of the functional community assembly and carbon pools in an African tropical forest succession. Biotropica, 2019, 51, 319-329.	1.6	23
212	Recovery of amphibian, reptile, bird and mammal diversity during secondary forest succession in the tropics. Oikos, 2019, 128, 1065-1078.	2.7	60
213	Recent and projected impacts of land use and land cover changes on carbon stocks and biodiversity in East Kalimantan, Indonesia. Ecological Indicators, 2019, 103, 563-575.	6.3	28
214	A comparative assessment of tree diversity, biomass and biomass carbon stock between a protected area and a sacred forest of Western Odisha, India. Ecoscience, 2019, 26, 195-204.	1.4	18
215	Regional analysis of indirect factors affecting the recovery, degradation and deforestation in the tropical dry forests of Oaxaca, Mexico. Singapore Journal of Tropical Geography, 2019, 40, 387-409.	0.9	6
216	Management intensification maintains wood production over multiple harvests in tropical <i>Eucalyptus</i> plantations. Ecological Applications, 2019, 29, e01879.	3.8	8
217	Biodiversity recovery of Neotropical secondary forests. Science Advances, 2019, 5, eaau3114.	10.3	291
218	Lowland tapirs facilitate seed dispersal in degraded Amazonian forests. Biotropica, 2019, 51, 245-252.	1.6	34
219	National REDD+ outcompetes gold and logging: The potential of cleaning profit chains. World Development, 2019, 118, 16-26.	4.9	6
220	Priming alters soil carbon dynamics during forest succession. Biology and Fertility of Soils, 2019, 55, 339-350.	4.3	21

#	Article	IF	CITATIONS
222	Restoration of Threatened Species. , 2019, , 59-146.		0
223	Restoration of Threatened Species Habitat. , 2019, , 147-200.		0
224	Conservation-Oriented Restoration of Particular Systems. , 2019, , 269-305.		0
226	Observed variation in soil properties can drive large variation in modelled forest functioning and composition during tropical forest secondary succession. New Phytologist, 2019, 223, 1820-1833.	7.3	40
227	The importance and challenges of detecting changes in forest mortality rates. Ecosphere, 2019, 10, e02615.	2.2	39
228	Can Intensification of Cattle Ranching Reduce Deforestation in the Amazon? Insights From an Agent-based Social-Ecological Model. Ecological Economics, 2019, 159, 198-211.	5.7	28
229	Mapping annual forest cover by fusing PALSAR/PALSAR-2 and MODIS NDVI during 2007–2016. Remote Sensing of Environment, 2019, 224, 74-91.	11.0	52
230	Evaluating the success of direct seeding for tropical forest restoration over ten years. Forest Ecology and Management, 2019, 438, 224-232.	3.2	54
231	The Concept's Major Principles. , 2019, , 13-58.		0
232	Conservation-Oriented Restoration Silvicultural Toolkit. , 2019, , 201-268.		0
234	Role of forest regrowth in global carbon sink dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4382-4387.	7.1	370
235	Forest age improves understanding of the global carbon sink. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3962-3964.	7.1	36
236	Intensive silviculture enhances biomass accumulation and tree diversity recovery in tropical forest restoration. Ecological Applications, 2019, 29, e01847.	3.8	51
237	Determining a Carbon Reference Level for a High-Forest-Low-Deforestation Country. Forests, 2019, 10, 1095.	2.1	6
238	Removal of Climbing Plants and Soil Plowing as a Strategy to Enhance Forest Recovery in Tropical Dry Forests Old Fields. Ecological Restoration, 2019, 37, 113-122.	0.8	8
240	Concluding Remarks and Prospects for the Proposed Strategy. , 2019, , 355-356.		0
241	Successional, spatial, and seasonal changes in seed rain in the Atlantic forest of southern Bahia, Brazil. PLoS ONE, 2019, 14, e0226474.	2.5	18
242	Tidal wetland resilience to sea level rise increases their carbon sequestration capacity in United States. Nature Communications, 2019, 10, 5434.	12.8	59

#	Article	IF	CITATIONS
243	Tropical carbon sink accelerated by symbiotic dinitrogen fixation. Nature Communications, 2019, 10, 5637.		33
244	Contributions of Quaternary botany to modern ecology and biogeography. Plant Ecology and Diversity, 2019, 12, 189-385.	2.4	103
245	Larger fragments have more lateâ€successional species of woody plants than smaller fragments after 50 years of secondary succession. Journal of Ecology, 2019, 107, 582-594.	4.0	43
246	Restoration of tropical rain forest success improved by selecting species for specific microhabitats. Forest Ecology and Management, 2019, 434, 235-243.	3.2	4
247	Drivers of tree carbon storage in subtropical forests. Science of the Total Environment, 2019, 654, 684-693.	8.0	65
248	Assessing and modeling the impact of land use and changes in land cover related to carbon storage in a western basin in Mexico. Remote Sensing Applications: Society and Environment, 2019, 13, 318-327.	1.5	17
249	Strategic approaches to restoring ecosystems can triple conservation gains and halve costs. Nature Ecology and Evolution, 2019, 3, 62-70.	7.8	199
250	Disentangling how management affects biomass stock and productivity of tropical secondary forests fallows. Science of the Total Environment, 2019, 659, 101-114.	8.0	13
251	Retrieving Secondary Forest Aboveground Biomass from Polarimetric ALOS-2 PALSAR-2 Data in the Brazilian Amazon. Remote Sensing, 2019, 11, 59.	4.0	14
252	Phylogenetic diversity correlated with aboveâ€ground biomass production during forest succession: Evidence from tropical forests in Southeast Asia. Journal of Ecology, 2019, 107, 1419-1432.	4.0	32
253	Recovery of tropical moist deciduous dipterocarp forest in Southern Vietnam. Forest Ecology and Management, 2019, 433, 184-204.	3.2	11
254	Use of Landsat multi-temporal imagery to assess secondary growth Miombo woodlands in Luanshya, Zambia. Southern Forests, 2019, 81, 129-140.	0.7	12
255	Drivers of biomass recovery in a secondary forested landscape of West Africa. Forest Ecology and Management, 2019, 433, 325-331.	3.2	39
256	Successional dynamics of the bee community in a tropical dry forest: Insights from taxonomy and functional ecology. Biotropica, 2019, 51, 62-74.	1.6	7
257	Multiple drivers of aboveground biomass in a human-modified landscape of the Caatinga dry forest. Forest Ecology and Management, 2019, 435, 57-65.	3.2	58
258	Monitoring long-term forest dynamics with scarce data: a multi-date classification implementation in the Ecuadorian Amazon. European Journal of Remote Sensing, 2019, 52, 62-78.	3.5	6
259	Forest restoration in southern Amazonia: Soil preparation triggers natural regeneration. Forest Ecology and Management, 2019, 433, 93-104.	3.2	26
260	Mapping tropical disturbed forests using multi-decadal 30â€ [−] m optical satellite imagery. Remote Sensing of Environment, 2019, 221, 474-488.	11.0	52

#	Article		CITATIONS
261	Soil nutrient availability regulated global carbon use efficiency. Global and Planetary Change, 2019, 173, 47-52.	3.5	27
262	Demographic costs and benefits of natural regeneration during tropical forest restoration. Ecology Letters, 2019, 22, 34-44.	6.4	21
263	Estimation of aboveground biomass and carbon in a tropical rain forest in Gabon using remote sensing and GPS data. Geocarto International, 2019, 34, 243-259.	3.5	12
264	Continuous monitoring of land change activities and post-disturbance dynamics from Landsat time series: A test methodology for REDD+ reporting. Remote Sensing of Environment, 2020, 238, 111051.	11.0	57
265	Scale dependency of conservation outcomes in a forestâ€offsetting scheme. Conservation Biology, 2020, 34, 148-157.	4.7	2
266	Successional changes in vegetation and litter structure in traditional Lacandon Maya agroforests. Agroecology and Sustainable Food Systems, 2020, 44, 747-767.	1.9	7
267	Carbon accumulations by stock change approach in tropical highland forests of Chiapas, Mexico. Journal of Forestry Research, 2020, 31, 2479-2493.	3.6	2
268	Negative Emissions From Stopping Deforestation and Forest Degradation. , 2020, , 226-236.		0
269	Edaphic factors and initial conditions influence successional trajectories of early regenerating tropical dry forests. Journal of Ecology, 2020, 108, 160-174.	4.0	28
270	Active rehabilitation of Amazonian sand mines converges soils, plant communities and environmental status to their predisturbance levels. Land Degradation and Development, 2020, 31, 607-618.	3.9	15
271	Secondary forest fragments offer important carbon and biodiversity cobenefits. Global Change Biology, 2020, 26, 509-522.	9.5	88
272	Slow rate of secondary forest carbon accumulation in the Guianas compared with the rest of the Neotropics. Ecological Applications, 2020, 30, e02004.	3.8	16
273	Integrating pattern-based modelling and political ecology in land-use change research: the case of Mexican dry tropics. Journal of Land Use Science, 2020, 15, 252-269.	2.2	2
274	Testing for changes in biomass dynamics in largeâ€scale forest datasets. Global Change Biology, 2020, 26, 1485-1498.	9.5	14
275	Drivers of tropical forest cover increase: A systematic review. Land Degradation and Development, 2020, 31, 1366-1379.	3.9	32
276	How do silvicultural treatments alter the microclimate in a Central Amazon secondary forest? A focus on light changes. Journal of Environmental Management, 2020, 254, 109816.	7.8	7
277	Assessing the growth and climate sensitivity of secondary forests in highly deforested Amazonian landscapes. Ecology, 2020, 101, e02954.	3.2	51
278	Imaging spectroscopy reveals the effects of topography and logging on the leaf chemistry of tropical forest canopy trees. Global Change Biology, 2020, 26, 989-1002.	9.5	37

#	Article	IF	CITATIONS
279	Partitioning main carbon pools in a semi-deciduous rainforest in eastern Cameroon. Forest Ecology and Management, 2020, 457, 117686.	3.2	9
280	Quantifying spatial-temporal changes of aboveground carbon stocks using Landsat time series data: A case study of Miombo woodlands. International Journal of Environmental Studies, 2020, 77, 581-601.	1.6	4
281	Linking vegetation and soil functions during secondary forest succession in the Atlantic forest. Forest Ecology and Management, 2020, 457, 117696.	3.2	69
282	Secondary forests offset less than 10% of deforestationâ€mediated carbon emissions in the Brazilian Amazon. Global Change Biology, 2020, 26, 7006-7020.	9.5	40
283	Evapotranspiration and gross primary productivity of secondary vegetation in Amazonia inferred by eddy covariance. Agricultural and Forest Meteorology, 2020, 294, 108141.	4.8	14
284	Global priority areas for ecosystem restoration. Nature, 2020, 586, 724-729.	27.8	489
285	Hysteresis of tropical forests in the 21st century. Nature Communications, 2020, 11, 4978.	12.8	87
286	Reversals of Reforestation Across Latin America Limit Climate Mitigation Potential of Tropical Forests. Frontiers in Forests and Clobal Change, 2020, 3, .	2.3	43
287	On the Need to Differentiate the Temporal Trajectories of Ecosystem Structure and Functions in Restoration Programs. Tropical Conservation Science, 2020, 13, 194008292091031.	1.2	9
288	Improving the accuracy of aboveground biomass estimations in secondary tropical dry forests. Forest Ecology and Management, 2020, 474, 118384.	3.2	10
289	Old growth Afrotropical forests critical for maintaining forest carbon. Global Ecology and Biogeography, 2020, 29, 1785-1798.	5.8	19
290	Soil carbon dynamics in different types of subtropical forests as determined by density fractionation and stable isotope analysis. Forest Ecology and Management, 2020, 475, 118401.	3.2	12
291	Influence of Two Important Leguminous Trees on Their Soil Microbiomes and Nitrogen Cycle Activities in a Primary and Recovering Secondary Forest in the Northern Zone of Costa Rica. Soil Systems, 2020, 4, 65.	2.6	3
292	Richness and biotechnological potential of the yeast community associated with the bromeliad phylloplane in the Brazilian Neotropical Forest. Mycological Progress, 2020, 19, 1387-1401.	1.4	7
293	Opportunities and Constraints for Using Farmer Managed Natural Regeneration for Land Restoration in Sub-Saharan Africa. Frontiers in Forests and Global Change, 2020, 3, .	2.3	21
294	The Carbon Cycle of Terrestrial Ecosystems. , 2020, , 141-182.		4
295	Carbon stock densities of semi-deciduous Atlantic forest and pine plantations in Argentina. Science of the Total Environment, 2020, 747, 141085.	8.0	15
296	Stand structural attributes and functional trait composition overrule the effects of functional divergence on aboveground biomass during Amazon forest succession. Forest Ecology and Management, 2020, 477, 118481.	3.2	16

#	Article	IF	CITATIONS
297	Detecting successional changes in tropical forest structure using GatorEye droneâ€borne lidar. Biotropica, 2020, 52, 1155-1167.	1.6	22
298	Improving aboveground biomass maps of tropical dry forests by integrating LiDAR, ALOS PALSAR, climate and field data. Carbon Balance and Management, 2020, 15, 15.	3.2	36
299	Climate more important than soils for predicting forest biomass at the continental scale. Ecography, 2020, 43, 1692-1705.	4.5	37
300	Active restoration accelerates the carbon recovery of human-modified tropical forests. Science, 2020, 369, 838-841.	12.6	68
301	Drivers of farmer-managed natural regeneration in the Sahel. Lessons for restoration. Scientific Reports, 2020, 10, 15038.	3.3	38
302	Mapping carbon accumulation potential from global natural forest regrowth. Nature, 2020, 585, 545-550.	27.8	278
303	Deforestation and reforestation impacts on soils in the tropics. Nature Reviews Earth & Environment, 2020, 1, 590-605.	29.7	121
304	Forest Disturbance Detection By Landsat-Based Ndvi Time Series For Ayuquila River Basin, Jalisco, Mexico. , 2020, , .		1
305	The climate change mitigation potential of bioenergy with carbon capture and storage. Nature Climate Change, 2020, 10, 1023-1029.	18.8	149
306	Plasticity in branching and crown architecture helps explain how tree diversity increases tropical forest production. New Phytologist, 2020, 228, 1163-1165.	7.3	2
307	Beyond MAP: A guide to dimensions of rainfall variability for tropical ecology. Biotropica, 2020, 52, 1319-1332.	1.6	15
308	Benchmark maps of 33 years of secondary forest age for Brazil. Scientific Data, 2020, 7, 269.	5.3	46
309	Unmanned Aerial System and Machine Learning Techniques Help to Detect Dead Woody Components in a Tropical Dry Forest. Forests, 2020, 11, 827.	2.1	6
310	Biophysical and Socioeconomic Factors Associated to Deforestation and Forest Recovery in Brazilian Tropical Dry Forests. Frontiers in Forests and Global Change, 2020, 3, .	2.3	9
311	Carbon sequestration and nutrient cycling in agroforestry systems on degraded soils of Eastern Amazon, Brazil. Agroforestry Systems, 2020, 94, 1781-1792.	2.0	10
312	Restoring tropical forest composition is more difficult, but recovering tree-cover is faster, when neighbouring forests are young. Landscape Ecology, 2020, 35, 1403-1416.	4.2	3
313	Mythâ€busting tropical grassy biome restoration. Restoration Ecology, 2020, 28, 1067-1073.	2.9	50
314	Above-ground carbon stocks and timber value of old timber plantations, secondary and primary forests in southern Ghana. Forest Ecology and Management, 2020, 472, 118236.	3.2	26

#	Article		CITATIONS
315	Forest regeneration in the Brazilian Amazon: Public policies and economic conditions. Journal of Cleaner Production, 2020, 269, 122424.		14
316	Social as much as environmental: the drivers of tree biomass in smallholder forest landscape restoration programmes. Environmental Research Letters, 2020, 15, 104008.	5.2	9
317	Interannual Variability of Carbon Uptake of Secondary Forests in the Brazilian Amazon (2004â€⊋014). Global Biogeochemical Cycles, 2020, 34, e2019GB006396.	4.9	9
318	Designing optimal humanâ€modified landscapes for forest biodiversity conservation. Ecology Letters, 2020, 23, 1404-1420.	6.4	279
319	Rapid recovery of tropical forest diversity and structure after shifting cultivation in the Philippines uplands. Ecology and Evolution, 2020, 10, 7189-7211.	1.9	14
320	Policy forum: Shifting cultivation and agroforestry in the Amazon: Premises for REDD+. Forest Policy and Economics, 2020, 118, 102217.	3.4	32
321	Floristic Composition, Diversity, and Biomass of a Protected Tropical Evergreen Forest Belize. Tropical Conservation Science, 2020, 13, 194008292091543.	1.2	3
322	Amazon forest on the edge of collapse in the Maranhão State, Brazil. Land Use Policy, 2020, 97, 104806.	5.6	31
323	Accounting for forest age in the tile-based dynamic global vegetation model JSBACH4 (4.20p7; git) Tj ETQq0 0 0	rgBT /Ove 3.6	rlock 10 Tf 50
010	185-200.		
324	185-200. Natural recovery of plant species diversity in secondary forests in Eastern Amazonia: contributions to passive forest restoration. Revista Brasileira De Botanica, 2020, 43, 165-175.	1.3	5
	Natural recovery of plant species diversity in secondary forests in Eastern Amazonia: contributions	1.3 2.3	
324	Natural recovery of plant species diversity in secondary forests in Eastern Amazonia: contributions to passive forest restoration. Revista Brasileira De Botanica, 2020, 43, 165-175. Conceptualising the Global Forest Response to Liana Proliferation. Frontiers in Forests and Global		5
324 325	Natural recovery of plant species diversity in secondary forests in Eastern Amazonia: contributions to passive forest restoration. Revista Brasileira De Botanica, 2020, 43, 165-175. Conceptualising the Global Forest Response to Liana Proliferation. Frontiers in Forests and Global Change, 2020, 3, . Spatial and temporal structure of diversity and demographic dynamics along a successional gradient	2.3	5 21
324 325 326	Natural recovery of plant species diversity in secondary forests in Eastern Amazonia: contributions to passive forest restoration. Revista Brasileira De Botanica, 2020, 43, 165-175. Conceptualising the Clobal Forest Response to Liana Proliferation. Frontiers in Forests and Global Change, 2020, 3, . Spatial and temporal structure of diversity and demographic dynamics along a successional gradient of tropical forests in southern Brazil. Ecology and Evolution, 2020, 10, 3164-3177. Stem and leaf functional traits allow successional classification in six pioneer and non-pioneer tree	2.3 1.9	5 21 19
324 325 326 327	Natural recovery of plant species diversity in secondary forests in Eastern Amazonia: contributions to passive forest restoration. Revista Brasileira De Botanica, 2020, 43, 165-175. Conceptualising the Global Forest Response to Liana Proliferation. Frontiers in Forests and Global Change, 2020, 3, . Spatial and temporal structure of diversity and demographic dynamics along a successional gradient of tropical forests in southern Brazil. Ecology and Evolution, 2020, 10, 3164-3177. Stem and leaf functional traits allow successional classification in six pioneer and non-pioneer tree species in Tropical Moist Broadleaved Forests. Ecological Indicators, 2020, 113, 106254. Economically viable forest restoration in shifting cultivation landscapes. Environmental Research	2.3 1.9 6.3	5 21 19 9
324 325 326 327 328	Natural recovery of plant species diversity in secondary forests in Eastern Amazonia: contributions to passive forest restoration. Revista Brasileira De Botanica, 2020, 43, 165-175. Conceptualising the Global Forest Response to Liana Proliferation. Frontiers in Forests and Global Change, 2020, 3, . Spatial and temporal structure of diversity and demographic dynamics along a successional gradient of tropical forests in southern Brazil. Ecology and Evolution, 2020, 10, 3164-3177. Stem and leaf functional traits allow successional classification in six pioneer and non-pioneer tree species in Tropical Moist Broadleaved Forests. Ecological Indicators, 2020, 113, 106254. Economically viable forest restoration in shifting cultivation landscapes. Environmental Research Letters, 2020, 15, 064017. Spatiotemporal tracking of carbon emissions and uptake using time series analysis of Landsat data: A	 2.3 1.9 6.3 5.2 	5 21 19 9 9
 324 325 326 327 328 329 	 Natural recovery of plant species diversity in secondary forests in Eastern Amazonia: contributions to passive forest restoration. Revista Brasileira De Botanica, 2020, 43, 165-175. Conceptualising the Global Forest Response to Liana Proliferation. Frontiers in Forests and Global Change, 2020, 3, . Spatial and temporal structure of diversity and demographic dynamics along a successional gradient of tropical forests in southern Brazil. Ecology and Evolution, 2020, 10, 3164-3177. Stem and leaf functional traits allow successional classification in six pioneer and non-pioneer tree species in Tropical Moist Broadleaved Forests. Ecological Indicators, 2020, 113, 106254. Economically viable forest restoration in shifting cultivation landscapes. Environmental Research Letters, 2020, 15, 064017. Spatiotemporal tracking of carbon emissions and uptake using time series analysis of Landsat data: A spatially explicit carbon bookkeeping model. Science of the Total Environment, 2020, 720, 137409. Limited biomass recovery from gold mining in Amazonian forests. Journal of Applied Ecology, 2020, 57, 	 2.3 1.9 6.3 5.2 8.0 	 5 21 19 9 9 17

#	Article	IF	Citations
333	Above-ground biomass recovery following logging and thinning over 46Âyears in an Australian tropical forest. Science of the Total Environment, 2020, 734, 139098.	8.0	14
334	Climate change scenarios and projected impacts for forest productivity in Guanacaste Province (Costa Rica): lessons for tropical forest regions. Regional Environmental Change, 2020, 20, 1.	2.9	11
335	Heterogeneity of tree diversity and carbon stocks in Amazonian oil palm landscapes. Plant Ecology and Diversity, 2020, 13, 105-113.	2.4	4
336	Unmasking secondary vegetation dynamics in the Brazilian Amazon. Environmental Research Letters, 2020, 15, 034057.	5.2	50
337	Brazil's forest restoration, biomass and carbon stocks: A critical review of the knowledge gaps. Forest Ecology and Management, 2020, 462, 117972.	3.2	16
338	Carbon Dynamics in a Human-Modified Tropical Forest: A Case Study Using Multi-Temporal LiDAR Data. Remote Sensing, 2020, 12, 430.	4.0	15
339	Achieving costâ€effective landscapeâ€scale forest restoration through targeted natural regeneration. Conservation Letters, 2020, 13, e12709.	5.7	120
340	Land-Use Effect on Soil Carbon and Nitrogen Stock in a Seasonally Dry Tropical Forest. Agronomy, 2020, 10, 158.	3.0	9
341	Reviewing the Use of Resilience Concepts in Forest Sciences. Current Forestry Reports, 2020, 6, 61-80.	7.4	89
342	Upturn in secondary forest clearing buffers primary forest loss in the Brazilian Amazon. Nature Sustainability, 2020, 3, 290-295.	23.7	44
343	Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190120.	4.0	686
344	Stand age, disturbance history and the temporal stability of forest production. Forest Ecology and Management, 2020, 460, 117865.	3.2	24
345	Lianas reduce biomass accumulation in early successional tropical forests. Ecology, 2020, 101, e02989.	3.2	15
346	Secondary tropical forests recover dung beetle functional diversity and trait composition. Animal Conservation, 2020, 23, 617-627.	2.9	19
347	Use of vegetation change tracker, spatial analysis, and random forest regression to assess the evolution of plantation stand age in Southeast China. Annals of Forest Science, 2020, 77, 1.	2.0	22
348	A review of social-ecological system resilience: Mechanism, assessment and management. Science of the Total Environment, 2020, 723, 138113.	8.0	71
349	How Can Remote Sensing Help Monitor Tropical Moist Forest Degradation?—A Systematic Review. Remote Sensing, 2020, 12, 1087.	4.0	37
350	Water availability mediates functional shifts across ontogenetic stages in a regenerating seasonally dry tropical forest. Journal of Vegetation Science, 2020, 31, 1088-1099.	2.2	15

#	Article	IF	CITATIONS
351	Vascular epiphyte communities in secondary and mature forests of a subtropical montane area. Acta Oecologica, 2020, 105, 103571.	1.1	3
352	Challenges and opportunities for large-scale reforestation in the Eastern Amazon using native species. Forest Ecology and Management, 2020, 466, 118120.	3.2	34
353	Interpreting forest diversity-productivity relationships: volume values, disturbance histories and alternative inferences. Forest Ecosystems, 2020, 7, .	3.1	33
354	Framework Species Approach Proves Robust in Restoring Forest on Fire Prone Invasive Grass: A Case Study from Panama. Journal of Sustainable Forestry, 2021, 40, 197-215.	1.4	5
355	Mixed-species plantations enhance soil carbon stocks on the loess plateau of China. Plant and Soil, 2021, 464, 13-28.	3.7	25
356	Changes in leaf stomatal traits of different aged temperate forest stands. Journal of Forestry Research, 2021, 32, 927-936.	3.6	10
357	Variation in Vegetation and Ecosystem Carbon Stock Due to the Conversion of Disturbed Forest to Oil Palm Plantation in Peruvian Amazonia. Ecosystems, 2021, 24, 351-369.	3.4	7
358	Monitoring tropical forest succession at landscape scales despite uncertainty in Landsat time series. Ecological Applications, 2021, 31, e02208.	3.8	12
359	The effect of ecological restoration methods on carbon stocks in the Brazilian Atlantic Forest. Forest Ecology and Management, 2021, 481, 118734.	3.2	24
360	The carbon sequestration potential of â€~analog' forestry in Ecuador: an alternative strategy for reforestation of degraded pastures. Forestry, 2021, 94, 102-114.	2.3	0
361	River ecosystem resilience risk index: A tool to quantitatively characterize resilience and critical transitions in human-impacted large rivers. Environmental Pollution, 2021, 268, 115771.	7.5	13
362	Mapping forest age and characterizing vegetation structure and species composition in tropical dry forests. Ecological Indicators, 2021, 120, 106955.	6.3	18
363	Acceleration and deceleration of aboveground biomass accumulation rate in a temperate forest in central Japan. Forest Ecology and Management, 2021, 479, 118550.	3.2	4
364	Recovery of aboveground biomass, species richness and composition in tropical secondary forests in SW Costa Rica. Forest Ecology and Management, 2021, 479, 118580.	3.2	24
365	Exploiting fruits of a threatened palm to trigger restoration of Brazil's Atlantic Forest. Restoration Ecology, 2021, 29, .	2.9	4
366	Dispersal and recruitment limitations in secondary forests. Journal of Vegetation Science, 2021, 32, .	2.2	18
367	Effects of landscape composition and site land-use intensity on secondary succession in a tropical dry forest. Forest Ecology and Management, 2021, 482, 118818.	3.2	21
368	Patterns and mechanisms of spatial variation in tropical forest productivity, woody residence time, and biomass. New Phytologist, 2021, 229, 3065-3087.	7.3	48

#	Article	IF	CITATIONS
369	Varying impacts of logging frequency on tree communities and carbon storage across evergreen and deciduous tropical forests in the Andaman Islands, India. Forest Ecology and Management, 2021, 481, 118791.	3.2	5
370	Sucessional trajetories of bird assemblages in amazonian secondary forests: Perspectives from complementary biodiversity dimensions. Forest Ecology and Management, 2021, 483, 118731.	3.2	5
371	Effects of thinning on the demography and functional community structure of a secondary tropical lowland rain forest. Journal of Environmental Management, 2021, 279, 111805.	7.8	12
372	Tradeoffs among microbial life history strategies influence the fate of microbial residues in subtropical forest soils. Soil Biology and Biochemistry, 2021, 153, 108112.	8.8	77
373	Ecological legacies of past human activities in Amazonian forests. New Phytologist, 2021, 229, 2492-2496.	7.3	30
374	The cost of restoring carbon stocks in Brazil's Atlantic Forest. Land Degradation and Development, 2021, 32, 830-841.	3.9	14
375	Implementing forest landscape restoration in Latin America: Stakeholder perceptions on legal frameworks. Land Use Policy, 2021, 104, 104244.	5.6	12
376	Changes in tree diversity and carbon stock over a decade in two Indian tropical dry evergreen forests. , 2021, 5, 7-18.		4
377	Spatiotemporal changes in biomass after selective logging in a lowland tropical rainforest in Peninsular Malaysia. Tropics, 2021, 30, 11-23.	0.8	4
378	The Global Ecosystems Monitoring network: Monitoring ecosystem productivity and carbon cycling across the tropics. Biological Conservation, 2021, 253, 108889.	4.1	42
379	Extensive clonal propagation and resprouting drive the regeneration of a Brazilian dry forest. Journal of Tropical Ecology, 2021, 37, 35-42.	1.1	18
380	Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. Global Change Biology, 2021, 27, 1328-1348.	9.5	306
381	Canopy recovery four years after logging: a management study in a southern brazilian secondary forest. Cerne, 0, 27, .	0.9	3
382	Restoring vegetation and degraded lands by using assisted natural regeneration approach (ANRA): case study at Bankass in the centre of Mali, West Africa. Environment, Development and Sustainability, 2021, 23, 14123-14139.	5.0	3
383	Canopy Leaf Traits, Basal Area, and Age Predict Functional Patterns of Regenerating Communities in Secondary Subtropical Forests. Frontiers in Forests and Global Change, 2021, 4, .	2.3	1
384	A proposal to advance theory and promote collaboration in tropical biology by supporting replications. Biotropica, 2021, 53, 6-10.	1.6	0
385	Infraestrutura Natural para $ ilde{A}$ gua na Regi $ ilde{A}$ ±o Metropolitana da Grande Vit $ ilde{A}$ ³ria. , 0, , .		1
386	Natural Infrastructure in Vitoria's Water system, EspÃrito Santo State. , 0, , .		2

#	Article	IF	CITATIONS
387	Hidden destruction of older forests threatens Brazil's Atlantic Forest and challenges restoration programs. Science Advances, 2021, 7, .	10.3	92
388	Reducing intensification by shifting cultivation through sustainable climate-smart practices in tropical forests: A review in the context of UN Decade on Ecosystem Restoration. Current Research in Environmental Sustainability, 2021, 3, 100058.	3.5	8
389	Recovering ecosystem functions through the management of regenerating community in agroforestry and plantations with Khaya spp. in the Atlantic Forest, Brazil. Forest Ecology and Management, 2021, 482, 118854.	3.2	10
390	Species Richness and Carbon Footprints of Vegetable Oils: Can High Yields Outweigh Palm Oil's Environmental Impact?. Sustainability, 2021, 13, 1813.	3.2	10
391	Resprouting drives successional pathways and the resilience of Caatinga dry forest in human-modified landscapes. Forest Ecology and Management, 2021, 482, 118881.	3.2	36
392	Big trees drive forest structure patterns across a lowland Amazon regrowth gradient. Scientific Reports, 2021, 11, 3380.	3.3	9
393	Ecosystem services supply and interactions along secondary tropical dry forests succession. Forest Ecology and Management, 2021, 482, 118858.	3.2	23
394	The role of secondary riparian forests for conserving fish assemblages in eastern Amazon streams. Hydrobiologia, 2022, 849, 4529-4546.	2.0	6
395	New allometric equations for quantifying tree biomass and carbon sequestration in seasonally dry secondary forest in northern Thailand. New Forests, 2022, 53, 17-36.	1.7	10
396	Satellite Observations of the Tropical Terrestrial Carbon Balance and Interactions With the Water Cycle During the 21st Century. Reviews of Geophysics, 2021, 59, e2020RG000711.	23.0	13
397	Lianas do not reduce tree biomass accumulation in young successional tropical dry forests. Oecologia, 2021, 195, 1019-1029.	2.0	6
398	Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change. Nature Communications, 2021, 12, 1785.	12.8	99
399	The role of landâ€use history in driving successional pathways and its implications for the restoration of tropical forests. Biological Reviews, 2021, 96, 1114-1134.	10.4	63
400	White-Sand Savannas Expand at the Core of the Amazon After Forest Wildfires. Ecosystems, 2021, 24, 1624-1637.	3.4	27
401	Variation in aboveground biomass in forests and woodlands in Tanzania along gradients in environmental conditions and human use. Environmental Research Letters, 2021, 16, 044014.	5.2	8
402	Implications of size-dependent tree mortality for tropical forest carbon dynamics. Nature Plants, 2021, 7, 384-391.	9.3	39
403	Plant diversity and conservation concerns in a semi-deciduous rainforest in Cameroon: implications for sustainable forest management. Folia Geobotanica, 2021, 56, 81-95.	0.9	4
405	Spatiotemporal assessment of land use/land cover change and associated carbon emissions and uptake in the Mekong River Basin. Remote Sensing of Environment, 2021, 256, 112336.	11.0	45

#	Article	IF	Citations
406	Direct effects of selection on aboveground biomass contrast with indirect structure-mediated effects of complementarity in a subtropical forest. Oecologia, 2021, 196, 249-261.	2.0	10
407	Plants, people and longâ€ŧerm ecological monitoring in the tropics. Plants People Planet, 2021, 3, 222-228.	3.3	1
408	Soil resource availability, plant defense, and herbivory along a successional gradient in a tropical dry forest. Plant Ecology, 2021, 222, 625-637.	1.6	4
409	Landâ€use legacies influence tree waterâ€use efficiency and nitrogen availability in recently established European forests. Functional Ecology, 2021, 35, 1325-1340.	3.6	7
410	An improved quality assessment framework to better inform large-scale forest restoration management. Ecological Indicators, 2021, 123, 107370.	6.3	8
411	Effects of Earth system feedbacks on the potential mitigation of large-scale tropical forest restoration. Biogeosciences, 2021, 18, 2627-2647.	3.3	18
412	Regeneration of tropical montane cloud forests increases water yield in the Brazilian Atlantic Forest. Ecohydrology, 2021, 14, e2298.	2.4	13
414	Mapping Land Suitability to Guide Landscape Restoration in the Amazon. Land, 2021, 10, 368.	2.9	3
415	Current carbon prices do not stack up to much land use change, despite bundled ecosystem service coâ€benefits. Global Change Biology, 2021, 27, 2744-2762.	9.5	6
417	Revisiting the hyperdominance of Neotropical tree species under a taxonomic, functional and evolutionary perspective. Scientific Reports, 2021, 11, 9585.	3.3	13
418	Recovery of Forest Structure Following Large-Scale Windthrows in the Northwestern Amazon. Forests, 2021, 12, 667.	2.1	7
419	Impact of a tropical forest blowdown on aboveground carbon balance. Scientific Reports, 2021, 11, 11279.	3.3	4
420	Contributions of Leguminosae to young and old stands of neotropical forests under different environmental conditions. Annals of Forest Science, 2021, 78, 1.	2.0	2
421	Carbon cycling in mature and regrowth forests globally. Environmental Research Letters, 2021, 16, 053009.	5.2	41
422	Forest Restoration in Low- and Middle-Income Countries. Annual Review of Environment and Resources, 2021, 46, 289-317.	13.4	15
423	Reduced resilience of terrestrial ecosystems locally is not reflected on a global scale. Communications Earth & Environment, 2021, 2, .	6.8	25
425	Integrating resilience with functional ecosystem measures: A novel paradigm for management decisions under multipleâ€stressor interplay in freshwater ecosystems. Global Change Biology, 2021, 27, 3699-3717.	9.5	17
426	Decadal variability in land carbon sink efficiency. Carbon Balance and Management, 2021, 16, 15.	3.2	6

		CITATION RE	PORT	
#	Article		IF	CITATIONS
427	Seedâ€rain–successional feedbacks in wet tropical forests. Ecology, 2021, 102, e0336	52.	3.2	7
428	Fast recovery of soil macrofauna in regenerating forests of the Amazon. Journal of Anima 2021, 90, 2094-2108.	l Ecology,	2.8	9
429	Successional syndromes of saplings in tropical secondary forests emerge from environmentâ€dependent trait–demography relationships. Ecology Letters, 2021, 24,	1776-1787.	6.4	12
430	Disentangling biotic and abiotic drivers of intraspecific trait variation in woody plant see forest edges. Ecology and Evolution, 2021, 11, 9728-9740.	dlings at	1.9	3
431	Effects of stand density on soil respiration and labile organic carbon in different aged Lar principis-rupprechtii plantations. Ecological Processes, 2021, 10, .	ix	3.9	16
432	Land use and social-ecological legacies of Rio de Janeiro's Atlantic urban forests: from ch production to novel ecosystems. Royal Society Open Science, 2021, 8, 201855.	arcoal	2.4	6
433	Functional composition enhances aboveground biomass stock undergoing active forest on mining tailings in Mariana, Brazil. Restoration Ecology, 2021, 29, e13399.	restoration	2.9	1
434	Active Restoration Initiates High Quality Forest Succession in a Deforested Landscape in Forests, 2021, 12, 1022.	Amazonia.	2.1	4
435	Selective logging in a chronosequence of Atlantic Forest: drivers and impacts on biodiver ecosystem services. Perspectives in Ecology and Conservation, 2021, 19, 286-292.	sity and	1.9	4
436	Fine Wood Decomposition Rates Decline with the Age of Tropical Successional Forests in Mexico: Implications to Ecosystem Carbon Storage. Ecosystems, 2022, 25, 661-677.	n Southern	3.4	8
437	Tracking the impacts of El Niño drought and fire in human-modified Amazonian forests. of the National Academy of Sciences of the United States of America, 2021, 118, .	Proceedings	7.1	51
438	Tropical forest understorey riparian and upland composition, structure, and function in a different past land use. Applied Vegetation Science, 2021, 24, .	reas with	1.9	3
439	Amazon forest fragmentation and edge effects temporarily favored understory and mids growth. Trees - Structure and Function, 2021, 35, 2059-2068.	tory tree	1.9	3
440	Old-growth forest loss and secondary forest recovery across Amazonian countries. Envir Research Letters, 2021, 16, 085009.	onmental	5.2	22
441	Demographic differentiation among pioneer tree species during secondary succession of Neotropical rainforest. Journal of Ecology, 2021, 109, 3572-3586.	a	4.0	9
442	Faster recovery of soil biodiversity in native species mixture than in <i>Eucalyptus</i> mo after 60Âyears afforestation in tropical degraded coastal terraces. Global Change Biology 5329-5340.	pnoculture y, 2021, 27,	9.5	17
443	Co-benefits in biodiversity conservation and carbon stock during forest regeneration in a tropical landscape. Forest Ecology and Management, 2021, 492, 119222.	preserved	3.2	13
444	Accelerating tropical cloud forest recovery: Performance of nine late-successional tree sp Ecological Engineering, 2021, 166, 106237.	ecies.	3.6	7

#	Article	IF	Citations
445	Autogenic regulation and resilience in tropical dry forest. Journal of Ecology, 2021, 109, 3295-3307.	4.0	7
446	Relevance of secondary tropical forest for landscape restoration. Forest Ecology and Management, 2021, 493, 119265.	3.2	17
447	Carbon Stocks, Species Diversity and Their Spatial Relationships in the Yucatán Peninsula, Mexico. Remote Sensing, 2021, 13, 3179.	4.0	6
448	Noncommercial forests need type- and age-differentiated conservation measures: A case study based on 600 plots in Zhejiang Province in eastern China. Global Ecology and Conservation, 2021, 28, e01704.	2.1	0
449	Aboveground biomass in secondary montane forests in Peru: Slow carbon recovery in agroforestry legacies. Global Ecology and Conservation, 2021, 28, e01696.	2.1	11
450	Divergent Pathways of Nitrogen-Fixing Trees through Succession Depend on Starting Nitrogen Supply and Priority Effects. American Naturalist, 2021, 198, E198-E214.	2.1	2
451	No-till alley cropping using leguminous trees biomass: a farmer- and eco-friendly sustainable alternative to shifting cultivation in the Amazonian periphery?. Environment, Development and Sustainability, 0, , 1.	5.0	2
452	Timber stock recovery in a chronosequence of secondary forests in Southern Brazil: Adding value to restored landscapes. Forest Ecology and Management, 2021, 495, 119352.	3.2	13
453	Biomass of timber species in Central American secondary forests: Towards climate change mitigation through sustainable timber harvesting. Forest Ecology and Management, 2021, 496, 119439.	3.2	3
454	Long-term effects of plant spacing on the growth and morphometry of Bertholletia excelsa. Acta Amazonica, 2021, 51, 181-190.	0.7	2
455	Drought Resilience Debt Drives NPP Decline in the Amazon Forest. Global Biogeochemical Cycles, 2021, 35, e2021GB007004.	4.9	12
456	Afrotropical secondary forests exhibit fast diversity and functional recovery, but slow compositional and carbon recovery after shifting cultivation. Journal of Vegetation Science, 2021, 32, e13071.	2.2	9
457	How deregulation, drought and increasing fire impact Amazonian biodiversity. Nature, 2021, 597, 516-521.	27.8	65
459	Social ecological dynamics of tropical secondary forests. Forest Ecology and Management, 2021, 496, 119369.	3.2	6
460	Accelerated forest fragmentation leads to critical increase in tropical forest edge area. Science Advances, 2021, 7, eabg7012.	10.3	66
461	Effects of biodiversity, stand factors and functional identity on biomass and productivity during the restoration of subtropical forests in Central China. Journal of Plant Ecology, 2022, 15, 385-398.	2.3	7
462	Aboveâ€ground net primary productivity in regenerating seasonally dry tropical forest: Contributions of rainfall, forest age and soil. Journal of Ecology, 2021, 109, 3903-3915.	4.0	11
463	Above-ground biomass storage potential in primary rain forests managed for timber production in Costa Rica. Forest Ecology and Management, 2021, 497, 119462.	3.2	4

#	Article	IF	CITATIONS
464	Follow the forest: Slow resilience of West African rainforest frog assemblages after selective logging. Forest Ecology and Management, 2021, 497, 119489.	3.2	4
466	Risk reduction through enhancing risk management by resilience. International Journal of Disaster Risk Reduction, 2021, 64, 102497.	3.9	8
467	The interaction of land-use history and tree species diversity in driving variation in the aboveground biomass of urban versus non-urban tropical forests. Ecological Indicators, 2021, 129, 107915.	6.3	11
468	Carbon ecosystem services and cellulose income from natural and commercial forests in the Brazilian savanna. Forest Ecology and Management, 2021, 499, 119582.	3.2	1
469	Successional pathways of post-milpa fallows in Oaxaca, Mexico. Forest Ecology and Management, 2021, 500, 119644.	3.2	5
470	What drives clearing of old-growth forest over secondary forests in tropical shifting cultivation systems? Evidence from the Peruvian Amazon. Ecological Economics, 2021, 189, 107170.	5.7	11
471	Land use intensity determines soil properties and biomass recovery after abandonment of agricultural land in an Amazonian biodiversity hotspot. Science of the Total Environment, 2021, 801, 149487.	8.0	6
472	The competitive mechanism between post-abandonment Chinese fir plantations and rehabilitated natural secondary forest species under an in situ conservation policy. Forest Ecology and Management, 2021, 502, 119725.	3.2	7
473	Time matters: Resilience of a post-disturbance forest landscape. Science of the Total Environment, 2021, 799, 149377.	8.0	6
474	Dynamics of Carbon Accumulation in Tropical Dry Forests under Climate Change Extremes. Forests, 2021, 12, 106.	2.1	14
475	Phylogenetic dynamics of Tropical Atlantic Forests. Evolutionary Ecology, 2021, 35, 65-81.	1.2	6
476	Does patch quality drive arboreal mammal assemblages in fragmented rainforests?. Perspectives in Ecology and Conservation, 2021, 19, 61-68.	1.9	11
477	Assessing extinction risk from geographic distribution data in Neotropical freshwater fishes. Neotropical Ichthyology, 2021, 19, .	1.0	9
478	A network to understand the changing socioâ€ecology of the southern African woodlands (SEOSAW): Challenges, benefits, and methods. Plants People Planet, 2021, 3, 249-267.	3.3	13
479	What Is Secondary about Secondary Tropical Forest? Rethinking Forest Landscapes. Human Ecology, 2020, 49, 1-9.	1.4	23
480	Resilience of lowland Atlantic forests in a highly fragmented landscape: Insights on the temporal scale of landscape restoration. Forest Ecology and Management, 2020, 470-471, 118183.	3.2	11
481	Linking lidar and forest modeling to assess biomass estimation across scales and disturbance states. Remote Sensing of Environment, 2018, 205, 199-209.	11.0	68
483	Successional dynamics of a regenerated forest in a plantation landscape in Southern India. Journal of Tropical Ecology, 2019, 35, 57-67.	1.1	7

#	Article	IF	CITATIONS
484	When will the Amazon hit a tipping point?. Nature, 2020, 578, 505-507.	27.8	75
485	Logging residues for charcoal production through forest management in the Brazilian Amazon: economic gains and forest regrowth effects. Environmental Research Letters, 2020, 15, 114029.	5.2	6
486	Estimating the multi-decadal carbon deficit of burned Amazonian forests. Environmental Research Letters, 2020, 15, 114023.	5.2	32
487	Direct mineralization of atmospheric CO ₂ using natural rocks in Japan. Environmental Research Letters, 2020, 15, 124018.	5.2	14
492	Removal of cattle accelerates tropical dry forest succession in Northwestern Mexico. Biotropica, 2020, 52, 457-469.	1.6	14
493	Pattern of forest recovery and carbon stock following shifting cultivation in Manipur, North-East India. PLoS ONE, 2020, 15, e0239906.	2.5	19
494	A close look at above ground biomass of a large and heterogeneous Seasonally Dry Tropical Forest - Caatinga in North East of Brazil. Anais Da Academia Brasileira De Ciencias, 2020, 92, e20190282.	0.8	9
495	Shifts in tree allometry in a tropical dry forest: implications for above-ground biomass estimation. Botanical Sciences, 2019, 97, 167-179.	0.8	9
497	Evaluación de ecuaciones alométricas de biomasa epigea en una selva mediana subcaducifolia de Yucatán. Madera Bosques, 2017, 23, 163-179.	0.2	10
498	Recuperación de la estructura, diversidad y composición en una selva mediana subperennifolia en Yucatán, México. Madera Bosques, 2019, 25, .	0.2	7
499	More Than a Functional Group: Diversity within the Legume–Rhizobia Mutualism and Its Relationship with Ecosystem Function. Diversity, 2020, 12, 50.	1.7	37
500	Model-Based Estimation of Amazonian Forests Recovery Time after Drought and Fire Events. Forests, 2021, 12, 8.	2.1	11
501	Allometric equations to estimate above-ground biomass of small-diameter mixed tree species in secondary tropical forests. IForest, 2020, 13, 165-174.	1.4	6
502	Forest aboveground biomass stock and resilience in a tropical landscape of Thailand. Biogeosciences, 2020, 17, 121-134.	3.3	21
503	Carbon recovery dynamics following disturbance by selective logging in Amazonian forests. ELife, 2016, 5, .	6.0	45
504	Seasonal and successional dynamics of size-dependent plant demographic rates in a tropical dry forest. PeerJ, 2020, 8, e9636.	2.0	7
505	Conservation Priorities in Terrestrial Protected Areas for Latin America and the Caribbean Based on an Ecoregional Analysis of Woody Vegetation Change, 2001–2010. Land, 2021, 10, 1067.	2.9	3
506	Overcoming Key Barriers for Secondary Cloud Forest Management in Mexico. Land, 2021, 10, 1078.	2.9	2

#	Article	IF	CITATIONS
507	Mapping global forest age from forest inventories, biomass and climate data. Earth System Science Data, 2021, 13, 4881-4896.	9.9	42
508	EFETIVIDADE NA RESTAURAÇÃO DE FLORESTAS TROPICAIS: COMO O DESEMPENHO DIFERENCIAL DAS ESPÉCIES E O CONTEXTO ECOLÓGICO INFLUENCIAM O ESTABELECIMENTO E OCUPAÇÃO. Nativa, 2021, 9, 442-453.	0.4	1
509	Site form classification—a practical tool for guiding site-specific tropical forest landscape restoration and management. Forestry, 2022, 95, 261-273.	2.3	6
510	Chapter 10. Trees have Already been Invented: Carbon in Woodlands. Collabra, 2016, 2, .	1.3	1
512	Clasificación del uso de suelo y vegetación en áreas de pérdida de cobertura arbórea (2000–2016) en la cuenca del rÃo Usumacinta. Madera Bosques, 2019, 25, .	0.2	4
513	Successional trajectories of secondary forests and tree plantations in Costa Rican lowlands. Revista De Biologia Tropical, 2019, 67, .	0.4	Ο
515	Introducing the Potential Medicinal and Ecological Value of a Pioneer Tree Species as a Justification to Conserve and Sustainably Manage Tropical Secondary Forests: <i>Vismia macrophylla</i> as a Case Study. Journal of Ethnobiology, 2020, 40, 70-88.	2.1	1
516	Forest structural parameters and aboveground biomass in old-growth and secondary forests along an elevational gradient in Mexico. Botanical Sciences, 0, 100, 67-85.	0.8	6
517	Biomass Production Assessment in a Protected Area of Dry Tropical forest Ecosystem of India: A Field to Satellite Observation Approach. Frontiers in Environmental Science, 2021, 9, .	3.3	13
518	Land use has little influence on the soil seed bank in a central African moist forest. Biotropica, 2022, 54, 100-112.	1.6	5
519	Ephemeral forest regeneration limits carbon sequestration potential in the Brazilian Atlantic Forest. Global Change Biology, 2022, 28, 630-643.	9.5	15
520	Estructura y composición arbórea del bosque tropical caducifolio secundario en la Depresión Central, Chiapas, México. Madera Bosques, 2020, 26, .	0.2	1
521	Landsat near-infrared (NIR) band and ELM-FATES sensitivity to forest disturbances and regrowth in the Central Amazon. Biogeosciences, 2020, 17, 6185-6205.	3.3	7
522	Atlantic Forest recovery after long-term eucalyptus plantations: The role of zoochoric and shade-tolerant tree species on carbon stock. Forest Ecology and Management, 2022, 503, 119789.	3.2	6
526	Resilience and sensitivity of ecosystem carbon stocks to fire-regime change in Alaskan tundra. Science of the Total Environment, 2021, 806, 151482.	8.0	2
527	Understanding the Long-Term Impact of Bamboos on Secondary Forests: A Case for Bamboo Management in Southern Brazil. Diversity, 2021, 13, 567.	1.7	7
528	Carbon content and allometric models to estimate aboveground biomass for forest areas under restoration. Restoration Ecology, 0, , e13591.	2.9	0
529	Land use influences stream bacterial communities in lowland tropical watersheds. Scientific Reports, 2021, 11, 21752.	3.3	10

CITATION REPORT

#	Article	IF	CITATIONS
531	Land Use Increases the Correlation between Tree Cover and Biomass Carbon Stocks in the Global Tropics. Land, 2021, 10, 1217.	2.9	3
532	Nonâ€additive biotic interactions improve predictions of tropical tree growth and impact community size structure. Ecology, 2022, 103, e03588.	3.2	7
533	Strengthening Local Governance of Secondary Forest in Peru. Land, 2021, 10, 1286.	2.9	5
534	Remotely sensed assessment of increasing chronic and episodic drought effects on a Costa Rican tropical dry forest. Ecosphere, 2021, 12, e03824.	2.2	5
535	Mapping the irrecoverable carbon in Earth's ecosystems. Nature Sustainability, 2022, 5, 37-46.	23.7	84
536	Functional recovery of secondary tropical forests. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	34
537	Parameter uncertainty dominates C-cycle forecast errors over most of Brazil for the 21st century. Earth System Dynamics, 2021, 12, 1191-1237.	7.1	8
538	Tropical Dry Forest Resilience to Fire Depends on Fire Frequency and Climate. Frontiers in Forests and Global Change, 2021, 4, .	2.3	16
539	Dietary change in high-income nations alone can lead to substantial double climate dividend. Nature Food, 2022, 3, 29-37.	14.0	70
540	Deforestation scenarios show the importance of secondary forest for meeting Panama's carbon goals. Landscape Ecology, 2022, 37, 673-694.	4.2	13
541	How do we best synergize climate mitigation actions to coâ€benefit biodiversity?. Global Change Biology, 2022, 28, 2555-2577.	9.5	28
542	Unprecedented large-area turnover estimates for the subtropical Brazilian Atlantic Forest based on systematically-gathered data. Forest Ecology and Management, 2022, 505, 119902.	3.2	1
543	Continuous monitoring of forest change dynamics with satellite time series. Remote Sensing of Environment, 2022, 269, 112829.	11.0	41
544	Agrobiodiversity in changing shifting cultivation landscapes of the Indian Himalayas: An empirical assessment. Landscape and Urban Planning, 2022, 220, 104333.	7.5	5
545	Cutting practices in mature stands of <i>Tilia cordata</i> Mill LesnÃcky ÄŒasopis, 2020, 66, 151-158.	0.8	2
546	Evaluación de la resiliencia ecológica de los bosques tropicales secos: una aproximación multiescalar. Madera Bosques, 2020, 26, .	0.2	2
547	Multifunctional soil recovery during the restoration of Brazil's Atlantic Forest after bauxite mining. Journal of Applied Ecology, 2022, 59, 2262-2273.	4.0	7
548	The sustainability of indigenous lands in AmapÃį state. Sustentabilidade Em Debate, 2021, 12, 324-359.	0.2	1

#	Article	IF	CITATIONS
549	Aboveground carbon accumulation by secondâ€growth forests after deforestation in Hawai'i. Ecological Applications, 2022, , e2539.	3.8	0
550	Aboveground forest biomass varies across continents, ecological zones and successional stages: refined IPCC default values for tropical and subtropical forests. Environmental Research Letters, 2022, 17, 014047.	5.2	21
551	Determination of land restoration potentials in the semi-arid areas of Chad using systematic monitoring and mapping techniques. Agroforestry Systems, 2023, 97, 1289-1305.	2.0	2
552	Rapid global phaseout of animal agriculture has the potential to stabilize greenhouse gas levels for 30 years and offset 68 percent of CO2 emissions this century. , 2022, 1, e0000010.		62
553	A ten-year record reveals the importance of tree species' habitat specialization in driving successional trajectories on Hainan Island, China. Forest Ecology and Management, 2022, 507, 120027.	3.2	8
554	Comparing contemporary and lifetime rates of carbon accumulation from secondary forests in the eastern Amazon. Forest Ecology and Management, 2022, 508, 120053.	3.2	4
555	Mapping Key Indicators of Forest Restoration in the Amazon Using a Low-Cost Drone and Artificial Intelligence. Remote Sensing, 2022, 14, 830.	4.0	9
556	Fine-Scale Improved Carbon Bookkeeping Model Using Landsat Time Series for Subtropical Forest, Southern China. Remote Sensing, 2022, 14, 753.	4.0	4
557	Natural forest regrowth under different land use intensities and landscape configurations in the Brazilian Atlantic Forest. Forest Ecology and Management, 2022, 508, 120012.	3.2	8
558	Multidimensional tropical forest recovery. Science, 2021, 374, 1370-1376.	12.6	165
558 560	Multidimensional tropical forest recovery. Science, 2021, 374, 1370-1376. Carbon stocks in a highly fragmented landscape with seasonally dry tropical forest in the Neotropics. Forest Ecosystems, 2022, 9, 100016.	12.6 3.1	165 2
	Carbon stocks in a highly fragmented landscape with seasonally dry tropical forest in the Neotropics.		
560	Carbon stocks in a highly fragmented landscape with seasonally dry tropical forest in the Neotropics. Forest Ecosystems, 2022, 9, 100016. Predicting resilience and stability of early secondâ€growth forests. Remote Sensing in Ecology and	3.1	2
560 561	Carbon stocks in a highly fragmented landscape with seasonally dry tropical forest in the Neotropics. Forest Ecosystems, 2022, 9, 100016. Predicting resilience and stability of early secondâ€growth forests. Remote Sensing in Ecology and Conservation, 0, , . Understanding the role of landâ€use emissions in achieving the Brazilian Nationally Determined	3.1 4.3	2
560 561 562	Carbon stocks in a highly fragmented landscape with seasonally dry tropical forest in the Neotropics. Forest Ecosystems, 2022, 9, 100016. Predicting resilience and stability of early secondâ€growth forests. Remote Sensing in Ecology and Conservation, 0, , . Understanding the role of landâ€use emissions in achieving the Brazilian Nationally Determined Contribution to mitigate climate change. Climate Resilience and Sustainability, 2022, 1, . Valentiella maceioensis gen. et sp. nov. (Herpotrichiellaceae, Chaetothyriales), a new black yeast-like	3.1 4.3 2.3	2 4 9
560 561 562 563	Carbon stocks in a highly fragmented landscape with seasonally dry tropical forest in the Neotropics. Forest Ecosystems, 2022, 9, 100016. Predicting resilience and stability of early secondâ€growth forests. Remote Sensing in Ecology and Conservation, 0, , . Understanding the role of landâ€use emissions in achieving the Brazilian Nationally Determined Contribution to mitigate climate change. Climate Resilience and Sustainability, 2022, 1, . Valentiella maceioensis gen. et sp. nov. (Herpotrichiellaceae, Chaetothyriales), a new black yeast-like fungus isolated from bromeliads in Brazil. Mycological Progress, 2022, 21, 1.	3.1 4.3 2.3 1.4	2 4 9 2
560 561 562 563 564	Carbon stocks in a highly fragmented landscape with seasonally dry tropical forest in the Neotropics. Forest Ecosystems, 2022, 9, 100016. Predicting resilience and stability of early secondâ€growth forests. Remote Sensing in Ecology and Conservation, 0, , . Understanding the role of landâ€use emissions in achieving the Brazilian Nationally Determined Contribution to mitigate climate change. Climate Resilience and Sustainability, 2022, 1, . Valentiella maceioensis gen. et sp. nov. (Herpotrichiellaceae, Chaetothyriales), a new black yeast-like fungus isolated from bromeliads in Brazil. Mycological Progress, 2022, 21, 1. Assessing the Impact of Road and Land Use on Species Diversity of Trees, Shrubs, Herbs and Grasses in the Mountain Landscape in Southern Africa. Frontiers in Conservation Science, 2022, 3, .	3.1 4.3 2.3 1.4 1.9	2 4 9 2 7

#	Article	IF	CITATIONS
568	Turnover rates of regenerated forests challenge restoration efforts in the Brazilian Atlantic forest. Environmental Research Letters, 2022, 17, 045009.	5.2	13
569	Aboveground biomass accumulation and tree size distribution in seasonal Atlantic Forest restoration sites. Restoration Ecology, 0, , .	2.9	0
570	Incorporating Effect Factors into the Relationship between Biodiversity and Ecosystem Functioning (BEF). Diversity, 2022, 14, 274.	1.7	5
571	Current and future carbon stocks of natural forests in China. Forest Ecology and Management, 2022, 511, 120137.	3.2	20
572	Are liming and pit size determining for tree species establishment in degraded areas by kaolin mining?. Ecological Engineering, 2022, 178, 106599.	3.6	3
573	More sustainable vegetable oil: Balancing productivity with carbon storage opportunities. Science of the Total Environment, 2022, 829, 154539.	8.0	13
574	Seizing resilience windows to foster passive recovery in the forest-water interface in Amazonian lands. Science of the Total Environment, 2022, 828, 154425.	8.0	5
575	Photosynthetic and hydraulic traits influence forest resistance and resilience to drought stress across different biomes. Science of the Total Environment, 2022, 828, 154517.	8.0	10
576	Projection of Agricultural Water Stress for Climate Change Scenarios: A Regional Case Study of Iraq. Agriculture (Switzerland), 2021, 11, 1288.	3.1	29
577	Relationships between tree-community composition and regeneration potential of <i>Shorea</i> trees in logged-over tropical rain forests. Journal of Forest Research, 2022, 27, 222-229.	1.4	4
578	Mapping the spatial distribution of stand age and aboveground biomass from Landsat time series analyses of forest cover loss in tropical dry forests. Remote Sensing in Ecology and Conservation, 2022, 8, 347-361.	4.3	5
579	<scp> GA ₃ </scp> â€mediated reforestation pioneering mechanism of actinorhizal <i>Elaeagnus conferta</i> Roxb. in the slashed and burnt shifting cultivation lands in India's megadiversity hotspot. Restoration Ecology, 0, , .	2.9	1
580	Primary forest loss and degradation reduces biodiversity and ecosystem functioning: A global metaâ€analysis using dung beetles as an indicator taxon. Journal of Applied Ecology, 2022, 59, 1572-1585.	4.0	22
581	Lianas decelerate tropical forest thinning during succession. Ecology Letters, 2022, 25, 1432-1441.	6.4	3
587	Mixed-Species Allometric Equations to Quantify Stem Volume and Tree Biomass in Dry Afromontane Forest of Ethiopia. Open Journal of Forestry, 2022, 12, 263-296.	0.3	1
588	Nuanced qualitative trait approaches reveal environmental filtering and phylogenetic constraints on lichen communities. Ecosphere, 2022, 13, .	2.2	7
589	Mexican agricultural frontier communities differ in forest dynamics with consequences for conservation and restoration. Remote Sensing in Ecology and Conservation, 2022, 8, 564-577.	4.3	3
590	Conservative N cycling despite high atmospheric deposition in early successional African tropical lowland forests. Plant and Soil, 2022, 477, 743-758.	3.7	1

#	Article	IF	CITATIONS
591	Quantifying the Effects of Stand and Climate Variables on Biomass of Larch Plantations Using Random Forests and National Forest Inventory Data in North and Northeast China. Sustainability, 2022, 14, 5580.	3.2	5
592	Dynamics of tropical forest regeneration in the Mexican Mesoamerican Biological Corridor from 2000 to 2020: does forest regeneration maintain continuous forest cover?. Regional Environmental Change, 2022, 22, 1.	2.9	4
593	Assessing Amazon rainforest regrowth with GEDI and ICESat-2 data. Science of Remote Sensing, 2022, 5, 100051.	4.8	8
594	Contrasting patterns of microbial nutrient limitations between rhizosphere and bulk soil during stump sprout restoration in a clear-cut oak forest. Forest Ecology and Management, 2022, 515, 120241.	3.2	5
595	Rural land abandonment is too ephemeral to provide major benefits for biodiversity and climate. Science Advances, 2022, 8, .	10.3	36
596	Regional and local determinants of drought resilience in tropical forests. Ecology and Evolution, 2022, 12, .	1.9	5
597	Forest Fragmentation and Fires in the Eastern Brazilian Amazon–Maranhão State, Brazil. Fire, 2022, 5, 77.	2.8	13
598	Tree diversity depending on environmental gradients promotes biomass stability via species asynchrony in China's forest ecosystems. Ecological Indicators, 2022, 140, 109021.	6.3	5
599	A global database of woody tissue carbon concentrations. Scientific Data, 2022, 9, .	5.3	8
600	Biomass and carbon recovery of secondary forest in a Montane Subtropical Forest of North Eastern India. Tropical Ecology, 2023, 64, 114-121.	1.2	2
601	Threat of Forest Degradation in Ex-Forest Concession Right (HPH) in Indonesia. Sustainability and Climate Change, 2022, 15, 216-223.	0.3	1
602	Climate change mitigation potential of Atlantic Forest reforestations. Mitigation and Adaptation Strategies for Global Change, 2022, 27, .	2.1	0
603	Biophysical and Biocultural Upheavals in Mesoamerica, a Conservation Perspective: Mountains, Maize-Milpa, and Globalization. Frontiers in Forests and Global Change, 0, 5, .	2.3	3
604	Biodiversity mediates ecosystem sensitivity to climate variability. Communications Biology, 2022, 5, .	4.4	8
605	The Effect of Thinning Management on the Carbon Density of the Tree Layers in Larch–Birch Mixed Natural Secondary Forests of the Greater Khingan Range, Northeastern China. Forests, 2022, 13, 1035.	2.1	8
606	Ten simple rules for managing communications with a large number of coauthors. PLoS Computational Biology, 2022, 18, e1010185.	3.2	1
607	The ecoâ€evolutionary history of Madagascar presents unique challenges to tropical forest restoration. Biotropica, 2022, 54, 1081-1102.	1.6	3
608	Mapping the Spatial Distribution of Fern Thickets and Vine-Laden Forests in the Landscape of Bornean Logged-Over Tropical Secondary Rainforests. Remote Sensing, 2022, 14, 3354.	4.0	6

#	Article	IF	CITATIONS
609	Increasing calcium scarcity along Afrotropical forest succession. Nature Ecology and Evolution, 2022, 6, 1122-1131.	7.8	19
610	Agroforestry systems recover tree carbon stock faster than natural succession in Eastern Amazon, Brazil. Agroforestry Systems, 2022, 96, 941-956.	2.0	6
611	Deforestation, forest degradation, and land use dynamics in the Northeastern Ecuadorian Amazon. Applied Geography, 2022, 145, 102749.	3.7	12
612	Land use regulates microbial biomass and activity in highly degraded soil from Brazilian dry tropical forest. Archives of Agronomy and Soil Science, 0, , 1-16.	2.6	1
613	Patterns and controls on islandâ€wide aboveground biomass accumulation in secondâ€growth forests of Puerto Rico. Biotropica, 2022, 54, 1146-1159.	1.6	5
614	Tropical surface gold mining: A review of ecological impacts and restoration strategies. Land Development, 2022, 33, 3661-3674.	3.9	11
615	Scientific Mapping of Research on Nature-based Solutions for Sustainable Water Management. Water Resources Management, 2022, 36, 4499-4516.	3.9	10
616	Exploring characteristics of national forest inventories for integration with global space-based forest biomass data. Science of the Total Environment, 2022, 850, 157788.	8.0	6
617	Biodiversity and Carbon Stocks in Atlantic Forest Fragments: More of the Same or Complementary Parts?. SSRN Electronic Journal, 0, , .	0.4	0
618	Agroforestry systems associated with natural regeneration: alternatives practiced by family-farmers of Tomé-Açu, Pará. Sustentabilidade Em Debate, 2022, 13, 286.	0.2	0
620	Soil attributes and spatial variability of soil organic carbon stock under the Atlantic Forest, Brazil. Ciencia Florestal, 2022, 32, 1528-1551.	0.3	0
621	Tropical forest loss impoverishes arboreal mammal assemblages by increasing tree canopy openness. Ecological Applications, 2023, 33, .	3.8	9
622	Financial Revenues from Timber Harvesting in Secondary Cloud Forests: A Case Study from Mexico. Forests, 2022, 13, 1496.	2.1	1
623	Influence of aerially seeded <i>Pinus massoniana</i> plantations on soil quality in severely eroded and degraded land of subtropical China. Canadian Journal of Forest Research, 2022, 52, 1234-1244.	1.7	0
624	Incorporating a palaeo-perspective into Andean montane forest restoration. Frontiers in Conservation Science, 0, 3, .	1.9	0
625	From vegetation ecology to vegetation science: current trends and perspectives. Botanical Sciences, 2022, 100, S137-S174.	0.8	3
626	Can secondary forests mitigate the negative effect of old-growth forest loss on biodiversity? A landscape-scale assessment of two endangered primates. Landscape Ecology, 2022, 37, 3223-3238.	4.2	3
627	Ecological Restoration of Degraded Forests for Achieving Land Degradation Neutrality. , 2022, , 191-204.		0

#	Article	IF	CITATIONS
628	Using ecosystem integrity to maximize climate mitigation and minimize risk in international forest policy. Frontiers in Forests and Global Change, 0, 5, .	2.3	7
629	Dynamics of stand productivity in Moso bamboo forest after strip cutting. Frontiers in Plant Science, 0, 13, .	3.6	4
630	Soil carbon storage is related to tree functional composition in naturally regenerating tropical forests. Functional Ecology, 2022, 36, 3175-3187.	3.6	5
631	Lessons from a regional analysis of forest recovery trajectories in West Africa. Environmental Research Letters, 2022, 17, 115005.	5.2	9
632	Decadal forest dynamics in logged and unlogged sites at Uppangala, Western Ghats, India. Environmental Monitoring and Assessment, 2023, 195, .	2.7	1
633	Bosques sucesionales en Colombia: una oportunidad para la recuperación de paisajes transformados. Caldasia, 2022, 44, 332-344.	0.2	0
634	A practice-led assessment of landscape restoration potential in a biodiversity hotspot. Philosophical Transactions of the Royal Society B: Biological Sciences, 2023, 378, .	4.0	7
635	Fifteen essential science advances needed for effective restoration of the world's forest landscapes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2023, 378, .	4.0	18
636	Soil resistance and recovery during neotropical forest succession. Philosophical Transactions of the Royal Society B: Biological Sciences, 2023, 378, .	4.0	15
637	Humboldt's legacy: explaining the influence of environmental factors on the taxonomic and phylogenetic diversity of angiosperms along a Neotropical elevational gradient. AoB PLANTS, 2023, 15, .	2.3	2
638	TheÂroad to recovery: a synthesis of outcomes from ecosystem restoration in tropical and sub-tropical Asian forests. Philosophical Transactions of the Royal Society B: Biological Sciences, 2023, 378, .	4.0	19
639	Assessing protected area's carbon stocks and ecological structure at regional-scale using GEDI lidar. Global Environmental Change, 2023, 78, 102621.	7.8	7
640	Improved allometric models to estimate the aboveground biomass of younger secondary tropical forests. Global Ecology and Conservation, 2023, 41, e02359.	2.1	2
641	Secondary succession in swamp gallery forests along 65 fallow years after shifting cultivation. Forest Ecology and Management, 2023, 529, 120671.	3.2	2
642	Remote sensing analysis on primary productivity and forest cover dynamics: A Western Ghats India case study. Ecological Informatics, 2023, 73, 101922.	5.2	8
643	Neighborhood diversity structure and neighborhood species richness effects differ across life stages in a subtropical natural secondary forest. Forest Ecosystems, 2022, 9, 100075.	3.1	4
644	Better Forests, Better Cities. , 0, , .		5
645	Sensitivity of Stand-Level Biomass to Climate for Three Conifer Plantations in Northeast China. Forests, 2022, 13, 2022.	2.1	3

#	Article	IF	CITATIONS
646	Lianas rapidly colonize early stages of tropical forests, presumably through leaf trait diversification. Journal of Vegetation Science, 2022, 33, .	2.2	0
647	Ecological integrity of tropical secondary forests: concepts and indicators. Biological Reviews, 2023, 98, 662-676.	10.4	8
648	Longâ€ŧerm fire and vegetation change in northwestern Amazonia. Biotropica, 2023, 55, 197-209.	1.6	5
650	Carbon sequestration potential of different forest types in Pakistan and its role in regulating services for public health. Frontiers in Public Health, 0, 10, .	2.7	6
651	Landscape-scale forest cover drives the predictability of forest regeneration across the Neotropics. Proceedings of the Royal Society B: Biological Sciences, 2023, 290, .	2.6	7
653	Environmental, structural, and taxonomic diversity factors drive aboveground carbon stocks in semiâ€deciduous tropical rainforest strata in Cameroon. African Journal of Ecology, 2023, 61, 163-175.	0.9	2
654	Evidence of time-lag in the provision of ecosystem services by tropical regenerating forests to coffee yields. Environmental Research Letters, 2023, 18, 025002.	5.2	2
655	Nano Ag/Co3O4 Catalyzed Rapid Decomposition of Robinia pseudoacacia Bark for Production Biofuels and Biochemicals. Polymers, 2023, 15, 114.	4.5	0
656	Monoculture plantations impede forest recovery: Evidence from the regeneration of lowland subtropical forest in Hong Kong. Frontiers in Forests and Global Change, 0, 6, .	2.3	2
657	Radiation and temperature dominate the spatiotemporal variability in resilience of subtropical evergreen forests in China. Frontiers in Forests and Global Change, 0, 6, .	2.3	0
658	Spatial distribution of aboveground biomass stock in tropical dry forest in Brazil. IForest, 2023, 16, 116-126.	1.4	0
659	A Review on the Use of LiDAR Remote Sensing for Forest Landscape Restoration. , 2022, , 49-74.		0
660	The role of seed rain and soil seed bank in the regeneration of a Caatinga dry forest following slash-and-burn agriculture. Journal of Arid Environments, 2023, 211, 104948.	2.4	0
661	Soil factors rather than stand age drive tree phylogenetic diversity along Amazon Forest succession. Ecological Engineering, 2023, 189, 106915.	3.6	0
662	Is it possible that the structure of tropical rainforests has recovered 40 years after clear-cutting?. Forestry Studies, 2022, 76, 64-75.	0.2	0
663	Liana abundance and diversity increase along a successional gradient, even with homogeneous closed canopy. Forest Ecology and Management, 2023, 534, 120878.	3.2	1
664	Potential aboveground biomass increase in Brazilian Atlantic Forest fragments with climate change. Global Change Biology, 2023, 29, 3098-3113.	9.5	8
665	Achieving Land Degradation Neutrality to Combat the Impacts of Climate Change. , 2023, , 77-96.		2

#	Article	IF	CITATIONS
666	Influences of fern and vine coverage on the above-ground biomass recovery in a Bornean logged-over degraded secondary forest. Journal of Forest Research, 2023, 28, 260-270.	1.4	2
667	No relationship between biodiversity and forest carbon sink across the subtropical Brazilian Atlantic Forest. Perspectives in Ecology and Conservation, 2023, 21, 112-120.	1.9	2
668	The carbon sink of secondary and degraded humid tropical forests. Nature, 2023, 615, 436-442.	27.8	19
669	Effects of climate and plant functional types on forest above-ground biomass accumulation. Carbon Balance and Management, 2023, 18, .	3.2	6
670	Impact of small farmers' access to improved seeds and deforestation in DR Congo. Nature Communications, 2023, 14, .	12.8	2
671	Thinning Levels of Laurel Natural Regeneration to Establish Traditional Agroforestry Systems, Ecuadorian Amazon Upper Basin. Forests, 2023, 14, 667.	2.1	1
672	Resilient fruit-feeding butterfly assemblages across a Caatinga dry forest chronosequence submitted to chronic anthropogenic disturbance. Journal of Insect Conservation, 2023, 27, 467-477.	1.4	2
673	Optical remotely sensed data for mapping variations in cashew plantation distribution and associated land uses in Ogbomoso, Nigeria Southwest. Geo Journal, 2023, 88, 361-376.	3.1	0
674	Resilience and successional trends of woody vegetation in seasonally dry tropical forests. Forestry, 2023, 96, 740-753.	2.3	1
675	Satellite-derived forest canopy greenness shows differential drought vulnerability of secondary forests compared to primary forests in Peru. Environmental Research Letters, 0, , .	5.2	1
676	South American mountain ecosystems and global change – a case study for integrating theory and field observations for land surface modelling and ecosystem management. Plant Ecology and Diversity, 2023, 16, 1-27.	2.4	2
677	Forest disturbance and recovery in Peruvian Amazonia. Global Change Biology, 0, , .	9.5	1
678	Mapping the Age of Subtropical Secondary Forest Using Dense Landsat Time Series Data: An Ensemble Model. Remote Sensing, 2023, 15, 2067.	4.0	2
679	Mapping global forest regeneration–an untapped potential to mitigate climate change and biodiversity loss. Environmental Research Letters, 2023, 18, 054025.	5.2	0
680	Assessing the recovery in species, size and location diversities of a lowland tropical rainforest after shifting cultivation by multiple indices at stand and neighborhood scales. Journal of Environmental Management, 2023, 341, 118089.	7.8	2
682	Spatial Distribution of Secondary Forests by Age Group and Biomass Accumulation in the Brazilian Amazon. Forests, 2023, 14, 924.	2.1	0
683	Genotype × environment interaction for establishment and precocity traits among elite cocoa (Theobroma cacao L.) hybrids in Ghana. Euphytica, 2023, 219, .	1.2	0
684	How woody plants adjust above―and belowâ€ground traits in response to sustained drought. New Phytologist, 2023, 239, 1173-1189.	7.3	15

#	Article	IF	CITATIONS
685	<i>Biodiversity</i> (Wilson & Peters, 1988) revisited: How has tropical conservation science changed in the last 35 years?. Biotropica, 2023, 55, 729-736.	1.6	1
686	Throughfall exclusion and fertilization effects on tropical dry forest tree plantations, a large-scale experiment. Biogeosciences, 2023, 20, 2143-2160.	3.3	2
687	Forest fragmentation and its associated edge-effects reduce tree species diversity, size, and structural diversity in Madagascar's transitional forests. Biodiversity and Conservation, 2023, 32, 3329-3353.	2.6	2
688	Characterizing aboveground biomass and tree cover of regrowing forests in Brazil using multiâ€source remote sensing data. Remote Sensing in Ecology and Conservation, 2023, 9, 553-567.	4.3	2
689	Spatiotemporal Variability in Disturbance Frequency and Severity across Mexico: Evidence from Conifer Tree Rings. Forests, 2023, 14, 900.	2.1	1
690	Soil biodiversity in natural forests potentially exhibits higher resistance than planted forests under global warming. Frontiers in Plant Science, 0, 14, .	3.6	0
691	Evenness mediates the global relationship between forest productivity and richness. Journal of Ecology, 2023, 111, 1308-1326.	4.0	4
692	Climate-Change-Driven Droughts and Tree Mortality: Assessing the Potential of UAV-Derived Early Warning Metrics. Remote Sensing, 2023, 15, 2627.	4.0	4
693	What follows fallow? Assessing revegetation patterns on abandoned sugarcane land in Hawaiʻi. Agriculture, Ecosystems and Environment, 2023, 355, 108603.	5.3	2
694	Forest Age Mapping Using Landsat Time-Series Stacks Data Based on Forest Disturbance and Empirical Relationships between Age and Height. Remote Sensing, 2023, 15, 2862.	4.0	2
695	Phytolith assemblages reflect variability in human land use and the modern environment. Vegetation History and Archaeobotany, 2024, 33, 221-236.	2.1	0
696	Drought diminishes aboveground biomass accumulation rate during secondary succession in a tropical forest on Hainan Island, China. Forest Ecology and Management, 2023, 544, 121222.	3.2	1
697	Local and Regional Effects of Land-Use Intensity on Aboveground Biomass and Tree Diversity in Tropical Montane Cloud Forests. Ecosystems, 2023, 26, 1734-1752.	3.4	4
698	The carbon costs of global wood harvests. Nature, 2023, 620, 110-115.	27.8	19
699	Biomass and floristics of a secondary forest in West Kalimantan, Indonesia. Tropics, 2023, , .	0.8	0
700	Modeling response of tree slenderness to climate, soil, diversity, and competition in natural secondary forests. Forest Ecology and Management, 2023, 545, 121253.	3.2	2
701	Linking above and belowground carbon sequestration, soil organic matter properties, and soil health in Brazilian Atlantic Forest restoration. Journal of Environmental Management, 2023, 344, 118573.	7.8	1
702	The Global Land Squeeze: Managing the Growing Competition for Land. , 0, , .		1

#	Article	IF	CITATIONS
703	Carbon stock recovery from tree regeneration following selective logging in tropical forest of the Yucatan Peninsula, Mexico. Carbon Management, 2023, 14, .	2.4	0
704	Asymmetric influence of forest cover gain and loss on land surface temperature. Nature Climate Change, 2023, 13, 823-831.	18.8	3
705	Soil carbon dynamics are linked to tree species growth strategy in a naturally regenerating tropical forest. Frontiers in Forests and Global Change, 0, 6, .	2.3	0
706	Incorporating Natural Infrastructure in BogotÃj's Water System. , 0, , .		0
707	Integrando Infraestructura Natural al Sistema de Abastecimiento de Agua de Bogot $ ilde{A}_i$. , 0, , .		0
708	Woodâ€density has no effect on stomatal control of leafâ€level water use efficiency in an Amazonian forest. Plant, Cell and Environment, 2023, 46, 3806-3821.	5.7	0
709	Accurate dating of tropical secondary forests using wood core Δ14C in Malaysia. Forest Ecology and Management, 2023, 546, 121346.	3.2	0
710	Balancing food production with climate change mitigation and biodiversity conservation in the Brazilian Amazon. Science of the Total Environment, 2023, 904, 166681.	8.0	0
711	Fine root biomass and its relationship with the soil in degraded areas by mining in biogeographic ChocÃ3. Revista Facultad Nacional De Agronomia Medellin, 2023, 76, 10403-10415.	0.5	0
712	Scale dependency of the effects of landscape structure and stand age on species richness and aboveground biomass of tropical dry forests. IForest, 2023, 16, 234-242.	1.4	0
713	Past humanâ€induced ecological legacies as a driver of modern Amazonian resilience. People and Nature, 2023, 5, 1415-1429.	3.7	2
714	How Forest Management with Clear-Cutting Affects the Regeneration, Diversity and Structure of a Seasonally Dry Tropical Forest in Brazil. Forests, 2023, 14, 1870.	2.1	0
715	The neglected role of abandoned cropland in supporting both food security and climate change mitigation. Nature Communications, 2023, 14, .	12.8	8
716	Effects of historical land use and recovery pathways on composition, structure, ecological function, and ecosystem services in a Caribbean secondary forest. Forest Ecology and Management, 2023, 546, 121311.	3.2	1
717	Sharp decline in future productivity of tropical reforestation above 29°C mean annual temperature. Science Advances, 2023, 9, .	10.3	2
718	Natural regeneration in tropical forests along a disturbance gradient in South-East Cameroon. Forest Ecology and Management, 2023, 547, 121402.	3.2	1
720	Can natural forest expansion contribute to Europe's restoration policy agenda? An interdisciplinary assessment. Ambio, 0, , .	5.5	0
721	Isolating the effects of land use and functional variation on Yucatán's forest biomass under global change. Frontiers in Forests and Global Change, 0, 6, .	2.3	0

#	Article	IF	CITATIONS
722	Meta-analysis of carbon stocks and biodiversity outcomes across Brazilian restored biomes. Science of the Total Environment, 2024, 906, 167558.	8.0	1
723	Amazonian secondary forests are greatly reducing fragmentation and edge exposure in old-growth forests. Environmental Research Letters, 2023, 18, 124016.	5.2	2
724	Forest recovery by direct seeding on the southern edge of the Brazilian Amazon. Restoration Ecology, 0, , .	2.9	0
725	Determinants of above-ground carbon stocks and productivity in secondary forests along a 3000-m elevation gradient in the Ecuadorian Andes. Plant Ecology and Diversity, 2023, 16, 127-146.	2.4	2
726	Incomplete recovery of tree community composition and rare species after 120 years of tropical forest succession in Panama. Biotropica, 2024, 56, 36-49.	1.6	0
727	ls tree planting an effective strategy for climate change mitigation?. Science of the Total Environment, 2024, 909, 168479.	8.0	1
728	Quercus wutaishanica shrub affects temperate forest community composition and soil properties under different restoration stage. PLoS ONE, 2023, 18, e0294159.	2.5	0
729	Computational tools for assessing forest recovery with GEDI shots and forest change maps. Science of Remote Sensing, 2023, 8, 100106.	4.8	0
730	Relationship between Climate-Shaped Urbanization and Forest Ecological Function: A Case Study of the Yellow River Basin, China. Land, 2023, 12, 2047.	2.9	0
731	Water Balance and the Moist Planetary Boundary Layer Driven by Land Use and Land Cover Change across the Amazon Basin. Water (Switzerland), 2023, 15, 4052.	2.7	0
732	Recovery of aboveground biomass, soil carbon stocks and species diversity in tropical montane secondary forests of East Africa. Forest Ecology and Management, 2024, 552, 121569.	3.2	2
733	Yield increases mediated by pollination and carbon payments can offset restoration costs in coffee landscapes. One Earth, 2023, , .	6.8	1
734	Mixed success for carbon payments and subsidies in support of forest restoration in the neotropics. Nature Communications, 2023, 14, .	12.8	0
735	Targeted rainfall enhancement as an objective of forestation. Global Change Biology, 2024, 30, .	9.5	0
736	A multi-source data approach to carbon stock prediction using Bayesian hierarchical geostatistical models in plantation forest ecosystems. GIScience and Remote Sensing, 2024, 61, .	5.9	0
737	What, where, and how: a spatiotemporally explicit analysis of the drivers of habitat loss within the range of maned threeâ€ŧoed sloths (<i>Bradypus torquatus</i> and <i>Bradypus crinitus</i>). Mammal Review, 0, , .	4.8	0
738	Compositional changes at neighborhood and stand scales during recovery of a tropical lowland rainforest after shifting cultivation on Hainan Island, China. Journal of Environmental Management, 2024, 351, 119951.	7.8	0
739	Aboveground carbon sequestration of Cunninghamia lanceolata forests: Magnitude and drivers. Forest Ecosystems, 2024, 11, 100165.	3.1	0

#	Article	IF	CITATIONS
740	Feedback loops drive ecological succession: towards a unified conceptual framework. Biological Reviews, 2024, 99, 928-949.	10.4	0
741	Evaluating global vegetation products for application in heterogeneous forest-savanna landscapes. International Journal of Remote Sensing, 2024, 45, 492-507.	2.9	Ο
742	Biomass recovery along a tropical forest succession: Trends on tree diversity, wood traits and stand stand structure. Forest Ecology and Management, 2024, 555, 121709.	3.2	0
743	Soil nutrients determine leaf traits and above-ground biomass in the tropical cloud forest of Hainan Island. Frontiers in Forests and Clobal Change, 0, 7, .	2.3	0
744	Protecting an artificial savanna as a natureâ€based solution to restore carbon and biodiversity in the Democratic Republic of the Congo. Global Change Biology, 2024, 30, .	9.5	0
745	Chronic Winds Reduce Tropical Forest Structural Complexity Regardless of Climate, Topography, or Forest Age. Ecosystems, 2024, 27, 479-491.	3.4	0
746	Revealing the spatial variation in biomass uptake rates of Brazil's secondary forests. ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 208, 233-244.	11.1	0
747	On the unique value of forests for water: Hydrologic impacts of forest disturbances, conversion, and restoration. Global Change Biology, 2024, 30, .	9.5	0
748	Identificación de áreas con alta biomasa aérea y alta riqueza de especies en bosques nativos del nordeste de Uruguay. Revista De Teledeteccion, 2024, , 37-52.	0.6	0
749	Chronic human disturbance and environmental forces drive the regeneration mechanisms of a Caatinga dry tropical forest. Perspectives in Ecology and Conservation, 2024, 22, 79-92.	1.9	0
750	A pioneer tree species rapidly facilitating ecosystem restoration in coastal regions depends on soil traits. Catena, 2024, 238, 107825.	5.0	0
751	Diversity patterns along ecological succession in tropical dry forests: a multiâ€ŧaxonomic approach. Oikos, 2024, 2024, .	2.7	0
752	Secondary Amazon rainforest partially recovers tree cavities suitable for nesting birds in 18–34 years. Condor, 0, , .	1.6	0
753	Animalâ€mediated seed dispersal and the demoâ€genetic configuration across plant colonization gradients. Journal of Ecology, 2024, 112, 1013-1025.	4.0	0
754	A novel geospatial machine learning approach to quantify non-linear effects of land use/land cover change (LULCC) on carbon dynamics. International Journal of Applied Earth Observation and Geoinformation, 2024, 128, 103712.	1.9	0
755	Sustainability and Brazilian Agricultural Production: A Bibliometric Analysis. Sustainability, 2024, 16, 1833.	3.2	0
756	A temperature-based model of biomass accumulation in humid forests of the world. Frontiers in Forests and Global Change, 0, 7, .	2.3	0
757	The inclusion of Amazon mangroves in Brazil's REDD+ program. Nature Communications, 2024, 15, .	12.8	Ο

#	Article	IF	CITATIONS
758	Recent advances and challenges in monitoring and modeling of disturbances in tropical moist forests. Frontiers in Remote Sensing, 0, 5, .	3.5	0
759	Mapping the Spatiotemporal Dynamics of Cropland Abandonment and Recultivation across the Yangtze River Basin. Remote Sensing, 2024, 16, 1052.	4.0	0
760	Explore before you restore: Incorporating complex systems thinking in ecosystem restoration. Journal of Applied Ecology, 2024, 61, 922-939.	4.0	0
761	Influence of soil nutrients on net primary productivity in post-mining forests in the Colombian Pacific. Revista Brasileira De Ciencia Do Solo, 2024, 48, .	1.3	0
762	Differences in mixedâ€species bird flocks across forest succession: Combining network analysis and traitâ€based ecology related to the fastâ€slow continuum. Functional Ecology, 0, , .	3.6	0
763	Efectos de la fertilización sobre la producción de hojarasca de bosques post-minerÃa del Chocó Biogeográfico. Colombia Forestal, 2024, 27, e20809.	0.2	0