On the Temperature Dependence of Enzyme-Catalyzed

Biochemistry 55, 1681-1688 DOI: 10.1021/acs.biochem.5b01094

Citation Report

#	Article	IF	CITATIONS
3	Temperature Sensitivity as a Microbial Trait Using Parameters from Macromolecular Rate Theory. Frontiers in Microbiology, 2016, 7, 1821.	1.5	43
4	Temperature sensitivity of soil microbial communities: An application of macromolecular rate theory to microbial respiration. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1420-1433.	1.3	41
5	Logic Gate Based on Circular DNA Structure with Strand Displacement. Communications in Computer and Information Science, 2016, , 39-46.	0.4	0
6	Untangling Heavy Protein and Cofactor Isotope Effects on Enzyme-Catalyzed Hydride Transfer. Journal of the American Chemical Society, 2016, 138, 13693-13699.	6.6	26
7	Improved activity of α-chymotrypsin on silica particles – A high-pressure stopped-flow study. Biophysical Chemistry, 2016, 218, 1-6.	1.5	8
8	Ligand-induced conformational changes in prolyl oligopeptidase: a kinetic approach. Protein Engineering, Design and Selection, 2017, 30, 217-224.	1.0	3
9	On the indirect relationship between protein dynamics and enzyme activity. Progress in Biophysics and Molecular Biology, 2017, 125, 52-60.	1.4	10
10	Rapid laboratory measurement of the temperature dependence of soil respiration and application to changes in three diverse soils through the year. Biogeochemistry, 2017, 133, 101-112.	1.7	27
11	Computation of enzyme cold adaptation. Nature Reviews Chemistry, 2017, 1, .	13.8	75
12	Electric Fields and Enzyme Catalysis. Annual Review of Biochemistry, 2017, 86, 387-415.	5.0	298
12 13	Electric Fields and Enzyme Catalysis. Annual Review of Biochemistry, 2017, 86, 387-415. Convergence of Theory and Experiment on the Role of Preorganization, Quantum Tunneling, and Enzyme Motions into Flavoenzyme-Catalyzed Hydride Transfer. ACS Catalysis, 2017, 7, 3190-3198.	5.0 5.5	298 31
12 13 14	Electric Fields and Enzyme Catalysis. Annual Review of Biochemistry, 2017, 86, 387-415. Convergence of Theory and Experiment on the Role of Preorganization, Quantum Tunneling, and Enzyme Motions into Flavoenzyme-Catalyzed Hydride Transfer. ACS Catalysis, 2017, 7, 3190-3198. Evolutionary drivers of thermoadaptation in enzyme catalysis. Science, 2017, 355, 289-294.	5.0 5.5 6.0	298 31 147
12 13 14 15	Electric Fields and Enzyme Catalysis. Annual Review of Biochemistry, 2017, 86, 387-415. Convergence of Theory and Experiment on the Role of Preorganization, Quantum Tunneling, and Enzyme Motions into Flavoenzyme-Catalyzed Hydride Transfer. ACS Catalysis, 2017, 7, 3190-3198. Evolutionary drivers of thermoadaptation in enzyme catalysis. Science, 2017, 355, 289-294. Heat Capacity Changes for Transition-State Analogue Binding and Catalysis with Human 5′-Methylthioadenosine Phosphorylase. ACS Chemical Biology, 2017, 12, 464-473.	5.0 5.5 6.0 1.6	298 31 147 17
12 13 14 15 16	Electric Fields and Enzyme Catalysis. Annual Review of Biochemistry, 2017, 86, 387-415. Convergence of Theory and Experiment on the Role of Preorganization, Quantum Tunneling, and Enzyme Motions into Flavoenzyme-Catalyzed Hydride Transfer. ACS Catalysis, 2017, 7, 3190-3198. Evolutionary drivers of thermoadaptation in enzyme catalysis. Science, 2017, 355, 289-294. Heat Capacity Changes for Transition-State Analogue Binding and Catalysis with Human Sã€2-Methylthioadenosine Phosphorylase. ACS Chemical Biology, 2017, 12, 464-473. A cerium-based metal〓organic framework having inherent oxidase-like activity applicable for colorimetric sensing of biothiols and aerobic oxidation of thiols. CrystEngComm, 2017, 19, 5915-5925.	5.0 5.5 6.0 1.6 1.3	298 31 147 17 101
12 13 14 15 16 17	Electric Fields and Enzyme Catalysis. Annual Review of Biochemistry, 2017, 86, 387-415. Convergence of Theory and Experiment on the Role of Preorganization, Quantum Tunneling, and Enzyme Motions into Flavoenzyme-Catalyzed Hydride Transfer. ACS Catalysis, 2017, 7, 3190-3198. Evolutionary drivers of thermoadaptation in enzyme catalysis. Science, 2017, 355, 289-294. Heat Capacity Changes for Transition-State Analogue Binding and Catalysis with Human Sâ€2-Methylthioadenosine Phosphorylase. ACS Chemical Biology, 2017, 12, 464-473. A cerium-based metal–organic framework having inherent oxidase-like activity applicable for colorimetric sensing of biothiols and aerobic oxidation of thiols. CrystEngComm, 2017, 19, 5915-5925. A complete thermodynamic analysis of enzyme turnover links the free energy landscape to enzyme catalysis. FEBS Journal, 2017, 284, 2829-2842.	5.0 5.5 6.0 1.6 1.3 2.2	 298 31 147 17 101 39
12 13 14 15 16 17 18	Electric Fields and Enzyme Catalysis. Annual Review of Biochemistry, 2017, 86, 387-415. Convergence of Theory and Experiment on the Role of Preorganization, Quantum Tunneling, and Enzyme Motions into Flavoenzyme-Catalyzed Hydride Transfer. ACS Catalysis, 2017, 7, 3190-3198. Evolutionary drivers of thermoadaptation in enzyme catalysis. Science, 2017, 355, 289-294. Heat Capacity Changes for Transition-State Analogue Binding and Catalysis with Human Sa€2-Methylthioadenosine Phosphorylase. ACS Chemical Biology, 2017, 12, 464-473. A cerium-based metal–organic framework having inherent oxidase-like activity applicable for colorimetric sensing of biothiols and aerobic oxidation of thiols. CrystEngComm, 2017, 19, 5915-5925. A complete thermodynamic analysis of enzyme turnover links the free energy landscape to enzyme catalysis. FEBS Journal, 2017, 284, 2829-2842. Plasticity of Performance Curves Can Buffer Reaction Rates from Body Temperature Variation in Active Endotherms. Frontiers in Physiology, 2017, 8, 575.	5.0 5.5 6.0 1.6 1.3 2.2 1.3	298 31 147 17 101 39 14
12 13 14 15 16 17 18 18	Electric Fields and Enzyme Catalysis. Annual Review of Biochemistry, 2017, 86, 387-415. Convergence of Theory and Experiment on the Role of Preorganization, Quantum Tunneling, and Enzyme Motions into Flavoenzyme-Catalyzed Hydride Transfer. ACS Catalysis, 2017, 7, 3190-3198. Evolutionary drivers of thermoadaptation in enzyme catalysis. Science, 2017, 355, 289-294. Heat Capacity Changes for Transition-State Analogue Binding and Catalysis with Human 5å62-Methylthioadenosine Phosphorylase. ACS Chemical Biology, 2017, 12, 464-473. A cerium-based metalâC"organic framework having inherent oxidase-like activity applicable for colorimetric sensing of biothiols and aerobic oxidation of thiols. CrystEngComm, 2017, 19, 5915-5925. A complete thermodynamic analysis of enzyme turnover links the free energy landscape to enzyme catalysis. FEBS Journal, 2017, 284, 2829-2842. Plasticity of Performance Curves Can Buffer Reaction Rates from Body Temperature Variation in Active Endotherms. Frontiers in Physiology, 2017, 8, 575. The Thermodynamic Links between Substrate, Enzyme, and Microbial Dynamics in Michaelisåe"Mentenäe"Monod Kinetics. International Journal of Chemical Kinetics, 2018, 50, 343-356.	5.0 5.5 6.0 1.6 1.3 2.2 1.3 1.0	298 31 147 17 101 39 14

#	Article	IF	CITATIONS
21	Uncovering the Relationship between the Change in Heat Capacity for Enzyme Catalysis and Vibrational Frequency through Isotope Effect Studies. ACS Catalysis, 2018, 8, 5340-5349.	5.5	13
22	Dynamical origins of heat capacity changes in enzyme-catalysed reactions. Nature Communications, 2018, 9, 1177.	5.8	64
23	Thermodynamic responses of ammonia-oxidizing archaea and bacteria explain N2O production from greenhouse vegetable soils. Soil Biology and Biochemistry, 2018, 120, 37-47.	4.2	67
24	Review: Engineering of thermostable enzymes for industrial applications. APL Bioengineering, 2018, 2, 011501.	3.3	202
25	Three physiological parameters capture variation in leaf respiration of <scp> <i>Eucalyptus grandis </i> </scp> , as elicited by shortâ€ŧerm changes in ambient temperature, and differing nitrogen supply. Plant, Cell and Environment, 2018, 41, 1369-1382.	2.8	7
26	Macromolecular rate theory (<scp>MMRT</scp>) provides a thermodynamics rationale to underpin the convergent temperature response in plant leaf respiration. Global Change Biology, 2018, 24, 1538-1547.	4.2	35
27	Interfacial structural crossover and hydration thermodynamics of charged C ₆₀ in water. Physical Chemistry Chemical Physics, 2018, 20, 27069-27081.	1.3	6
28	Linear Eyring Plots Conceal a Change in the Rate-Limiting Step in an Enzyme Reaction. Biochemistry, 2018, 57, 6757-6761.	1.2	16
29	Characterization and Thermal Denaturation Kinetic Analysis of Recombinant l-Amino Acid Ester Hydrolase from Stenotrophomonas maltophilia. Journal of Agricultural and Food Chemistry, 2018, 66, 11064-11072.	2.4	2
30	Nonequivalence of Second Sphere "Noncatalytic―Residues in Pentaerythritol Tetranitrate Reductase in Relation to Local Dynamics Linked to H-Transfer in Reactions with NADH and NADPH Coenzymes. ACS Catalysis, 2018, 8, 11589-11599.	5.5	12
31	Enzymatic Transition States and Drug Design. Chemical Reviews, 2018, 118, 11194-11258.	23.0	58
32	Hofmeister effect on catalytic properties of chymotrypsin is substrate-dependent. Biophysical Chemistry, 2018, 243, 8-16.	1.5	15
33	Fluctuation relations, effective temperature, and ageing of enzymes: The case of protein electron transfer. Journal of Molecular Liquids, 2018, 266, 361-372.	2.3	16
34	Reaction and diffusion thermodynamics explain optimal temperatures of biochemical reactions. Scientific Reports, 2018, 8, 11105.	1.6	45
35	Glutamine Hydrolysis by Imidazole Glycerol Phosphate Synthase Displays Temperature Dependent Allosteric Activation. Frontiers in Molecular Biosciences, 2018, 5, 4.	1.6	25
36	A metaâ€analysis of temperature sensitivity as a microbial trait. Global Change Biology, 2018, 24, 4211-4224.	4.2	54
37	Plant carbon metabolism and climate change: elevated <scp>CO</scp> ₂ and temperature impacts on photosynthesis, photorespiration and respiration. New Phytologist, 2019, 221, 32-49.	3.5	571
38	Shifts in temperature response of soil respiration between adjacent irrigated and non-irrigated grazed pastures. Agriculture, Ecosystems and Environment, 2019, 285, 106620.	2.5	21

#	Article	IF	CITATIONS
39	Enzyme Mimic Based on a Selfâ€Assembled Chitosan/DNA Hybrid Exhibits Superior Activity and Tolerance. Chemistry - A European Journal, 2019, 25, 12576-12582.	1.7	21
41	Isotopically labeled flavoenzymes and their uses in probing reaction mechanisms. Methods in Enzymology, 2019, 620, 145-166.	0.4	2
42	Emergence of a Negative Activation Heat Capacity during Evolution of a Designed Enzyme. Journal of the American Chemical Society, 2019, 141, 11745-11748.	6.6	42
43	Rational enhancement of enzyme-catalyzed enantioselective reaction by construction of recombinant enzymes based on additive strategy. Bioprocess and Biosystems Engineering, 2019, 42, 1739-1746.	1.7	3
44	Remote and real time control of an FVIO–enzyme hybrid nanocatalyst using magnetic stimulation. Nanoscale, 2019, 11, 18081-18089.	2.8	25
45	Emergence of an optimal temperature in action-potential propagation through myelinated axons. Physical Review E, 2019, 100, 032416.	0.8	22
46	Iron Oxide Nanoparticles: An Inorganic Phosphatase. , 0, , .		9
47	A temperature-dependent conformational shift in p38α MAPK substrate–binding region associated with changes in substrate phosphorylation profile. Journal of Biological Chemistry, 2019, 294, 12624-12637.	1.6	9
48	Identification of the temporal control on nitrate removal rate variability in a denitrifying woodchip bioreactor. Ecological Engineering, 2019, 127, 88-95.	1.6	14
49	Reactions at Biomembrane Interfaces. Chemical Reviews, 2019, 119, 6162-6183.	23.0	29
50	Temperature adaptation of DNA ligases from psychrophilic organisms. Extremophiles, 2019, 23, 305-317.	0.9	17
51	Exposing the Interplay Between Enzyme Turnover, Protein Dynamics, and the Membrane Environment in Monoamine Oxidase B. Biochemistry, 2019, 58, 2362-2372.	1.2	12
52	Psychrophilic lifestyles: mechanisms of adaptation and biotechnological tools. Applied Microbiology and Biotechnology, 2019, 103, 2857-2871.	1.7	158
53	Sortase mutants with improved protein thermostability and enzymatic activity obtained by consensus design. Protein Engineering, Design and Selection, 2019, 32, 555-564.	1.0	10
54	Protein tolerance to random circular permutation correlates with thermostability and local energetics of residue-residue contacts. Protein Engineering, Design and Selection, 2019, 32, 489-501.	1.0	9
55	Local adaptation of a dominant coastal tree to freshwater availability and solar radiation suggested by genomic and ecophysiological approaches. Scientific Reports, 2019, 9, 19936.	1.6	19
56	Cold survival strategies for bacteria, recent advancement and potential industrial applications. Archives of Microbiology, 2019, 201, 1-16.	1.0	39
57	New mechanistic insights into the Claisen rearrangement of chorismate – a Unified Reaction Valley Approach study. Molecular Physics, 2019, 117, 1172-1192.	0.8	22

#	Article	IF	CITATIONS
58	Biochemical Studies Provide Insights into the Necessity for Multiple Arabidopsis thaliana Protein-Only RNase P Isoenzymes. Journal of Molecular Biology, 2019, 431, 615-624.	2.0	4
59	Influence of the temperature and hydraulic retention time in bioelectrochemical anaerobic digestion of sewage sludge. International Journal of Hydrogen Energy, 2019, 44, 2170-2179.	3.8	44
60	What are the signatures of tunnelling in enzyme-catalysed reactions?. Faraday Discussions, 2019, 221, 367-378.	1.6	7
61	Yield, dry matter distribution and photosynthetic characteristics of rice under elevated CO2 and increased temperature conditions. Field Crops Research, 2020, 248, 107605.	2.3	60
62	A Modified Arrhenius Approach to Thermodynamically Study Regioselectivity in Cytochrome P450â€Catalyzed Substrate Conversion. ChemBioChem, 2020, 21, 1461-1472.	1.3	2
63	Study on the mechanism of ultrasound-accelerated enzymatic hydrolysis of starch: Analysis of ultrasound effect on different objects. International Journal of Biological Macromolecules, 2020, 148, 493-500.	3.6	38
64	Pressure and Temperature Effects on the Formation of Aminoacrylate Intermediates of Tyrosine Phenol-lyase Demonstrate Reaction Dynamics. ACS Catalysis, 2020, 10, 1692-1703.	5.5	6
65	Advances in Analysis of Milk Proteases Activity at Surfaces and in a Volume by Acoustic Methods. Sensors, 2020, 20, 5594.	2.1	13
66	Bowl-like Nanoreactors Composed of Packed Gold Nanoparticles Surrounded with Silica Nanosheets for a Photothermally Enhancing Enzymatic Reaction. ACS Applied Nano Materials, 2020, 3, 11465-11473.	2.4	3
67	Tuning of Conformational Dynamics Through Evolution-Based Design Modulates the Catalytic Adaptability of an Extremophilic Kinase. ACS Catalysis, 2020, 10, 10847-10857.	5.5	7
68	The Inflection Point Hypothesis: The Relationship between the Temperature Dependence of Enzyme-Catalyzed Reaction Rates and Microbial Growth Rates. Biochemistry, 2020, 59, 3562-3569.	1.2	20
69	Geometry and evolution of the ecological niche in plant-associated microbes. Nature Communications, 2020, 11, 2955.	5.8	39
70	Robust Magnetized Oil Palm Leaves Ash Nanosilica Composite as Lipase Support: Immobilization Protocol and Efficacy Study. Applied Biochemistry and Biotechnology, 2020, 192, 585-599.	1.4	6
71	Thermal Adaptation of Enzymes: Impacts of Conformational Shifts on Catalytic Activation Energy and Optimum Temperature. Chemistry - A European Journal, 2020, 26, 10045-10056.	1.7	19
72	Enzyme evolution and the temperature dependence of enzyme catalysis. Current Opinion in Structural Biology, 2020, 65, 96-101.	2.6	54
73	Temperature, Dynamics, and Enzyme-Catalyzed Reaction Rates. Annual Review of Biophysics, 2020, 49, 163-180.	4.5	74
74	Embracing a new paradigm for temperature sensitivity of soil microbes. Global Change Biology, 2020, 26, 3221-3229.	4.2	54
75	Plasticity of Leaf Respiratory and Photosynthetic Traits in Eucalyptus grandis and E. regnans Grown Under Variable Light and Nitrogen Availability. Frontiers in Forests and Global Change, 2020, 3, .	1.0	4

#	Article	IF	CITATIONS
76	Leaf photosynthesis and stomatal conductance acclimate to elevated [CO2] and temperature thus increasing dry matter productivity in a double rice cropping system. Field Crops Research, 2020, 248, 107735.	2.3	22
77	Compensatory Thermal Adaptation of Soil Microbial Respiration Rates in Global Croplands. Global Biogeochemical Cycles, 2020, 34, e2019GB006507.	1.9	13
78	Protein Conformational Change Is Essential for Reductive Activation of Lytic Polysaccharide Monooxygenase by Cellobiose Dehydrogenase. ACS Catalysis, 2020, 10, 4842-4853.	5.5	18
79	Effects of microbial transglutaminase on gel formation of frozen-stored longtail southern cod (Patagonotothen ramsayi) mince. LWT - Food Science and Technology, 2020, 128, 109444.	2.5	17
80	Transition-state rate theory sheds light on â€~black-box' biodegradation algorithms. Green Chemistry, 2020, 22, 3558-3571.	4.6	7
81	Rapidly and Precisely Cross-Linked Enzymes Using Bio-Orthogonal Chemistry from Cell Lysate for the Synthesis of (<i>S</i>)-1-(2,6-Dichloro-3-fluorophenyl) Ethanol. ACS Sustainable Chemistry and Engineering, 2020, 8, 6466-6478.	3.2	16
82	Theoretical analysis of a temperatureâ€dependent model of respiratory O ₂ consumption using the kinetics of the cytochrome and alternative pathways. New Phytologist, 2021, 229, 1810-1821.	3.5	8
83	Biomolecular QM/MM Simulations: What Are Some of the "Burning Issues�. Journal of Physical Chemistry B, 2021, 125, 689-702.	1.2	68
85	Bayesian genome scale modelling identifies thermal determinants of yeast metabolism. Nature Communications, 2021, 12, 190.	5.8	25
86	Short-Term Temperature Response of Leaf Respiration in Different Subtropical Urban Tree Species. Frontiers in Plant Science, 2020, 11, 628995.	1.7	4
87	Chapter 4 Photosynthetic Acclimation to Temperature and CO2: The Role of Leaf Nitrogen. Advances in Photosynthesis and Respiration, 2021, , 79-101.	1.0	0
88	Radiofrequency remote control of thermolysin activity. Scientific Reports, 2021, 11, 6070.	1.6	2
89	Sensing Enzyme Activation Heat Capacity at the Single-Molecule Level Using Gold-Nanorod-Based Optical Whispering Gallery Modes. ACS Applied Nano Materials, 2021, 4, 4576-4583.	2.4	20
90	Plasma Treatment of Fish Cells: The Importance of Defining Cell Culture Conditions in Comparative Studies. Applied Sciences (Switzerland), 2021, 11, 2534.	1.3	4
91	Parallel molecular mechanisms for enzyme temperature adaptation. Science, 2021, 371, .	6.0	48
93	Flexibility of enzymatic transitions as a hallmark of optimized enzyme steady-state kinetics and thermodynamics. Computational Biology and Chemistry, 2021, 91, 107449.	1.1	4
94	Comparative characterization of the hemocyanin-derived phenol oxidase activity from spiders inhabiting different thermal habitats. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2021, 253, 110548.	0.7	1
95	A meta-analysis of the activity, stability, and mutational characteristics of temperature-adapted enzymes. Bioscience Reports, 2021, 41, .	1.1	3

#	Article	IF	CITATIONS
96	Structures and General Transport Mechanisms by the Major Facilitator Superfamily (MFS). Chemical Reviews, 2021, 121, 5289-5335.	23.0	199
97	pH-Independent Heat Capacity Changes during Phosphorolysis Catalyzed by the Pyrimidine Nucleoside Phosphorylase from <i>Geobacillus thermoglucosidasius</i> . Biochemistry, 2021, 60, 1573-1577.	1.2	5
98	Entropy and stochastic properties in catalysis at nanoscale. Physica Scripta, 2021, 96, 085006.	1.2	0
100	Room temperature in scientific protocols and experiments should be defined: a reproducibility issue. BioTechniques, 2021, 70, 306-308.	0.8	3
102	Evaluating the Arrhenius equationÂfor developmental processes. Molecular Systems Biology, 2021, 17, e9895.	3.2	55
103	Adaptations for Pressure and Temperature in Dihydrofolate Reductases. Microorganisms, 2021, 9, 1706.	1.6	3
104	Ternary biogenic silica/magnetite/graphene oxide composite for the hyperactivation of Candida rugosa lipase in the esterification production of ethyl valerate. Enzyme and Microbial Technology, 2021, 148, 109807.	1.6	13
106	Evolution of dynamical networks enhances catalysis in a designer enzyme. Nature Chemistry, 2021, 13, 1017-1022.	6.6	60
107	Biochemical Characterization of CTX-M-15 ESβL purified from clinical strain of Klebsiella pneumoniae SJ16. Research Journal of Pharmacy and Technology, 2021, , 4080-4084.	0.2	1
108	Rigidifying a <i>De Novo</i> Enzyme Increases Activity and Induces a Negative Activation Heat Capacity. ACS Catalysis, 2021, 11, 11532-11541.	5.5	15
109	Soil microbial sensitivity to temperature remains unchanged despite community compositional shifts along geothermal gradients. Global Change Biology, 2021, 27, 6217-6231.	4.2	25
110	The reductive carboxylation activity of heterotetrameric pyruvate synthases from hyperthermophilic archaea. Biochemical and Biophysical Research Communications, 2021, 572, 151-156.	1.0	4
111	Separating the temperature response of soil respiration derived from soil organic matter and added labile carbon compounds. Geoderma, 2021, 400, 115128.	2.3	13
112	Molecular dynamics simulations support the hypothesis that the brGDGT paleothermometer is based on homeoviscous adaptation. Geochimica Et Cosmochimica Acta, 2021, 312, 44-56.	1.6	28
113	How close are we to the temperature tipping point of the terrestrial biosphere?. Science Advances, 2021, 7, .	4.7	102
114	Enzyme Catalysis in Psychrophiles. , 2017, , 209-235.		9
115	Determining the Limits of Microbial Life at Subzero Temperatures. , 2017, , 21-38.		5
119	Quantitative genetics of temperature performance curves of <i>Neurospora crassa</i> . Evolution; International Journal of Organic Evolution, 2020, 74, 1772-1787.	1.1	7

	CITATION	Report	
#	Article	IF	CITATIONS
120	Fermentation and Metabolic Pathway Optimization to De Novo Synthesize (2S)-Naringenin in <i>Escherichia coli</i> . Journal of Microbiology and Biotechnology, 2020, 30, 1574-1582.	0.9	31
121	Alarming influence of climate change and compromising quality of medicinal plants. Plant Physiology Reports, 2022, 27, 1-10.	0.7	11
122	Promising strategies to control persistent enemies: Some new technologies to combat biofilm in the food industry—A review. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 5938-5964.	5.9	25
123	Conceptualizing Biogeochemical Reactions With an Ohm's Law Analogy. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002469.	1.3	2
124	Transmission of pacemaker signal in a small world neuronal networks: temperature effects. Nonlinear Dynamics, 2021, 106, 2547-2557.	2.7	13
130	Structure, Function, and Thermodynamics of Lactate Dehydrogenases from Humans and the Malaria Parasite P. falciparum. Biochemistry, 2021, 60, 3582-3595.	1.2	2
133	Chemical Mapping Exposes the Importance of Active Site Interactions in Governing the Temperature Dependence of Enzyme Turnover. ACS Catalysis, 2021, 11, 14854-14863.	5.5	6
134	Minimal Pathway for the Regeneration of Redox Cofactors. Jacs Au, 2021, 1, 2280-2293.	3.6	14
135	Climate Change Impacts on Sunflower (Helianthus annus L.) Plants. Plants, 2021, 10, 2646.	1.6	5
136	Systematic investigation of the link between enzyme catalysis and cold adaptation. ELife, 2022, 11, .	2.8	9
137	Exposure of Eucalyptus to varied temperature and CO2 has a profound effect on the physiology and expression of genes related to cell wall formation and remodeling. Tree Genetics and Genomes, 2022, 18, 1.	0.6	5
138	Energetic Return on Investment Determines Overall Soil Microbial Activity. SSRN Electronic Journal, 0, , .	0.4	0
140	Plant phosphorus acquisition links to phosphorus transformation in the rhizospheres of soybean and rice grown under CO2 and temperature co-elevation. Science of the Total Environment, 2022, 823, 153558.	3.9	9
141	Photosynthetic Response and Yield Formation Mechanisms of Rice Under Warming at Different Growth Stages in Cool Region. International Journal of Plant Production, 2022, 16, 223-233.	1.0	2
142	UV-Spectroscopic Detection of (Pyro-)Phosphate with the PUB Module. Analytical Chemistry, 2022, 94, 3432-3435.	3.2	6
143	Designed histidine-rich peptide self-assembly for accelerating oxidase-catalyzed reactions. Nano Research, 2022, 15, 4032-4038.	5.8	6
144	Relating Metabolism Suppression and Nucleation Probability During Supercooled Biopreservation. Journal of Biomechanical Engineering, 2022, 144, .	0.6	2
145	Continuous Flow Biocatalysis: Synthesis of Coumarin Carboxamide Derivatives by Lipase TL IM from Thermomyces lanuginosus. Catalysts, 2022, 12, 339.	1.6	3

#	Article	IF	Citations
146	Spinning sugars in antigen biosynthesis: characterization of the Coxiella burnetii and Streptomyces griseus TDP-sugar epimerases. Journal of Biological Chemistry, 2022, , 101903.	1.6	1
147	A Minimized Synthetic Carbon Fixation Cycle. ACS Catalysis, 2022, 12, 799-808.	5.5	33
148	Garlic essential oil microcapsules prepared using gallic acid grafted chitosan: Effect on nitrite control of prepared vegetable dishes during storage. Food Chemistry, 2022, 388, 132945.	4.2	19
152	Specific anion effect on properties of HRV 3C protease. Biophysical Chemistry, 2022, 287, 106825.	1.5	3
153	M379A Mutant Tyrosine Phenolâ€lyase from Citrobacter freundii Has Altered Conformational Dynamics. ChemBioChem, 2022, , .	1.3	1
154	Rice straw mediated green synthesis and characterization of iron oxide nanoparticles and its application to improve thermal stability of endoglucanase enzyme. International Journal of Food Microbiology, 2022, 374, 109722.	2.1	8
155	Thermoadaptation in an Ancestral Diterpene Cyclase by Altered Loop Stability. Journal of Physical Chemistry B, 2022, 126, 3809-3821.	1.2	5
156	Inhibition of nitrite in prepared dish of Brassica chinensis L. during storage via non-extractable phenols in hawthorn pomace: A comparison of different extraction methods. Food Chemistry, 2022, 393, 133344.	4.2	10
157	Estimating the Temperature Optima of Soil Priming. SSRN Electronic Journal, 0, , .	0.4	0
158	Treatment of naphthenic acids in oil sands process-affected waters with a surface flow treatment wetland: mass removal, half-life, and toxicity-reduction. Environmental Research, 2022, 213, 113755.	3.7	8
159	Simple steps to enable reproducibility: culture conditions affecting <i>Chlamydomonas</i> growth and elemental composition. Plant Journal, 2022, 111, 995-1014.	2.8	7
160	Hybrid CRSIPR/Cas Protein for One-Pot Detection of DNA and RNA. SSRN Electronic Journal, 0, , .	0.4	1
161	Mini-review: effect of temperature on microbial reductive dehalogenation of chlorinated ethenes: a review. FEMS Microbiology Ecology, 0, , .	1.3	5
163	Modulation of global stability, ligand binding and catalytic properties of trypsin by anions. Biophysical Chemistry, 2022, 288, 106856.	1.5	3
164	Potential energetic return on investment positively correlated with overall soil microbial activity. Soil Biology and Biochemistry, 2022, 173, 108800.	4.2	5
165	Light/Dark and Temperature Cycling Modulate Metabolic Electron Flow in Pseudomonas aeruginosa Biofilms. MBio, 2022, 13, .	1.8	10
166	Pectinases Secretion by Saccharomyces cerevisiae: Optimization in Solid-State Fermentation and Identification by a Shotgun Proteomics Approach. Molecules, 2022, 27, 4981.	1.7	6
167	Transplanting larch trees into warmer areas increases the photosynthesis and its temperature sensitivity. Tree Physiology, 0, , .	1.4	0

#	Article	IF	CITATIONS
168	Purification and characterization of isocitrate dehydrogenase from Mortierella alpina. Process Biochemistry, 2022, 121, 575-583.	1.8	2
169	Temperature-controlled propagation of spikes in neuronal networks. Chaos, Solitons and Fractals, 2022, 164, 112667.	2.5	1
170	Temperature―and pHâ€Responsive Polymeric Photocatalysts for Enhanced Control and Recovery. Angewandte Chemie, 0, , .	1.6	0
171	Switchable aqueous catalytic systems for organic transformations. Communications Chemistry, 2022, 5, .	2.0	7
172	Temperature―and pHâ€Responsive Polymeric Photocatalysts for Enhanced Control and Recovery. Angewandte Chemie - International Edition, 2022, 61, .	7.2	5
174	Molecular and thermodynamic mechanisms for protein adaptation. European Biophysics Journal, 2022, 51, 519-534.	1.2	2
175	Extremophilic behavior of catalytic amyloids sustained by backbone structuring. Journal of Materials Chemistry B, 2022, 10, 9400-9412.	2.9	1
176	Laccase-Oriented Immobilization Using Concanavalin A as an Approach for Efficient Glycoproteins Immobilization and Its Application to the Removal of Aqueous Phenolics. Sustainability, 2022, 14, 13306.	1.6	5
177	Maximizing Cumulative Trypsin Activity with Calcium at Elevated Temperature for Enhanced Bottom-Up Proteome Analysis. Biology, 2022, 11, 1444.	1.3	3
178	Effect of temperature on synchronization of scale-free neuronal network. Nonlinear Dynamics, 2023, 111, 2693-2710.	2.7	24
180	Limited sex differences in plastic responses suggest evolutionary conservatism of thermal reaction norms: A meta-analysis in insects. Evolution Letters, 2022, 6, 394-411.	1.6	1
181	Estimating the temperature optima of soil priming. Soil Biology and Biochemistry, 2023, 176, 108879.	4.2	3
182	Plant Respiration and Global Climatic Changes. Russian Journal of Plant Physiology, 2022, 69, .	0.5	1
183	Temperature-induced formation of Pd nanoparticles in heterogeneous nanobiohybrids: application in C–H activation catalysis. Nanoscale Advances, 2023, 5, 513-521.	2.2	2
184	Surface construction of catalase-immobilized Au/PEDOT nanocomposite on phase-change microcapsules for enhancing electrochemical biosensing detection of hydrogen peroxide. Applied Surface Science, 2023, 612, 155816.	3.1	13
186	Co-elevation of atmospheric [CO2] and temperature alters photosynthetic capacity and instantaneous water use efficiency in rice cultivars in a cold-temperate region. Frontiers in Plant Science, 0, 13, .	1.7	1
187	Thermal conductivity and conductance of protein in aqueous solution: Effects of geometrical shape. Journal of Computational Chemistry, 2023, 44, 857-868.	1.5	6
188	Macromolecular rate theory explains the temperature dependence of membrane conductance kinetics. Biophysical Journal, 2023, 122, 522-532.	0.2	0

#	Article	IF	CITATIONS
190	Psychrophiles. , 2023, , 64-104.		0
191	Glassy dynamics in bacterial growth rate temperature dependence. AIP Advances, 2023, 13, 025126.	0.6	0
192	Interactive effects of elevated temperature and drought on plant carbon metabolism: A metaâ€analysis. Global Change Biology, 2023, 29, 2824-2835.	4.2	5
193	Effects of Warming and Drought Stress on the Coupling of Photosynthesis and Transpiration in Winter Wheat (Triticum aestivum L.). Applied Sciences (Switzerland), 2023, 13, 2759.	1.3	1
195	Temperature sensitivity of carbon concentrating mechanisms in the diatom Phaeodactylum tricornutum. Photosynthesis Research, 2023, 156, 205-215.	1.6	2
196	It's only natural: Plant respiration in unmanaged systems. Plant Physiology, 2023, 192, 710-727.	2.3	3
197	Acclimation of photosynthetic capacity and foliar respiration in Andean tree species to temperature change. New Phytologist, 2023, 238, 2329-2344.	3.5	6
198	Temperature-induced logical resonance in the Hodgkin–Huxley neuron. Chinese Physics B, 2023, 32, 120501.	0.7	1
210	A general overview of the multifactorial adaptation to cold: biochemical mechanisms and strategies. Brazilian Journal of Microbiology, 0, , .	0.8	0
213	Comment on: "Computer Simulations Reveal an Entirely Entropic Activation Barrier for the Chemical Step in a Designer Enzymeâ€: ACS Catalysis, 2023, 13, 10527-10530.	5.5	2

Nanoenzyme-Based Electrodes in Biomolecular Screening and Analysis. , 2023, , 483-497.