High-resolution satellite-based analysis of ground-level

Science of the Total Environment 541, 1059-1069

DOI: 10.1016/j.scitotenv.2015.10.024

Citation Report

#	Article	IF	CITATIONS
1	A Review on Predicting Ground PM2.5 Concentration Using Satellite Aerosol Optical Depth. Atmosphere, 2016, 7, 129.	1.0	138
2	Evaluation of machine learning techniques with multiple remote sensing datasets in estimating monthly concentrations of ground-level PM2.5. Environmental Pollution, 2018, 242, 1417-1426.	3.7	125
3	Linear Regression Model for Predicting Daily PM _{2.5} Using VIIRS-SNPP and MODIS-Aqua AOT. IOP Conference Series: Earth and Environmental Science, 0, 303, 012039.	0.2	4
4	Contribution of Satellite-Derived Aerosol Optical Depth PM2.5 Bayesian Concentration Surfaces to Respiratory-Cardiovascular Chronic Disease Hospitalizations in Baltimore, Maryland. Atmosphere, 2020, 11, 209.	1.0	6
5	Spatiotemporal mixed effects modeling for the estimation of PM _{2.5} from MODIS AOD over the Indian subcontinent. GIScience and Remote Sensing, 2020, 57, 159-173.	2.4	23
6	Estimating Ground-Level Hourly PM2.5 Concentrations Over North China Plain with Deep Neural Networks. Journal of the Indian Society of Remote Sensing, 2021, 49, 1839-1852.	1.2	5
7	High-resolution prediction of the spatial distribution of PM2.5 concentrations in China using a long short-term memory model. Journal of Cleaner Production, 2021, 297, 126493.	4.6	18
8	Contribution of AOD-PM2.5 surfaces to respiratory-cardiovascular hospital events in urban and rural areas in Baltimore, Maryland, USA: New analytical method correctly identified true positive cases and true negative controls. Atmospheric Environment, 2021, 262, 118629.	1.9	3
10	Estimating PM2.5 surface concentrations from AOD: A combination of SLSTR and MODIS. Remote Sensing Applications: Society and Environment, 2022, 26, 100716.	0.8	10