A Comprehensive Survey of Recent Advancements in M

IEEE Communications Surveys and Tutorials 18, 1887-1919 DOI: 10.1109/comst.2016.2527741

Citation Report

#	Article	IF	CITATIONS
1	Stable Distributions as Noise Models for Molecular Communication. , 2014, , .		10
2	Active versus Passive: Receiver Model Transforms for Diffusive Molecular Communication. , 2016, , .		34
3	Communication over Diffusion-Based Molecular Timing Channels. , 2016, , .		25
4	On the Impact of Time-Synchronization in Molecular Timing Channels. , 2016, , .		7
5	Distributed Cooperative Detection for Multi-Receiver Molecular Communication. , 2016, , .		13
6	Energy model for vesicle-based active transport molecular communication. , 2016, , .		15
7	On the capacity of amplitude modulation based molecular communication channels. , 2016, , .		1
8	Information theory of molecular communication: directions and challenges. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2016, 2, 120-142.	1.4	86
9	Inscribed Matter Communication: Part I. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2016, 2, 209-227.	1.4	32
10	On the capacity of diffusion-based molecular timing channels. , 2016, , .		24
11	Reference broadcast synchronization scheme for nanomachines. , 2016, , .		2
12	Modeling and Simulation of Molecular Communication Systems with a Reversible Adsorption Receiver. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2016, , 1-1.	1.4	61
13	Ion pump based bio-synthetic modulator model for diffusive molecular communications. , 2016, , .		5
14	Channel Estimation for Diffusive Molecular Communications. IEEE Transactions on Communications, 2016, , 1-1.	4.9	78
15	A molecular communication system using acids, bases and hydrogen ions. , 2016, , .		33
16	Mobile molecular communications: Positional-distance codes. , 2016, , .		9
17	Capacity and Delay Spread in Multilayer Diffusion-Based Molecular Communication (DBMC) Channel. IEEE Transactions on Nanobioscience, 2016, 15, 599-612.	2.2	15
18	Parameter estimation of inverse Gaussian channel for diffusion-based molecular communication. , 2016, , .		8

ITATION REDO

#	Article	IF	CITATIONS
19	Offset estimation for clock synchronization in mobile molecular communication system. , 2016, , .		36
20	Eavesdropper Localization in Random Walk Channels. IEEE Communications Letters, 2016, 20, 1776-1779.	2.5	26
21	On Time-Slotted Communication over Molecular Timing Channels. , 2016, , .		3
22	On the capacity of diffusion-based molecular timing channels with diversity. , 2016, , .		2
23	Interference reduction via enzyme deployment for molecular communication. Electronics Letters, 2016, 52, 1094-1096.	0.5	13
24	Physical layer network coding in molecular two-way relay networks. , 2016, , .		5
25	Molecular MIMO: From Theory to Prototype. IEEE Journal on Selected Areas in Communications, 2016, 34, 600-614.	9.7	155
26	Theoretical Analysis of Magneto-Inductive THz Wireless Communications and Power Transfer With Multi-Layer Graphene Nano-Coils. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2017, 3, 60-70.	1.4	19
27	Event Detection in Molecular Communication Networks With Anomalous Diffusion. IEEE Communications Letters, 2017, 21, 1249-1252.	2.5	26
28	Chemical Propagation Pattern for Molecular Communications. IEEE Wireless Communications Letters, 2017, 6, 226-229.	3.2	26
29	Reed Solomon Codes for Molecular Communication With a Full Absorption Receiver. IEEE Communications Letters, 2017, 21, 1245-1248.	2.5	25
30	Time-slotted transmission over molecular timing channels. Nano Communication Networks, 2017, 12, 12-24.	1.6	18
31	Connectivity Properties of Free Diffusion-Based Molecular Nanoscale Communication Networks. IEEE Transactions on Communications, 2017, 65, 1686-1695.	4.9	13
32	Molecular Communication Using Dynamic Properties of Oscillating and Propagating Patterns in Concentration of Information Molecules. IEEE Transactions on Communications, 2017, , 1-1.	4.9	13
33	Molecular Communication and Nanonetwork for Targeted Drug Delivery: A Survey. IEEE Communications Surveys and Tutorials, 2017, 19, 3046-3096.	24.8	127
34	On the Design of Matched Filters for Molecule Counting Receivers. IEEE Communications Letters, 2017, 21, 1711-1714.	2.5	46
35	Comparison of amplitude detection techniques for passive receivers in molecular communications. , 2017, , .		0
36	Towards Concurrent Data Transmission: Exploiting Plasmid Diversity by Bacterial Conjugation. IEEE Transactions on Nanobioscience, 2017, 16, 287-298.	2.2	17

#	Article	IF	CITATIONS
37	Influence of neighboring absorbing receivers upon the inter-symbol interference in a diffusion-based molecular communication system. Nano Communication Networks, 2017, 14, 40-47.	1.6	17
38	Transposition Errors in Diffusion-Based Mobile Molecular Communication. IEEE Communications Letters, 2017, 21, 1973-1976.	2.5	50
39	Simulating with AcCoRD: Actor-based Communication via Reaction–Diffusion. Nano Communication Networks, 2017, 11, 44-75.	1.6	46
40	Monte Carlo Analysis of Molecule Absorption Probabilities in Diffusion-Based Nanoscale Communication Systems with Multiple Receivers. IEEE Transactions on Nanobioscience, 2017, 16, 157-165.	2.2	22
41	Adaptive Control of Angular Sensitivity for VHF-Band Nano-Antenna Using CNT Mechanical Resonator. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2017, 3, 24-32.	1.4	10
42	ISI-Avoiding Modulation for Diffusion-Based Molecular Communication. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2017, 3, 48-59.	1.4	47
43	Error Performance Optimization Using Logarithmic Barrier Function in Molecular Nanonetworks. IEEE Communications Letters, 2017, 21, 2408-2411.	2.5	4
44	A Formal Definition for Nanorobots and Nanonetworks. Lecture Notes in Computer Science, 2017, , 214-226.	1.0	7
45	Bacterial Relay for Energy-Efficient Molecular Communications. IEEE Transactions on Nanobioscience, 2017, 16, 555-562.	2.2	23
46	On capacity bounds of two-way diffusion channel with molecule harvesting. , 2017, , .		11
47	Capacity of molecular channels with imperfect particle-intensity modulation and detection. , 2017, , .		14
48	Effective Enzyme Deployment for Degradation of Interference Molecules in Molecular Communication. , 2017, , .		17
49	Performance analysis of Decode and Forward Relay network in Diffusion based Molecular Communication. , 2017, , .		14
50	Channel estimation for diffusive MIMO molecular communications. , 2017, , .		14
51	Fluorescent Quantum Dots Make Feasible Long-Range Transmission of Molecular Bits. Journal of Physical Chemistry Letters, 2017, 8, 3861-3866.	2.1	24
52	Symbol synchronization for diffusive molecular communication systems. , 2017, , .		28
53	A biological circuit design for modulated parity-check encoding in molecular communication. , 2017, , .		5
54	Optimal Positioning of Relay Node in Cooperative Molecular Communication Networks. IEEE	4.9	26

#	Article	IF	CITATIONS
55	On the optimal timing of detection in molecular communication systems. , 2017, , .		10
56	Bit alignment scheme for mobile receiver in molecular communication. , 2017, , .		8
57	Molecular Communication: A 10 Year Retrospective. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2017, 3, 71-78.	1.4	56
58	Improving the Capacity of Molecular Communication Using Enzymatic Reaction Cycles. IEEE Transactions on Nanobioscience, 2017, 16, 744-754.	2.2	25
59	Effective interâ€symbol interference mitigation with a limited amount of enzymes in molecular communications. Transactions on Emerging Telecommunications Technologies, 2017, 28, e3106.	2.6	6
60	Time Synchronization for Molecular Communication With Drift. IEEE Communications Letters, 2017, 21, 476-479.	2.5	60
61	A machine learning approach to model the received signal in molecular communications. , 2017, , .		16
62	A Novel Experimental Platform for In-Vessel Multi-Chemical Molecular Communications. , 2017, , .		79
63	Machine learning based channel modeling for molecular MIMO communications. , 2017, , .		42
64	Touchable Computing: Computing-Inspired Bio-Detection. IEEE Transactions on Nanobioscience, 2017, 16, 810-821.	2.2	29
65	Symbol Synchronization for Diffusion-Based Molecular Communications. IEEE Transactions on Nanobioscience, 2017, 16, 873-887.	2.2	41
66	The Gaussian approximation in soft detection for molecular communication via biological circuits. , 2017, , .		6
67	Estimate-and-Forward Relaying in Diffusion-Based Molecular Communication Networks: Performance Evaluation and Threshold Optimization. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2017, 3, 183-193.	1.4	36
68	Modelling of multilayer biological medium under molecular communication paradigm. , 2017, , .		2
69	Low-complexity memory-assisted adaptive-threshold detection scheme for on-OFF-keying diffusion-based molecular communications. , 2017, , .		9
70	SCW codes for optimal CSI-free detection in diffusive molecular communications. , 2017, , .		3
71	Convex Optimization of Distributed Cooperative Detection in Multi-Receiver Molecular Communication. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2017, 3, 166-182.	1.4	28
72	Achievable rate for a mobile molecular communication system. , 2017, , .		2

#	Article	IF	CITATIONS
73	Spatial coding techniques for molecular MIMO. , 2017, , .		3
74	Optimization of the detection process timing in molecular communication systems with flow. , 2017, , .		3
75	Zero-Error Capacity of \$ P \$ -ary Shift Channels and FIFO Queues. IEEE Transactions on Information Theory, 2017, 63, 7698-7707.	1.5	7
76	A Microfluidic Feed Forward Loop Pulse Generator for Molecular Communication. , 2017, , .		10
77	Normal Inverse Gaussian Approximation for Arrival Time Difference in Flow-Induced Molecular Communications. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2017, 3, 259-264.	1.4	4
78	Novel Selective Detection Method of Tumor Angiogenesis Factors Using Living Nano-Robots. Sensors, 2017, 17, 1580.	2.1	11
79	Error Performance Analysis of Diffusive Molecular Communication Systems With On-Off Keying Modulation. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2017, 3, 224-238.	1.4	41
80	On the Coexistence of Nano Networks: Sensing Techniques for Molecular Communications. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2017, 3, 209-223.	1.4	8
81	Diversity Gain of One-Shot Communication over Molecular Timing Channels. , 2017, , .		7
82	Communication System Design and Analysis for Asynchronous Molecular Timing Channels. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2017, 3, 239-253.	1.4	18
83	Coexistence in molecular communications. Nano Communication Networks, 2018, 16, 37-44.	1.6	10
84	One Symbol Blind Synchronization in SIMO Molecular Communication Systems. IEEE Wireless Communications Letters, 2018, 7, 530-533.	3.2	32
85	Synchronisation of alphaâ€stable levy noiseâ€based Random Communication System. IET Communications, 2018, 12, 276-282.	1.5	6
86	SMIET: Simultaneous Molecular Information and Energy Transfer. IEEE Wireless Communications, 2018, 25, 106-113.	6.6	25
87	Anti-ISI Demodulation Scheme and Its Experiment-Based Evaluation for Diffusion-Based Molecular Communication. IEEE Transactions on Nanobioscience, 2018, 17, 126-133.	2.2	28
88	Non-Coherent Detection for Diffusive Molecular Communication Systems. IEEE Transactions on Communications, 2018, 66, 2515-2531.	4.9	35
89	Position-based modulation in molecular communications. Nano Communication Networks, 2018, 16, 60-68.	1.6	25
90	Constant-Composition Codes for Maximum Likelihood Detection Without CSI in Diffusive Molecular Communications. IEEE Transactions on Communications, 2018, 66, 1981-1995.	4.9	24

#	Article	IF	CITATIONS
91	Adaptive Detection and ISI Mitigation for Mobile Molecular Communication. IEEE Transactions on Nanobioscience, 2018, 17, 21-35.	2.2	92
92	Spatially Distributed Molecular Communications: An Asynchronous Stochastic Model. IEEE Communications Letters, 2018, 22, 1326-1329.	2.5	12
93	Type-Based Sign Modulation and Its Application for ISI Mitigation in Molecular Communication. IEEE Transactions on Communications, 2018, 66, 180-193.	4.9	43
94	Optimal detector design for molecular communication systems using an improved swarm intelligence algorithm. Micro and Nano Letters, 2018, 13, 383-388.	0.6	10
95	Engineering molecular communications integrated with carbon nanotubes in neural sensor nanonetworks. IET Nanobiotechnology, 2018, 12, 201-210.	1.9	3
96	Modeling a Composite Molecular Communication Channel. IEEE Transactions on Communications, 2018, 66, 3420-3433.	4.9	5
97	Design and wet-laboratory implementation of reliable end-to-end molecular communication. Wireless Networks, 2018, 24, 1809-1819.	2.0	10
98	Approximation of enzyme kinetics for high enzyme concentration by a first order perturbation approach. Journal of Mathematical Chemistry, 2018, 56, 1153-1183.	0.7	2
99	Algorithm for Mesoscopic Advection–Diffusion. IEEE Transactions on Nanobioscience, 2018, 17, 543-554.	2.2	12
100	Modeling Duct Flow for Molecular Communication. , 2018, , .		25
101	Impulse Response of the Molecular Diffusion Channel With a Spherical Absorbing Receiver and a Spherical Reflective Boundary. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2018, 4, 118-122.	1.4	15
102	Generalized Memory-Assisted Adaptive-Threshold Detection Scheme for On-OFF-Keying Diffusion-Based Molecular Communications. , 2018, , .		3
103	Optimal Detection for One-Shot Transmission Over Diffusion-Based Molecular Timing Channels. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2018, 4, 43-60.	1.4	10
104	Conjugate Congestion Control Based Transport Layer Protocol for Molecular Communication in Body Area Nanonetworks (BANs). , 2018, , .		1
105	Synchronous Cooperative Relaying Technique for Three-Dimensional Diffusion-Based Molecular Nano Communication Networks. , 2018, , .		5
106	Bio-Inspired Design and Implementation of Mobile Molecular Communication Systems at the Macroscale. , 2018, , .		12
107	Mean and Variance of Received Signal in Diffusion-Based Mobile Molecular Communication. , 2018, , .		8
108	Capacity Limits of Diffusion-Based Molecular Timing Channels With Finite Particle Lifetime. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2018, 4, 88-106.	1.4	13

#	Article	IF	CITATIONS
109	Using detection theory and molecular computation to understand signal processing in living cells. , 2018, , .		1
110	An increment detection algorithm to mitigate ISI for molecular communication based on drift diffusion. , 2018, , .		2
111	Epidemic Information Dissemination in Mobile Molecular Communication Systems. , 2018, , .		6
112	Adaptive Batch Training Rule-Based Detection Scheme for On-OFF-Keying Diffusion-Based Molecular Communications. , 2018, , .		3
113	Molecular Signal Modeling of a Partially Counting Absorbing Spherical Receiver. IEEE Transactions on Communications, 2018, 66, 6237-6246.	4.9	18
114	Diffusion-Based Molecular Communication With Limited Molecule Production Rate. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2018, 4, 61-72.	1.4	14
115	Reactive messengers for digital molecular communication with variable transmitter–receiver distance. Physical Chemistry Chemical Physics, 2018, 20, 30312-30320.	1.3	17
116	Estimate-and-Forward Relaying in Molecular Communication using Brownian Motion with Drift. , 2018, , .		1
117	Receiver Techniques for Diffusion-Based Molecular Nano Communications Using an Adaptive Neuro-Fuzzy-Based Multivariate Polynomial Approximation. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2018, 4, 140-159.	1.4	6
118	Characterizing Information Propagation in Plants. , 2018, , .		7
119	Experimental Implementation of Molecular Communication System using Sampling based Adaptive Threshold Variation Demodulation Algorithm. , 2018, , .		5
120	Diffusive Molecular Communications With Reactive Molecules: Channel Modeling and Signal Design. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2018, 4, 171-188.	1.4	23
121	Fast Suboptimal Multi-Layer Detection Scheme for Demodulation in Diffusion-Based Molecular Communications. , 2018, , .		0
122	An nD Model for a Cylindrical Diffusion-Advection Problem with an Orthogonal Force Component. , 2018, , .		7
123	Uncertainty Quantification in Molecular Signals Using Polynomial Chaos Expansion. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2018, 4, 248-256.	1.4	6
124	On Flow-Induced Diffusive Mobile Molecular Communication: First Hitting Time and Performance Analysis. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2018, 4, 195-207.	1.4	24
125	A Novel Reduced Complexity Detection Scheme for ON-OFF-Keying Diffusion-Based Molecular Communications. , 2018, , .		1
126	Block Synchronization for Diffusion-based Molecular Communication Systems. , 2018, , .		6

#	Article	IF	CITATIONS
127	Molecular Communication in a Cox Field of Interfering Molecules. , 2018, , .		1
128	On Molecular Communications via Diffusion with Multiple Transmitters and Multiple Receivers. , 2018, , .		3
129	Transceiver Observations in Asymmetric and Symmetric Diffusive Molecular Communication Systems. , 2018, , .		3
130	Performance Analysis of Diffusive Mobile Multiuser Molecular Communication With Drift. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2018, 4, 237-247.	1.4	10
131	High Speed Chemical Vapor Communication Using Photoionization Detectors in Turbulent Flow. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2018, 4, 160-170.	1.4	7
132	Estimating Information Exchange Performance of Engineered Cell-to-cell Molecular Communications: A Computational Approach. , 2018, , .		14
133	Enhancing Signal Strength and ISI-Avoidance of Diffusion-based Molecular Communication. , 2018, , .		5
134	Impact of Reactive Obstacle on Molecular Communication between Nanomachines. , 2018, 2018, 4468-4471.		2
135	Sliding Bidirectional Recurrent Neural Networks for Sequence Detection in Communication Systems. , 2018, , .		12
136	Boolean AND and OR logic for cell signalling gateways: a communication perspective. IET Nanobiotechnology, 2018, 12, 1130-1139.	1.9	7
137	Exploiting Diversity in One-Shot Molecular Timing Channels via Order Statistics. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2018, 4, 14-26.	1.4	11
138	Information transmission by Marangoni-driven relaxation oscillations at droplets. Soft Matter, 2018, 14, 9250-9262.	1.2	3
139	Transmitter Localization in Vessel-Like Diffusive Channels Using Ring-Shaped Molecular Receivers. IEEE Communications Letters, 2018, 22, 2511-2514.	2.5	24
140	Mutual Information and Maximum Achievable Rate for Mobile Molecular Communication Systems. IEEE Transactions on Nanobioscience, 2018, 17, 507-517.	2.2	46
141	Joint Optimization of Molecular Resource Allocation and Relay Positioning in Diffusive Nanonetworks. IEEE Access, 2018, 6, 67681-67687.	2.6	9
142	Experimental Results on the Open-Air Transmission of Macro-Molecular Communication Using Membrane Inlet Mass Spectrometry. IEEE Communications Letters, 2018, 22, 2567-2570.	2.5	22
143	Array Gain Analysis in Molecular MIMO Communications. IEEE Access, 2018, 6, 61091-61102.	2.6	23
144	Voxel-based simulation approach for molecular communications via diffusion. Nano Communication Networks, 2018, 18, 27-33.	1.6	0

#	Δρτιςι ε	IE	
π	On the Energy Efficiency of Delay Accieted In Vive Nane, Networks Communications 2018	II	CHAHONS
145	On the Energy Efficiency of Relay-Assisted in- Vivo Nano- Networks Communications. , 2018, , .		4
146	Receiver Design in Molecular Communications: An Approach Based on Artificial Neural Networks. , 2018, , .		16
147	Enhancing the Reliability of Large-Scale Multiuser Molecular Communication Systems. , 2018, , .		1
148	Experimental Molecular Communication Testbed Based on Magnetic Nanoparticles in Duct Flow. , 2018, , .		63
149	Neural Network Detection of Data Sequences in Communication Systems. IEEE Transactions on Signal Processing, 2018, 66, 5663-5678.	3.2	235
150	Molecular Communication. GetMobile (New York, N Y), 2018, 22, 5-10.	0.7	4
151	Parameter Analysis in Macro-Scale Molecular Communications Using Advection-Diffusion. IEEE Access, 2018, 6, 46706-46717.	2.6	24
152	Neural Network Detectors for Molecular Communication Systems. , 2018, , .		5
153	Channel Model of Molecular Communication via Diffusion in a Vessel-Like Environment Considering a Partially Covering Receiver. , 2018, , .		26
154	Diffusive Molecular Communications with Reactive Signaling. , 2018, , .		8
155	Coordination via Advection Dynamics in Nanonetworks with Molecular Communication. , 2018, , .		0
156	Slope Based Detection for Mobile Molecular Communication Based on Einstein's Law of Diffusion. , 2018, , .		2
157	Stochastic analytical model of nanonetwork synchronization using quorum sensing. , 2018, , .		0
158	On diffusive molecular communication with mobile nanomachines. , 2018, , .		20
159	Stochastic Channel Switching of Frequency-Encoded Signals in Molecular Communication Networks. IEEE Communications Letters, 2018, 22, 332-335.	2.5	11
160	Pre-coding technique for adaptive threshold detectors in diffusion-based molecular communications. , 2018, , .		4
161	Molecular communication using magnetic nanoparticles. , 2018, , .		16
162	Molecular Communication: A Personal Perspective. IEEE Transactions on Nanobioscience, 2018, 17, 424-432.	2.2	17

		CITATION RE	PORT	
#	Article		IF	Citations
163	An Effective Distance Measurement Method for Molecular Communication Systems. , 2	2018, , .		9
164	Modeling of Ligand-Receptor Protein Interaction in Biodegradable Spherical Bounded B Micro-Environments. IEEE Access, 2018, 6, 25007-25018.	Biological	2.6	27
165	Optimal Detection Interval for Absorbing Receivers in Molecular Communication Syste Interference. , 2018, , .	ms with		2
166	Parity-Check Coding Based on Genetic Circuits for Engineered Molecular Communicati Biological Cells. IEEE Transactions on Communications, 2018, 66, 6221-6236.	on Between	4.9	32
167	System Modeling of Virus Transmission and Detection in Molecular Communication Ch	1annels. , 2018, ,		9
168	An adaptive pulse-width modulation for limited molecule production and storage. , 201	18, , .		5
169	Performance analysis of power adjustment methods in molecular communication via d	iffusion. , 2018,		1
170	Derivative-Based Signal Detection for High Data Rate Molecular Communication System Communications Letters, 2018, 22, 1782-1785.	m. IEEE	2.5	27
171	Comparison of reception mechanisms for molecular communication via diffusion. , 201	18,,.		1
172	Performance Analysis of Reversible Binding Receptor Based Decode-and-Forward Relay Communication Systems. IEEE Wireless Communications Letters, 2018, 7, 880-883.	in Molecular	3.2	19
173	Thermodynamic Properties of Molecular Communication. , 2018, , .			2
174	Optimal Diffusion Processes. , 2018, 2, 465-470.			8
175	Molecular motors MIMO communications for nanonetworks applications. , 2018, , .			8
176	MOL-eye: A new metric for the performance evaluation of a molecular signal. , 2018, , .			5
177	Molecular Communications: Model-Based and Data-Driven Receiver Design and Optimi Access, 2019, 7, 53555-53565.	zation. IEEE	2.6	16
178	A Novel \$A~Priori\$ Simulation Algorithm for Absorbing Receivers in Diffusion-Based Mo Communication Systems. IEEE Transactions on Nanobioscience, 2019, 18, 437-447.	olecular	2.2	0
179	The Asymmetric-Distance Metrics for Decoding of Convolutional Codes in Diffusion-Ba Communications. IEEE Transactions on Nanobioscience, 2019, 18, 469-481.	sed Molecular	2.2	5
180	Analytical Models for Particle Diffusion and Flow in a Horizontal Cylinder with a Vertica 2019, , .	l Force. ,		8

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
181	6G Wireless Communications: Vision and Potential Techniques. IEEE Network, 2019, 3	3, 70-75.	4.9	657
182	Diffusive Molecular Communication in Partially Blocked Cylindrical Environment. , 2019	9, , .		1
183	Diffusive Molecular Communication in a Biological Spherical Environment With Partiall Boundary. IEEE Transactions on Communications, 2019, 67, 6858-6867.	y Absorbing	4.9	19
184	Wireless Networks Design in the Era of Deep Learning: Model-Based, Al-Based, or Both Transactions on Communications, 2019, 67, 7331-7376.	?. IEEE	4.9	383
185	Reactive nanomessengers for artificial chemical communication. Physical Chemistry Ch 2019, 21, 16223-16229.	iemical Physics,	1.3	10
186	Error Control Codes for Molecular Communication Channels: A Survey. , 2019, , .			6
187	Modeling Molecular Communications in Tubes With Poiseuille Flow and Robin Bounda IEEE Communications Letters, 2019, 23, 1314-1318.	y Condition.	2.5	4
188	A Receiver Design for Molecule Shift Keying Modulation in Diffusion-Based Molecular Communications. , 2019, , .			6
189	Matrix Factorization for Personalized Recommendation With Implicit Feedback and Ter Information in Social Ecommerce Networks. IEEE Access, 2019, 7, 141268-141276.	nporal	2.6	11
190	Impact of Population on the Mutual Information of Action Potential Driven Communics , 2019, , .	ation in Plants.		1
191	IAFDSS: Intelligent Agent-Assisted Fuzzy Decision Support System for Diffusion-Based Communication Networks. , 2019, , .	Molecular Nano		0
192	A Node Activation-Based Routing Scheme in Micro/Nanobots Networks. IEEE Access, 2 144075-144089.	019, 7,	2.6	2
193	The Clock-Free Asynchronous Receiver Design for Molecular Timing Channels in Diffusi Molecular Communications. IEEE Transactions on Nanobioscience, 2019, 18, 585-596.	on-Based	2.2	10
194	Spatial Receptor Allocation for a Multiple Access Hub in Nanonetworks. IEEE Transaction Molecular, Biological, and Multi-Scale Communications, 2019, 5, 63-67.	ons on	1.4	2
195	Linearity of Sequential Molecular Signals in Turbulent Diffusion Channels. , 2019, , .			7
196	Design and Evaluation of Self-Assembled Actin-Based Nano-Communication. , 2019, , .			4
197	Optimal Transmitted Molecules and Decision Threshold for Drift-Induced Diffusive Mol Channel With Mobile Nanomachines. IEEE Transactions on Nanobioscience, 2019, 18,	₂cular 651-660.	2.2	25
198	Synchronization for Diffusion-Based Molecular Communication Systems via Faster Mol	ecules. , 2019, ,		10

#	Article	IF	CITATIONS
199	Diffusion-Based Reference Broadcast Synchronization for Molecular Communication in Nanonetworks. IEEE Access, 2019, 7, 95527-95535.	2.6	20
200	An Experimentally Validated Channel Model for Molecular Communication Systems. IEEE Access, 2019, 7, 81849-81858.	2.6	14
201	Information Theoretic Based Comparative Analysis of Different Communication Signals in Plants. IEEE Access, 2019, 7, 117075-117087.	2.6	8
202	Diffusive Mobile MC for Controlled-Release Drug Delivery with Absorbing Receiver. , 2019, , .		12
203	An ILI Mitigating Modulation Scheme for Molecular MIMO Communications. , 2019, , .		6
204	An Eigenfunction Approach to Parameter Estimation for 1D Diffusion Problems. , 2019, , .		5
205	Impact of Multiple Action Potentials on Communication Properties of Plants. , 2019, , .		3
206	Signal generation and storage in FRET-based nanocommunications. Nano Communication Networks, 2019, 21, 100254.	1.6	2
207	Directional Receivers for Diffusion-Based Molecular Communications. IEEE Access, 2019, 7, 5769-5783.	2.6	16
208	Molecular-Based Nano-Communication Network: A Ring Topology Nano-Bots for In-Vivo Drug Delivery Systems. IEEE Access, 2019, 7, 12901-12913.	2.6	7
209	Channel Modeling of Molecular Communication via Diffusion With Multiple Absorbing Receivers. IEEE Wireless Communications Letters, 2019, 8, 809-812.	3.2	14
210	Inter-symbol interference reduction channel codes based on time gap in diffusion-based molecular communications. Nano Communication Networks, 2019, 19, 148-156.	1.6	6
211	Interference Mitigation in Large-Scale Multiuser Molecular Communication. IEEE Transactions on Communications, 2019, 67, 4088-4103.	4.9	18
212	A Two-Way Molecular Communication Assisted by an Impulsive Force. IEEE Transactions on Industrial Informatics, 2019, 15, 3048-3057.	7.2	13
213	Methods and Applications of Mobile Molecular Communication. Proceedings of the IEEE, 2019, 107, 1442-1456.	16.4	59
214	Channel Modeling for Diffusive Molecular Communication—A Tutorial Review. Proceedings of the IEEE, 2019, 107, 1256-1301.	16.4	204
215	Self-assembled carbon nanoparticles as messengers for artificial chemical communication. Nanoscale, 2019, 11, 14203-14209.	2.8	15
216	The effective geometry Monte Carlo algorithm: Applications to molecular communication. Physics	0.9	2

#	Article	IF	CITATIONS
217	Transmitter and Receiver Architectures for Molecular Communications: A Survey on Physical Design With Modulation, Coding, and Detection Techniques. Proceedings of the IEEE, 2019, 107, 1302-1341.	16.4	106
218	The Effect of Loads in Molecular Communications. Proceedings of the IEEE, 2019, 107, 1369-1386.	16.4	14
219	Data Collection Protocol for Sensors Networks based on Molecular Communications. , 2019, , .		2
220	Capacity Bounds on Point-to-Point Communication Using Molecules. Proceedings of the IEEE, 2019, 107, 1342-1355.	16.4	11
221	Synaptic Communication Engineering for Future Cognitive Brain–Machine Interfaces. Proceedings of the IEEE, 2019, 107, 1425-1441.	16.4	27
222	Designing Molecular Circuits for Approximate Maximum a Posteriori Demodulation of Concentration Modulated Signals. IEEE Transactions on Communications, 2019, 67, 5458-5473.	4.9	13
223	Model-Based: End-to-End Molecular Communication System Through Deep Reinforcement Learning Auto Encoder. IEEE Access, 2019, 7, 70279-70286.	2.6	25
224	Computation of decision problems within messages in DNA-tile-based molecular nanonetworks. Nano Communication Networks, 2019, 21, 100245.	1.6	4
225	Detection and Amplification of Molecular Signals Using Cooperating Nano-devices. , 2019, , .		1
226	Performance Analysis of Decode-and-Forward Relay in Diffusion Molecular Communication Systems. Lecture Notes in Electrical Engineering, 2019, , 19-31.	0.3	0
227	Effective Geometry Monte Carlo: A Fast and Reliable Simulation Framework for Molecular Communication. IEEE Access, 2019, 7, 28635-28650.	2.6	3
228	Diffusive MIMO Molecular Communications: Channel Estimation, Equalization, and Detection. IEEE Transactions on Communications, 2019, 67, 4872-4884.	4.9	28
229	Symbol-by-Symbol Maximum Likelihood Detection for Cooperative Molecular Communication. IEEE Transactions on Communications, 2019, 67, 4885-4899.	4.9	16
230	ISI-Aware Channel Code Design for Molecular Communication via Diffusion. IEEE Transactions on Nanobioscience, 2019, 18, 205-213.	2.2	15
231	Spatial Modulation for Molecular Communication. IEEE Transactions on Nanobioscience, 2019, 18, 381-395.	2.2	45
232	A General Analytical Approximation to Impulse Response of 3-D Microfluidic Channels in Molecular Communication. IEEE Transactions on Nanobioscience, 2019, 18, 396-403.	2.2	14
233	Capacity Bounds for Diffusive Molecular Communication Over Discrete-Time Compound Poisson Channels. IEEE Communications Letters, 2019, 23, 793-796.	2.5	3
234	Statistical Analysis of Received Signal and Error Performance for Mobile Molecular Communication. IEEE Transactions on Nanobioscience, 2019, 18, 415-427.	2.2	18

#	Article	IF	CITATIONS
235	Quantum Machine Learning for 6G Communication Networks: State-of-the-Art and Vision for the Future. IEEE Access, 2019, 7, 46317-46350.	2.6	351
236	Communication through Breath: Aerosol Transmission. IEEE Communications Magazine, 2019, 57, 33-39.	4.9	39
237	Metric combinations in non-coherent signal detection for molecular communication. Nano Communication Networks, 2019, 20, 1-10.	1.6	9
238	Biological Circuits for Detection in MoSK-Based Molecular Communication. IEEE Access, 2019, 7, 21094-21102.	2.6	8
239	Pulse Position-Based Spatial Modulation for Molecular Communications. IEEE Communications Letters, 2019, 23, 596-599.	2.5	15
240	Analytical estimation for the impulse response of an <i>n</i> dimensional diffusion channel with an absorbing receiver. Journal of Physics A: Mathematical and Theoretical, 2019, 52, 11LT01.	0.7	1
241	Magnetic Nanoparticle-Based Molecular Communication in Microfluidic Environments. IEEE Transactions on Nanobioscience, 2019, 18, 156-169.	2.2	18
242	Concentration-based demodulation scheme for mobile receiver in molecular communication. Nano Communication Networks, 2019, 20, 11-19.	1.6	16
243	Analytical derivation of the impulse response for the bounded 2-D diffusion channel. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 1589-1600.	0.9	3
244	Index Modulation for Molecular Communication via Diffusion Systems. IEEE Transactions on Communications, 2019, 67, 3337-3350.	4.9	49
245	An Experimental Platform for Macro-Scale Fluidic Medium Molecular Communication. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2019, 5, 163-175.	1.4	20
246	Adaptive Release Duration Modulation for Limited Molecule Production and Storage. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2019, 5, 139-152.	1.4	6
247	Diffusive Mobile MC With Absorbing Receivers: Stochastic Analysis and Applications. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2019, 5, 84-99.	1.4	16
248	Abnormality Detection and Monitoring in Multi-Sensor Molecular Communication. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2019, 5, 68-83.	1.4	9
249	Space Shift Keying for Molecular Communication: Theory and Experiment. , 2019, , .		16
250	IADSS: Intelligent Agent-Assisted Decision Support System for Diffusion-Based Molecular Nano Communication Networks. , 2019, , .		0
251	A General Upper Bound on Point-to-Point Particle Timing Channel Capacity Under Constant Particle Emission Intensity. , 2019, , .		0
252	Characterization of an Inductance-based Detector in Molecular Communication Testbed Based on Superparamagnetic Iron Oxide Nanoparticles. , 2019, , .		4

#	Article	IF	Citations
253	On the Distribution of Molecules for Diffusion Based Molecular Communication System. , 2019, , .		3
254	Performance Analysis of Relay based Molecular Communication with Depleted Molecule Shift Keying. , 2019, , .		0
255	Non-Coherent Signal Detection Technique for Mobile Molecular Communication at High Data Rates. , 2019, , .		9
256	Health Applications Based on Molecular Communications: A Brief Review. , 2019, , .		9
257	Challenges and Distinctions in Nanonetworks Design. , 2019, , .		5
258	Channel Characterization for Devices in a Turbulent Diffusive Environment: A Mobile Molecular Communication Approach. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2019, 5, 222-232.	1.4	5
259	Passive Droplet Control in Two-Dimensional Microfluidic Networks. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2019, 5, 189-206.	1.4	1
260	Sequential Bayesian Detection of Spike Activities From Fluorescence Observations. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2019, 5, 3-18.	1.4	3
261	Signal reconstruction in diffusionâ€based molecular communication. Transactions on Emerging Telecommunications Technologies, 2019, 30, e3699.	2.6	6
262	Agent Based Modeling of the Rhizobiome with Molecular Communication and Game Theory. , 2019, , .		0
263	Cooperative Source Positioning for SIMO Molecular Communication via Diffusion. , 2019, , .		3
264	Performance analysis of diffusive molecular timing channels. IET Communications, 2019, 13, 3059-3067.	1.5	10
265	A Low-Complexity Solution to Angular Misalignments in Molecular Index Modulation. , 2019, , .		1
266	Design Optimization of a MIMO Receiver for Diffusion-based Molecular Communication. , 2019, , .		8
267	ISI Mitigation Using Three Taps FIR Zero-Forcing Technique for Diffusion-Based Molecular Communications. , 2019, , .		2
268	A Survey on Green 6G Network: Architecture and Technologies. IEEE Access, 2019, 7, 175758-175768.	2.6	324
269	A Molecular Communication Testbed Based on Proton Pumping Bacteria: Methods and Data. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2019, 5, 56-62.	1.4	22
270	ISIâ€mitigating modulation scheme using ion reaction for molecular communications. IET Nanobiotechnology, 2019, 13, 674-681.	1.9	1

#	Article	IF	CITATIONS
271	On the Impact of Transposition Errors in Diffusion-Based Channels. IEEE Transactions on Communications, 2019, 67, 364-374.	4.9	11
272	Biological Optical-to-Chemical Signal Conversion Interface: A Small-Scale Modulator for Molecular Communications. IEEE Transactions on Nanobioscience, 2019, 18, 31-42.	2.2	46
273	Improved Precision in Surface-Enhanced Raman Scattering Quantification of Analyte through Dual-Modality Multisite Sensing. Analytical Chemistry, 2019, 91, 4323-4330.	3.2	4
274	Leveraging Tactile Internet Cognizance and Operation via IoT and Edge Technologies. Proceedings of the IEEE, 2019, 107, 364-375.	16.4	42
275	Molecular Communication: The First Arrival Position Channel. IEEE Wireless Communications Letters, 2019, 8, 508-511.	3.2	7
276	Communication and Information Theory of Single Action Potential Signals in Plants. IEEE Transactions on Nanobioscience, 2019, 18, 61-73.	2.2	18
277	Molecular Communications With Molecular Circuit-Based Transmitters and Receivers. IEEE Transactions on Nanobioscience, 2019, 18, 146-155.	2.2	16
278	Communication Engineering Meets Medical Science: The Advanced Targeted Nanomedical Solution. Nanomedicine and Nanotoxicology, 2019, , 1-17.	0.1	1
279	MAP detector performance analysis in diffusion-based relaying molecular communications. Nano Communication Networks, 2019, 19, 81-91.	1.6	8
280	Early Cancer Detection in Blood Vessels Using Mobile Nanosensors. IEEE Transactions on Nanobioscience, 2019, 18, 103-116.	2.2	51
281	Strategies for Coexistence in Molecular Communication. IEEE Transactions on Nanobioscience, 2019, 18, 51-60.	2.2	9
282	Diffusive Molecular Communication in Biological Cylindrical Environment. IEEE Transactions on Nanobioscience, 2019, 18, 74-83.	2.2	17
283	Performance Enhancement of Diffusion-Based Molecular Communication. IEEE Transactions on Nanobioscience, 2020, 19, 48-58.	2.2	9
284	CTBRNN: A Novel Deep-Learning Based Signal Sequence Detector for Communications Systems. IEEE Signal Processing Letters, 2020, 27, 21-25.	2.1	15
285	Performance Analysis of Signal Detection for Amplify-and-Forward Relay in Diffusion-Based Molecular Communication Systems. IEEE Internet of Things Journal, 2020, 7, 1401-1412.	5.5	25
286	CSI-Independent Non-Linear Signal Detection in Molecular Communications. IEEE Transactions on Signal Processing, 2020, 68, 97-112.	3.2	14
287	A Rising Edge-Based Detection Algorithm for MIMO Molecular Communication. IEEE Wireless Communications Letters, 2020, 9, 523-527.	3.2	10
288	Analysis of Multi-Chemical Transmission in the Macro-Scale. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2020, 6, 93-106.	1.4	4

#	Article	IF	CITATIONS
289	Optimal Detection Interval for Absorbing Receivers in Molecular Communication Systems With Interference. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2020, 6, 184-198.	1.4	10
290	Neural Network Based Decision Fusion for Abnormality Detection via Molecular Communications. , 2020, , .		1
291	Mobile Molecular Communication Through Multiple Measurements of the Concentration of Molecules. IEEE Access, 2020, 8, 179606-179615.	2.6	8
292	Impacts of Unintended Nanomachine in Diffusion-Based Molecular Communication System. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2020, 6, 210-219.	1.4	3
293	Energy efficiency analysis of multi-hop mobile diffusive molecular communication. Nano Communication Networks, 2020, 26, 100313.	1.6	3
294	Novel Molecular Signaling Method and System for Molecular Communication in Human Body. IEEE Access, 2020, 8, 119361-119375.	2.6	10
295	Security and privacy in 6G networks: New areas and new challenges. Digital Communications and Networks, 2020, 6, 281-291.	2.7	206
296	Chemical Reactions-Based Microfluidic Transmitter and Receiver Design for Molecular Communication. IEEE Transactions on Communications, 2020, 68, 5590-5605.	4.9	15
297	dMole: A Novel Transreceiver for Mobile Molecular Communication Using Robust Differential Detection Techniques. IEEE Transactions on Nanobioscience, 2020, 19, 609-621.	2.2	6
298	Regulating Molecular Interactions Using Terahertz Communication. , 2020, , .		4
299	Deep Learning-based Human Implantable Nano Molecular Communications. , 2020, , .		17
300	Concentration and Position-Based Hybrid Modulation Scheme for Molecular Communications. , 2020, , \cdot		3
301	Semi-Blind Channel Estimation for Diffusive Molecular Communication. IEEE Communications Letters, 2020, 24, 2503-2507.	2.5	11
302	Graph-Based Encoders and Their Performance for Finite-State Channels With Feedback. IEEE Transactions on Communications, 2020, 68, 2106-2117.	4.9	10
303	Bio-Inspired Quorum Sensing-Based Nanonetwork Synchronization Using Birth-Death Growth Model. IEEE Transactions on Communications, 2020, 68, 6263-6275.	4.9	4
304	Spherical Diffusion Model with Semi-Permeable Boundary: A Transfer Function Approach. , 2020, , .		7
305	Diffusion Channel Characterization for A Cuboid Container: Some Insights into The Role of Dimensionality and Fluid Boundaries. , 2020, , .		0
306	Molecular Type Permutation Shift Keying for Molecular Communication. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2020, 6, 160-164.	1.4	18

#	Article	IF	CITATIONS
307	Generalized Molecular-Shift Keying (GMoSK): Principles and Performance Analysis. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2020, 6, 168-183.	1.4	25
308	2-D Channel Characterization of a Molecular Motor Signal. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2020, 6, 134-150.	1.4	0
309	From Nano-Communications to Body Area Networks: A Perspective on Truly Personal Communications. IEEE Access, 2020, 8, 159839-159853.	2.6	15
310	Vertical Underwater Molecular Communications via Buoyancy: Gaussian Velocity Distribution of Signal. , 2020, , .		4
311	Expected Received Signal in Diffusive Molecular Communication With Finite Binding Receptors. IEEE Communications Letters, 2020, 24, 2829-2833.	2.5	7
312	A Comprehensive Survey on Hybrid Communication in Context of Molecular Communication and Terahertz Communication for Body-Centric Nanonetworks. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2020, 6, 107-133.	1.4	44
313	Secure Internet-of-Nano Things for Targeted Drug Delivery: Distance-based Molecular Cipher Keys. , 2020, , .		11
314	Molecular Communication Aspects of Potassium Intracellular Signaling in Cardiomyocytes. IEEE Access, 2020, 8, 201770-201780.	2.6	1
315	Model-Aware End-to-End Learning for SISO Optical Wireless Communication Over Poisson Channel. IEEE Photonics Journal, 2020, 12, 1-15.	1.0	3
316	A Survey of Biological Building Blocks for Synthetic Molecular Communication Systems. IEEE Communications Surveys and Tutorials, 2020, 22, 2765-2800.	24.8	31
317	Ant-Behavior Inspired Intelligent NanoNet for Targeted Drug Delivery in Cancer Therapy. IEEE Transactions on Nanobioscience, 2020, 19, 323-332.	2.2	20
318	Theoretical Aspects of Resting-State Cardiomyocyte Communication for Multi-Nodal Nano-Actuator Pacemakers. Sensors, 2020, 20, 2792.	2.1	2
319	Performance Analysis of D-MoSK Modulation in Mobile Diffusive-Drift Molecular Communications. IEEE Internet of Things Journal, 2020, 7, 11318-11326.	5.5	9
320	Iterative Signal Detection for Diffusion-Based Molecular Communications. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2020, 6, 36-49.	1.4	2
321	Adaptive Threshold Detection and ISI Mitigation in Mobile Molecular Communication. , 2020, , .		5
322	Network Formation Model of Bio-nanomachines Based on Directed Migration and Adhesion. , 2020, , .		4
323	Modeling of Viral Aerosol Transmission and Detection. IEEE Transactions on Communications, 2020, 68, 4859-4873.	4.9	33
324	Molecular Communication in Fractional Diffusive Channel. IEEE Communications Letters, 2020, 24, 2172-2176.	2.5	11

#	Article	IF	CITATIONS
325	Simulation Study and Analysis of Diffusive Molecular Communications With an Apertured Plane. IEEE Transactions on Nanobioscience, 2020, 19, 468-476.	2.2	4
326	Channel Characterization for 1-D Molecular Communication With Two Absorbing Receivers. IEEE Communications Letters, 2020, 24, 1150-1154.	2.5	14
327	Underwater Networked Wireless Sensor Data Collection for Computational Intelligence Techniques: Issues, Challenges, and Approaches. IEEE Access, 2020, 8, 122959-122974.	2.6	39
328	Signal Detection for Molecular MIMO Communications With Asymmetrical Topology. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2020, 6, 60-70.	1.4	7
329	Wireless Communication in Nanonetworks: Current Status, Prospect and Challenges. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2020, 6, 71-80.	1.4	11
330	Demo: In-Vessel Molecular MIMO Communications. , 2020, , .		5
331	Inference in Turbulent Molecular Information Channels Using Support Vector Machine. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2020, 6, 25-35.	1.4	5
332	ISI-Mitigating Channel Codes for Molecular Communication Via Diffusion. IEEE Access, 2020, 8, 24588-24599.	2.6	19
333	Machine Learning-Based Silent Entity Localization Using Molecular Diffusion. IEEE Communications Letters, 2020, 24, 807-810.	2.5	13
334	Using Spatial Partitioning to Reduce the Bit Error Rate of Diffusion-Based Molecular Communications. IEEE Transactions on Communications, 2020, 68, 2204-2220.	4.9	4
335	Two-Way Molecular Communications. IEEE Transactions on Communications, 2020, 68, 3550-3563.	4.9	18
336	Characterization of Dielectrophoresis Based Relay-Assisted Molecular Communication Using Analogue Transmission Line. IEEE Access, 2020, 8, 33352-33359.	2.6	4
337	A Lean Control Theoretic Approach to Energy-Harvesting in Diffusion-Based Molecular Communications. IEEE Communications Letters, 2020, 24, 981-985.	2.5	7
338	Communication in Plants: Comparison of Multiple Action Potential and Mechanosensitive Signals With Experiments. IEEE Transactions on Nanobioscience, 2020, 19, 213-223.	2.2	9
339	Molecular communication via diffusion with spherical receiver & transmitter and trapezoidal container. Microprocessors and Microsystems, 2020, 74, 103017.	1.8	6
340	Membrane Structure Drives Synchronization Patterns in Arrays of Diffusively Coupled Self-Oscillating Droplets. Journal of Physical Chemistry Letters, 2020, 11, 2014-2020.	2.1	22
341	Equalisation and performance of diffusive molecular communication systems with binary molecularâ€shift keying modulation. IET Communications, 2020, 14, 549-555.	1.5	3
342	Performance of diffusive molecular communication systems with binary molecular shift keying modulation. IET Communications, 2020, 14, 262-273.	1.5	0

#	Article	IF	CITATIONS
343	Low-Complexity Adaptive Signal Detection for Mobile Molecular Communication. IEEE Transactions on Nanobioscience, 2020, 19, 237-248.	2.2	16
344	Molecular communication in three-dimensional diffusive channel with mobile nanomachines. Nano Communication Networks, 2020, 24, 100296.	1.6	13
345	Fluorescent nanoparticle-based Internet of things. Nanoscale, 2020, 12, 9817-9823.	2.8	14
346	Initial Distance Estimation and Signal Detection for Diffusive Mobile Molecular Communication. IEEE Transactions on Nanobioscience, 2020, 19, 422-433.	2.2	24
347	Power Control for ISI Mitigation in Mobile Molecular Communication. IEEE Communications Letters, 2021, 25, 460-464.	2.5	6
348	Performance analysis of diffusion-based decode-and-forward relay with depleted molecule shift keying. Digital Communications and Networks, 2021, 7, 399-409.	2.7	5
349	On Mathematical Analysis of Active Drug Transport Coupled With Flow-Induced Diffusion in Blood Vessels. IEEE Transactions on Nanobioscience, 2021, 20, 105-115.	2.2	12
350	Information Rates of Controlled Protein Interactions Using Terahertz Communication. IEEE Transactions on Nanobioscience, 2021, 20, 9-19.	2.2	15
351	Transfer Function Models for Cylindrical MC Channels With Diffusion and Laminar Flow. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2021, 7, 271-287.	1.4	7
352	Investigation of Multiple Fluorescent Dyes in Macroscopic Air-Based Molecular Communication. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2021, 7, 78-82.	1.4	12
353	Cooperative Molecular Communication in Drift-Induced Diffusive Cylindrical Channel. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2022, 8, 44-55.	1.4	4
354	A Concentration-Time Hybrid Modulation Scheme for Molecular Communications. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2021, 7, 288-299.	1.4	11
355	Secrecy Optimization for Diffusion-Based Molecular Timing Channels. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2021, 7, 253-261.	1.4	10
356	Analytical Investigation of Long-Time Diffusion Dynamics in a Synaptic Channel With Glial Cells. IEEE Communications Letters, 2021, 25, 3444-3448.	2.5	2
357	Layered Molecular Shift Keying for Molecular Communication via Diffusion. IEEE Communications Letters, 2021, , 1-1.	2.5	1
358	Non-Coherent and Backscatter Communications: Enabling Ultra-Massive Connectivity in 6G Wireless Networks. IEEE Access, 2021, 9, 38144-38186.	2.6	41
359	An Analytical Model for Molecular Communication Over a Non-Linear Reaction-Diffusion Medium. IEEE Transactions on Communications, 2021, 69, 8042-8054.	4.9	4
360	The evolution of data gathering static and mobility models in underwater wireless sensor networks: a survey. Journal of Ambient Intelligence and Humanized Computing, 2021, 12, 9757-9773.	3.3	17

#	Article	IF	CITATIONS
361	Kolmogorov Turbulence and Information Dissipation in Molecular Communication. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2021, 7, 262-270.	1.4	3
362	Protrusion Location Optimization in Communication via Diffusion. , 2021, , .		0
363	Low Complex Receiver Design for Modified Inverse Source Coded Diffusion-Based Molecular Communication Systems. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2021, 7, 239-252.	1.4	5
364	Generative-Adversarial-Network Enabled Signal Detection for Communication Systems With Unknown Channel Models. IEEE Journal on Selected Areas in Communications, 2021, 39, 47-60.	9.7	19
365	Enhanced Molecular Type Permutation Shift Keying for Molecular Communication. IEEE Wireless Communications Letters, 2021, 10, 2722-2726.	3.2	5
366	A Survey of Molecular Communication in Cell Biology: Establishing a New Hierarchy for Interdisciplinary Applications. IEEE Communications Surveys and Tutorials, 2021, 23, 1494-1545.	24.8	42
367	Enabling Technologies and Services for 6G Networks. Lecture Notes in Networks and Systems, 2021, , 33-42.	0.5	0
368	Light Energy Driven Nanocommunications With FRET in Photosynthetic Systems. IEEE Access, 2021, 9, 44490-44501.	2.6	2
369	6C: A comprehensive survey on technologies, applications, challenges, and research problems. Transactions on Emerging Telecommunications Technologies, 2021, 32, e4233.	2.6	78
370	A Molecular Spatio-Temporal Modulation Scheme for MIMO Communications. , 2021, , .		3
371	A Noise Suppression Filter for Molecular Communication via Diffusion. IEEE Wireless Communications Letters, 2021, 10, 589-593.	3.2	7
372	Revisión sistemática de literatura. TecnologÃa En Marcha, O, , .	0.1	2
373	Machine Learning in Nano-Scale Biomedical Engineering. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2021, 7, 10-39.	1.4	22
374	Deterministic Identification Over Fading Channels. , 2021, , .		12
375	Multi-cell, Multi-user, and Multi-carrier Secure Communication Using Non-Orthogonal Signals' Superposition with Dual-Transmission for IoT in 6G and Beyond. , 0, , .		0
376	Infectious Disease Transmission via Aerosol Propagation from a Molecular Communication Perspective: Shannon Meets Coronavirus. IEEE Communications Magazine, 2021, 59, 40-46.	4.9	13
377	Timing Alignment in Molecular-Communication-Based Nanonetworks. IEEE Communications Magazine, 2021, 59, 54-60.	4.9	0
378	Estimating Capture Probabilities for Complex Topologies in 2D Molecular Communication via Diffusion Channel using Artificial Neural Networks. , 2021, , .		0

#		IE	CITATION
#	Acticle	IF	
379	Age of mormation in molecular communication channels. , 2022, 124, 103108.		7
380	Fluid dynamics-based distance estimation algorithm for macroscale molecular communication. Nano Communication Networks, 2021, 28, 100351.	1.6	7
381	Membrane Fusion-Based Transmitter Design for Molecular Communication Systems. , 2021, , .		3
382	A Semi-Analytical Method for Channel Modeling in Diffusion-Based Molecular Communication Networks. IEEE Transactions on Communications, 2021, 69, 3957-3970.	4.9	5
383	Characterizing the Probability of Collision Between Information Particles in Molecular Communications. IEEE Wireless Communications Letters, 2021, 10, 1252-1255.	3.2	2
384	Molecular communication system with non-absorbing receiver. Nano Communication Networks, 2021, 28, 100335.	1.6	2
385	Implementing Single Path and Multipath Techniques Under Feedback Channel for Molecular Communication. Wireless Personal Communications, 2021, 120, 3315-3328.	1.8	0
386	Deterministic Identification Over Channels With Power Constraints. , 2021, , .		13
387	A Mock Circulatory Network Testbed for Molecular Communications. , 2021, , .		0
388	A Frequency Domain View on Diffusion-based Molecular Communication Channels. , 2021, , .		0
389	Stochastic reaction and diffusion systems in molecular communications: Recent results and open problems. , 2022, 124, 103117.		9
390	Using Vector Fields for Efficient Simulation of Macroscopic Molecular Communication. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2021, 7, 73-77.	1.4	0
391	On the Exact Performance Analysis of Molecular Communication via Diffusion for Internet of Bio-Nano Things. IEEE Transactions on Nanobioscience, 2021, 20, 291-295.	2.2	5
392	A Voxel Model to Decipher the Role of Molecular Communication in the Growth of Glioblastoma Multiforme. IEEE Transactions on Nanobioscience, 2021, 20, 296-310.	2.2	2
393	New Trends in Stochastic Geometry for Wireless Networks: A Tutorial and Survey. Proceedings of the IEEE, 2021, 109, 1200-1252.	16.4	54
394	Detection in molecular communications with ligand receptors under molecular interference. , 2022, 124, 103186.		11
395	A survey on estimation schemes in molecular communications. , 2022, 124, 103163.		5
396	Towards high data-rate diffusive molecular communications: A review on performance enhancement strategies. , 2022, 124, 103161.		10

#	Article	IF	CITATIONS
397	Transmission of a Bit Over a Discrete Poisson Channel With Memory. IEEE Transactions on Information Theory, 2021, 67, 4710-4727.	1.5	4
398	Implementation issues of diffusion-based molecular communications receivers based on transcriptional elements. , 2022, 124, 103160.		7
399	A technical review on application oriented comparative study of IoT, IoNT, and IoBNT. , 2021, , .		2
400	Low complexity receiver design for time-varying Poisson molecular communication channels with memory. , 2022, 124, 103187.		7
401	Self-Attention-Based Real-Time Signal Detector for Communication Systems With Unknown Channel Models. IEEE Communications Letters, 2021, 25, 2639-2643.	2.5	1
402	K-Means Clustering-Aided Non-Coherent Detection for Molecular Communications. IEEE Transactions on Communications, 2021, 69, 5456-5470.	4.9	9
403	Multiple transmitter localization via single receiver in 3-D molecular communication via diffusion. , 2022, 124, 103185.		10
404	A TDMA-Based Data Gathering Protocol for Molecular Communication via Diffusion-Based Nano-Sensor Networks. IEEE Sensors Journal, 2021, 21, 19582-19595.	2.4	5
405	Viral Aerosol Concentration Characterization and Detection in Bounded Environments. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2021, 7, 185-199.	1.4	5
406	On the Optimization of Derivative-Based Receivers for Molecular Communications. , 2021, , .		1
407	A perspective on 6G: Requirement, technology, enablers, challenges and future road map. Journal of Systems Architecture, 2021, 118, 102180.	2.5	25
408	Application of MIMO Techniques in Macroscopic Air-based Molecular Communication. , 2021, , .		1
409	Increasing the Channel Capacity. , 2021, , .		2
410	Duality Between Coronavirus Transmission and Air-Based Macroscopic Molecular Communication. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2021, 7, 200-208.	1.4	13
411	Synthetic Cells Engaged in Molecular Communication: An Opportunity for Modelling Shannon- and Semantic-Information in the Chemical Domain. Frontiers in Communications and Networks, 2021, 2, .	1.9	14
412	Graphene Quantum Dots enable digital communication through biological fluids. Carbon, 2021, 182, 847-855.	5.4	11
413	Area Rate Efficiency in Molecular Communications. , 2021, , .		2
414	Clock Synchronization for Mobile Molecular Communication Systems. IEEE Transactions on Nanobioscience, 2021, 20, 406-415.	2.2	13

ARTICLE IF CITATIONS Bacterial Receiver Prototype for Molecular Communication Using Rhamnose Operon in a Microfluidic 2.2 5 415 Environment. IEEE Transactions on Nanobioscience, 2021, 20, 426-435. Amplify-and-forward relaying in mobile multi-hop molecular communication via diffusion. Nano 1.6 Communication Networks, 2021, 30, 100375. A Survey on Modulation Techniques in Molecular Communication via Diffusion. IEEE Communications 417 24.8 55 Surveys and Tutorials, 2021, 23, 7-28. A Systematic Review of Bio-Cyber Interface Technologies and Security Issues for Internet of Bio-Nano 418 Things. IEEE Access, 2021, 9, 93529-93566. Equilibrium Signaling in Spatially Inhomogeneous Diffusion and External Forces. IEEE Transactions on 419 1.4 2 Molecular, Biological, and Multi-Scale Communications, 2021, 7, 106-110. Target Recognition in Turbulent Diffusion Channels. IEEE Communications Letters, 2021, 25, 3694-3698. 2.5 Semi-blind Channel Estimation for MIMO Diffusive Molecular Communication. IEEE Communications 421 2.5 2 Letters, 2021, , 1-1. Frequency Domain Analysis and Equalization for Molecular Communication. IEEE Transactions on 3.2 Signal Prócessing, 2021, 69, 1952-1967. Molecular-Type Permutation Shift Keying in Molecular MIMO Communications for IoBNT. IEEE Internet 423 5.5 8 of Things Journal, 2021, 8, 16023-16034. Markov Chain Modeling of the End-to-End Molecular Communication System using Ligand Receiver. 424 1.4 IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2021, , 1-1. Experimental System for Molecular Communication in Pipe Flow With Magnetic Nanoparticles. IEEE 425 1.4 11 Transactions on Molecular, Biological, and Multi-Scale Communications, 2022, 8, 56-71. An Analytical Propagation Model for Diffusion-Based Molecular Communication Systems. IEEE 1.4 Transactions on Molecular, Biological, and Multi-Scale Communications, 2022, 8, 72-81. Bounds on the Constrained Capacity for the Diffusive Poisson Molecular Channel With Memory. IEEE 427 1.4 12 Transactions on Molecular, Biological, and Multi-Scale Communications, 2021, 7, 100-105. Probability Distribution of a Signal's Peak Time in a Molecular Diffusive Media. IEEE Communications 428 2.5 Letters, 2021, 25, 3833-3837 Multi-Resonant Frequency Shift Keying: A Novel and Efficient Modulation Scheme for Magnetic 429 3 2.6 Communication. IEEE Access, 2021, 9, 129431-129442. A Data-driven Approach to Optimize Bounds on the Capacity of the Molecular Channel., 2020, , . Timing Modulation for Macro-Scale Molecular Communication. IEEE Wireless Communications 431 3.22 Letters, 2020, 9, 1356-1360. Analysis of Diffusion Based Molecular Communication With Multiple Transmitters Having Individual Random Information Bits. IEEE Transactions on Molecular, Biological, and Multi-Scale 1.4 Communications, 2019, 5, 176-188.

# 433	ARTICLE Capacities and Optimal Input Distributions for Particle-Intensity Channels. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2020, 6, 220-232.	IF 1.4	CITATIONS
434	Molecular circuit for approximate maximum a posteriori demodulation of concentration modulated signals. , 2018, , .		4
435	Fast simulation of interacting carriers in nanosimulators. , 2018, , .		2
436	Understanding and embracing the complexities of the molecular communication channel in liquids. , 2020, , .		8
437	A testbed and simulation framework for air-based molecular communication using fluorescein. , 2020, , .		13
438	Extreme Communication in 6G: Vision and Challenges for â€~in-X' Subnetworks. IEEE Open Journal of the Communications Society, 2021, 2, 2516-2535.	4.4	18
439	Performance Analysis and Receiver Design of Spatio-Temporal Coded Modulation Scheme for Diffusion-Based Molecular MIMO Systems. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2022, 8, 119-137.	1.4	3
440	Mobile Two-Way Molecular Communication via Diffusion Using Amplify-and-Forward and Analog Network Coding. IEEE Transactions on Nanobioscience, 2022, 21, 273-285.	2.2	1
441	Modeling Self-Assembly of Polymer-Based Wired Nano-Communication Channel. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2022, 8, 107-118.	1.4	2
442	MIMO Operations in Molecular Communications: Theory, Prototypes, and Open Challenges. IEEE Communications Magazine, 2021, 59, 98-104.	4.9	7
443	Recent Advances in Wearable Sensing Technologies. Sensors, 2021, 21, 6828.	2.1	41
444	Multi-Scale Energy Harvesting. , 2018, , 157-185.		0
445	Received signal strength for randomly distributed molecular nanonodes. , 2017, , .		0
446	Performance bounds of estimators in molecular communications under structural constraints. , 2017, , .		0
447	Modulation in Molecular Signaling. , 2018, , 1-6.		0
448	Connectivity via Molecular Signaling. , 2018, , 1-5.		0
450	Two way molecular communications. , 2018, , .		7
451	Biological optical-to-chemical signal conversion interface. , 2018, , .		9

#	Article	IF	CITATIONS
452	Using spatial partitioning to reduce receiver signal variance in diffusion-based molecular communication. , 2018, , .		7
453	Signal Detection for Mobile Molecular Communication, based on Concentration Difference. , 2019, , .		1
454	Molecular Communication for Wireless Body Area Networks. , 2019, , 1-5.		2
455	Magnetic Steering of Superparamagnetic Nanoparticles in Duct Flow for Molecular Communication: A Feasibility Study. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2019, , 161-174.	0.2	3
456	Signal Transmitting in Pheromone Networks. Lecture Notes in Computer Science, 2019, , 534-539.	1.0	1
457	On Hybrid MoSK-CSK Modulation based Molecular Communication: Error Rate Performance Analysis using Stochastic Geometry. , 2019, , .		3
458	Estimation and Optimization for Molecular Communications with a Coexistence Constraint. , 2019, , .		1
459	Maximum a posteriori-based molecular circuit demodulators for spatially partitioned molecular communication receivers. , 2019, , .		1
460	Synchronization with Molecular Signals on Spatial-Temporal Complex Networks. , 2019, , .		1
461	Experimental Study of the Flush Dynamics of Macro-Scale Molecular Communications. , 2019, , .		0
462	Genetic Expression in Biological Systems: A Digital Communication Perspective. Open Bioinformatics Journal, 2019, 12, 45-49.	1.0	9
463	EXIT Chart Analysis of Higher Order Modulation Schemes in Molecular Communications. , 2019, , .		5
464	Characterization of Diffusive Molecular Channels based on Green's Second Identity. , 2019, , .		0
465	Molecular Bit Detection. , 2020, , 915-920.		0
466	Binary Concentration Shift Keying with Multiple Measurements of Molecule Concentration in Mobile Molecular Communication. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2020, , 42-51.	0.2	2
467	Channel Capacity Analysis of a Comprehensive Absorbing Receiver for Molecular Communication via Diffusion. IEEE Access, 2020, 8, 227152-227160.	2.6	6
468	Nanonetworks and Molecular Communications for Biomedical Applications. IEEE Potentials, 2020, 39, 25-30.	0.2	6
469	Molecular Motor Communication with An Absorbing Receiver. , 2020, , .		1

#	Article	IF	CITATIONS
471	Higher Order Derivatives: Improved Pre-Processing and Receivers for Molecular Communications. , 2020, , .		2
472	Parameter Estimation in a Noisy 1D Environment via Two Absorbing Receivers. , 2020, , .		2
473	Concentration-Shifting-based Modulation Scheme for Molecular Communication System with a Mobile Transmitter. , 2020, , .		1
474	Gain and Delay Simulation for Molecular Communication Using Verilog. , 2020, , .		2
475	Secrecy performance of diffusion based molecular timing channels. IET Communications, 2021, 15, 289-304.	1.5	4
476	Signal Transmission Through Human Body Via Engineered Nervous System. , 2020, , .		4
477	6G Wireless Communications Networks: A Comprehensive Survey. IEEE Access, 2021, 9, 148191-148243.	2.6	157
478	Molecular Communication for Wireless Body Area Networks. , 2020, , 921-925.		1
479	Improving Performance of Relay-Assisted Molecular Communication Systems Using Network Coding. Lecture Notes in Electrical Engineering, 2020, , 184-193.	0.3	1
480	Preliminary Studies on Flow Assisted Propagation of Fluorescent Microbeads in Microfluidic Channels for Molecular Communication Systems. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2020, , 294-302.	0.2	3
481	Modulation in Molecular Signaling. , 2020, , 910-915.		0
482	Localization of a Passive Molecular Transmitter with a Sensor Network. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2020, , 317-335.	0.2	4
483	Localization Schemes for 2-D Molecular Communication via Diffusion. Lecture Notes in Electrical Engineering, 2020, , 749-756.	0.3	0
484	A Novel Multi-layer Detection Scheme for Diffusion-Based Molecular Communications. , 2020, , 1-15.		0
485	Connectivity via Molecular Signaling. , 2020, , 221-225.		0
486	Clock Synchronization for Mobile Molecular Communication inÂNanonetworks. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2020, , 3-15.	0.2	1
487	Molecular MIMO Communications Platform with BTSK for In-Vessel Network Systems. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2020, , 289-293.	0.2	3
488	Modeling and Simulation of Molecular Communication Based Nanonetwork Using Finite Shaped Spherical Receiver. Wireless Personal Communications, 0, , 1.	1.8	0

#	Article	IF	CITATIONS
489	Modeling Gene Expression and Protein Delivery as an End-to-End Digital Communication System. Open Bioinformatics Journal, 2021, 14, 21-35.	1.0	4
490	On Gradient Descent Optimization in Diffusion-Advection Based 3-D Molecular Cooperative Communication. IEEE Transactions on Nanobioscience, 2020, 19, 347-356.	2.2	12
491	Effect of receiver shape and volume on the Alzheimer disease for molecular communication via diffusion. IET Nanobiotechnology, 2020, 14, 602-608.	1.9	5
492	Design of macroscopic air-based molecular communication concept using fluorescein. , 2020, , .		5
493	Shining light on molecular communication. , 2020, 2020, .		1
494	RNN based abnormality detection with nanoscale sensor networks using molecular communications. , 2020, , .		1
495	Sum capacity analysis of mobile broadcast diffusive molecular communication. Nano Communication Networks, 2020, 26, 100314.	1.6	1
497	Electrophoretic molecular communication with time-varying electric fields. Nano Communication Networks, 2022, 31, 100381.	1.6	3
498	A Simple Queuing Model for Molecular Communications Receivers. Sensors, 2021, 21, 7664.	2.1	0
499	Enabling Protein Interactions Using Terahertz Signals for Intra-body Communication. , 2021, , .		2
504	Fluorescent nanoparticles for reliable communication among implantable medical devices. Carbon, 2022, 190, 262-275.	5.4	7
505	Verilog Implementation of Diffusion Concentration in Molecular Communication. , 2020, , .		0
506	Fluorescent Nanoparticles for Secure Communication Among Implantable Medical Devices. SSRN Electronic Journal, 0, , .	0.4	0
507	Confidence Interval of Peak-Based Distance Estimation in Diffusive Molecular Communication. , 2021, , .		0
508	Heterogeneous Network Embedding With Enhanced Event Awareness Via Triplet Network. , 2021, , .		0
509	Channel Modeling for Drug Carrier Matrices. , 2021, , .		1
510	Optimization: Molecular Communication Networks for Viral Disease Analysis Using Deep Leaning Autoencoder. Computational and Mathematical Methods in Medicine, 2021, 2021, 1-11.	0.7	1
511	Effect of Time-Dependent Drift and Diffusion in Molecular Communication Systems. IEEE Communications Letters, 2022, 26, 778-782.	2.5	3

#	Article	IF	CITATIONS
512	Effect of Channel Radius on Fluorescent Nanoparticle Based Molecular Communication. Chemosensors, 2022, 10, 29.	1.8	1
514	A Graph-Based Molecular Communications Model Analysis of the Human Gut Bacteriome. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 3567-3577.	3.9	5
515	The Feedback Capacity of Noisy Output Is the STate (NOST) Channels. IEEE Transactions on Information Theory, 2022, 68, 5044-5059.	1.5	3
516	Convolutional Codec Implemented by Genetic Circuits for Molecular Communication. IEEE Transactions on Nanobioscience, 2023, 22, 78-91.	2.2	2
517	Secrecy Capacity of Diffusive Molecular Communication Under Different Deployments. IEEE Access, 2022, 10, 21670-21683.	2.6	4
518	Joint Optimizations of Relays Locations and Decision Threshold for Multi-Hop Diffusive Mobile Molecular Communication With Drift. IEEE Transactions on Nanobioscience, 2022, 21, 454-465.	2.2	7
519	Molecule Harvesting Transmitter Model for Molecular Communication Systems. IEEE Open Journal of the Communications Society, 2022, 3, 391-410.	4.4	2
520	Error Performance and Mutual Information for IoNT Interface System. IEEE Internet of Things Journal, 2022, 9, 9831-9842.	5.5	8
521	Channel Characterization of Diffusion-Based Molecular Communication With Multiple Fully-Absorbing Receivers. IEEE Transactions on Communications, 2022, 70, 3006-3019.	4.9	8
522	Cooperative Target Tracking Algorithm Based on Massive Beacon Coordinates System in Directional Molecular Communication. IEEE Transactions on Nanobioscience, 2022, 21, 405-415.	2.2	3
523	A Novel Hybrid Modulation Scheme for Molecular Communication: Performance Analysis. IEEE Wireless Communications Letters, 2022, 11, 1234-1238.	3.2	2
524	An Empirical Model for 1-D Molecular Communication Diffusive Channels Under Reflecting and Absorbing Boundary Conditions. , 2022, , .		3
525	A Molecular Communication Platform Based on Body Area Nanonetwork. Nanomaterials, 2022, 12, 722.	1.9	13
526	Analysis and classification of the mobile molecular communication systems with deep learning. Journal of Ambient Intelligence and Humanized Computing, 2022, 13, 2903-2919.	3.3	7
527	High-Reliability Business Management Strategy Analysis Based on GPRS Wireless Communication. Wireless Communications and Mobile Computing, 2022, 2022, 1-10.	0.8	0
528	Security Requirements and Challenges of 6G Technologies and Applications. Sensors, 2022, 22, 1969.	2.1	60
529	An Optimal Strategy for Individualized Drug Delivery Therapy: A Molecular Communication Inspired Waveform Design Perspective. , 2021, 2021, 866-869.		1
530	Deterministic Identification Over Poisson Channels. , 2021, , .		7

#	Article	IF	CITATIONS
531	Distance and Velocity Prediction by Extended Kalman Filter in Mobile Molecular Communication. , 2021, , .		0
532	In-network Learning for Distributed Training and Inference in Networks. , 2021, , .		5
533	Enhanced Modulation for Multiuser Molecular Communication in Internet of Nano Things. IEEE Internet of Things Journal, 2022, 9, 19787-19802.	5.5	15
534	Asymptotic MIMO Channel Model for Diffusive MC With Fully-Absorbing Receivers. IEEE Wireless Communications Letters, 2022, 11, 1634-1638.	3.2	3
535	Motility resilience of molecular shuttles against defective motors. IEEE Transactions on Nanobioscience, 2022, PP, 1-1.	2.2	0
536	Localization of a Nano-transmitter in a Diffusive MC System with Multiple Fully-absorbing Receivers. , 2022, , .		4
537	Machine Learning-Based Optical Performance Monitoring for Super-Channel Optical Networks. Photonics, 2022, 9, 299.	0.9	1
538	An Adaptive Fuzzy Neural Network Technique for Coronavirus-Based Bio-Nano Communication Systems. Current Nanoscience, 2022, 18, .	0.7	0
539	A systematic Analysis: Molecular Information in viral Disease using Deep Learning Auto Encoder. , 2021, , .		0
540	An Extended Kalman Filter for Distance Estimation and Power Control in Mobile Molecular Communication. IEEE Transactions on Communications, 2022, 70, 4373-4385.	4.9	4
541	Comprehensive step-by-step procedure to setup a molecular communication through liquid experiment. MethodsX, 2022, 9, 101736.	0.7	3
542	Molecular Communication Transmitter Design in Limited-Capacity Storage Regime. IEEE Transactions on Nanobioscience, 2023, 22, 212-222.	2.2	3
543	Security in Diffusive Molecular Timing Channels: An Amount of Confusion Level Perspective. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2022, 8, 190-201.	1.4	2
544	On Anomalous Diffusion of Devices in Molecular Communication Systems. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2022, 8, 207-211.	1.4	4
545	Performance Analysis of an Artificial Intelligence Nanosystem with Biological Internet of Nano Things. CMES - Computer Modeling in Engineering and Sciences, 2022, 133, 111-131.	0.8	5
546	Optimization of Decision Thresholds in Two-Way Molecular Communication via Diffusion With Network Coding. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2022, 8, 249-262.	1.4	1
547	Design and Evaluation of a Receiver for Wired Nano-Communication Networks. IEEE Transactions on Nanobioscience, 2023, 22, 223-236.	2.2	1
548	Channel Responses for the Molecule Release From Spherical Homogeneous Matrix Carriers. IEEE Transactions on Molecular. Biological, and Multi-Scale Communications, 2022, 8, 212-228.	1.4	1

#	Article	IF	CITATIONS
549	Rescaled Brownian Motion of Molecules and Devices in Three-Dimensional Multiuser Mobile Molecular Communication Systems. IEEE Transactions on Wireless Communications, 2022, 21, 10472-10488.	6.1	7
550	Optimal relaying in molecular communications. Nano Communication Networks, 2022, 32-33, 100404.	1.6	3
551	Intersymbol Interference for Electrophoretic Molecular Communication in Circular Duct Channels. IEEE Communications Letters, 2022, 26, 2307-2311.	2.5	1
552	Levenberg–Marquardt Method-Based Cooperative Source Localization in SIMO Molecular Communication via Diffusion Systems. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2022, 8, 229-238.	1.4	3
553	Diversity Combining in a Single-Input-Multiple-Output Molecular Communication System. , 2022, , .		1
554	Emission Time Estimation with Rectangular Input Concentration in Molecular Communication Systems. , 2022, , .		1
555	Analyzing of Alzheimer's Disease Based on Biomedical and Socio-Economic Approach Using Molecular Communication, Artificial Neural Network, and Random Forest Models. Sustainability, 2022, 14, 7901.	1.6	10
556	Role of Blockchain in Security of 6G Networks. Advances in Wireless Technologies and Telecommunication Book Series, 2022, , 106-129.	0.3	1
557	Toward Establishing Molecular Interfaces Using Terahertz Radiation. , 2022, , .		3
558	Detection Interval Optimization for Diffusion-based Molecular Communication. , 2022, , .		6
559	Analysis of Receiver Covered by Heterogeneous Receptors in Molecular Communications. , 2022, , .		1
560	Molecular Communication in Vacuum. , 2022, , .		Ο
561	Optimizing the Spatial Topology of Bacterial Relay Systems: Delay Minimization. , 2022, , .		1
562	Using Deep Learning to Demodulate Transmissions in Molecular Communication. , 2022, , .		5
563	Frequency response of diffusion-based molecular communication channels in bounded environment. , 2022, , .		3
564	Twoâ€way chemotaxisâ€based communication for biological nanonetworks. International Journal of Communication Systems, 0, , .	1.6	1
565	Low Complexity First: Duration-Centric ISI Mitigation in Molecular Communication via Diffusion. IEEE Communications Letters, 2022, 26, 2665-2669.	2.5	1
566	Evaluation of Non-Coherent Signal Detection Techniques for Mobile Molecular Communication. IEEE Transactions on Nanobioscience, 2023, 22, 356-364.	2.2	1

#	ARTICLE	IF	CITATIONS
568	A Learning Automaton-Based Algorithm for Maximizing the Transfer Data Rate in a Biological Nanonetwork. Applied Sciences (Switzerland), 2022, 12, 9499.	1.3	0
569	On the transport of molecular information in sub-diffusion media with reflecting boundary. , 2022, , .		0
570	Channel coding techniques in macroscopic air-based molecular communication. , 2022, , .		0
571	Planar coils for detection of magnetic nanoparticles in a testbed for molecular communication. , 2022, , .		1
572	A vision towards integrated 6G communication networks: Promising technologies, architecture, and use-cases. Physical Communication, 2022, 55, 101917.	1.2	10
573	Secrecy Loss in Diffusive Molecular Timing Channels. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2022, 8, 297-304.	1.4	2
574	Digital Communication Techniques in Macroscopic Air-Based Molecular Communication. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2022, 8, 276-291.	1.4	8
575	A Biologically Inspired Model of Collective Bio-Nanomachine Rotation via Chemical and Physical Interactions. IEEE Transactions on Nanobioscience, 2023, 22, 570-581.	2.2	2
576	On the Optimal Threshold and Error Performance at Fusion Center for Diffusion-Based Molecular Communication System. , 2021, , .		0
577	Electrophoretic Molecular Communication with Piecewise Constant Electric Field. IEEE Transactions on Nanobioscience, 2022, , 1-1.	2.2	0
578	Performance Limits of Spatially Distributed Molecular Communications With Receiver Saturation. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2023, 9, 94-99.	1.4	0
579	Abnormality Detection and Localization Schemes Using Molecular Communication Systems: A Survey. IEEE Access, 2023, 11, 1761-1792.	2.6	7
580	Channel Characterization and Performance of a 3-D Molecular Communication System With Multiple Fully-Absorbing Receivers. IEEE Transactions on Communications, 2023, 71, 714-727.	4.9	2
581	Nanonetworks: Next Frontier in Wireless Communications. , 2022, , .		0
582	Joint localization and channel estimation in flow-assisted molecular communication systems. Nano Communication Networks, 2023, 35, 100434.	1.6	2
583	Analysis of MC Systems Employing Receivers Covered by Heterogeneous Receptors. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2023, 9, 63-78.	1.4	0
584	Detection Process in Macroscopic Air-Based Molecular Communication Using a PIN Photodiode. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2023, 9, 13-17.	1.4	1

#	Article	IF	CITATIONS
585	A machine learning-based concentration-encoded molecular communication system. Nano Communication Networks, 2023, 35, 100433.	1.6	3
586	Collective Gradient Detection for Forming a Bio-nanomachine Supercluster. , 2022, , .		0
587	Design and Implementation of a Multicellular Molecular Communication Simulator. , 2022, , .		0
588	Collective Rotational Motion of Bio-nanomachines in Noisy Environments. , 2022, , .		1
589	Study on Simple Channel Coding Scheme for Molecular Communications. , 2022, , .		0
590	Channel Capacity Analysis for Diffusive Molecular Communication with a Partly Covered Comprehensive Reactive Receiver. , 2022, , .		0
591	Modeling Ultrasonic Channels with Mobility for Gateway to In-Body Nanocommunication. , 2022, , .		0
592	Olfaction-Inspired MCs: Molecule Mixture Shift Keying and Cross-Reactive Receptor Arrays. IEEE Transactions on Communications, 2023, 71, 1894-1911.	4.9	3
593	Coding in Diffusion-Based Molecular Nanonetworks: A Comprehensive Survey. IEEE Access, 2023, 11, 16411-16465.	2.6	2
594	Joint Synchronization and Range Estimation With Correlated Arrival Times in Molecular Communication Networks. IEEE Systems Journal, 2023, 17, 4907-4910.	2.9	1
595	A Study of Chemical Reactions in Point-to-Point Diffusion-Based Molecular Communication. IEEE Access, 2023, 11, 24752-24767.	2.6	0
596	Localization of Nanomachine with Correlated Observations in Biological Nanonetworks. , 2023, , .		1
597	Microfluidic pulse shaping methods for Molecular Communications. Nano Communication Networks, 2023, 36, 100453.	1.6	3
598	Automated non-branching protrusion design with evolutionary algorithm in communication via diffusion. , 2023, 135, 103947.		0
599	Localizing the Unknown Receiver in a Diffusive SIMO Molecular Communication System. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2023, 9, 18-22.	1.4	2
600	SNR Estimation with Rectangular Input Concentration in Molecular Communication Networks. , 2022, , \cdot		1
601	Multi-Hop Genetic-Algorithm-Optimized Routing Technique in Diffusion-Based Molecular Communication. IEEE Access, 2023, 11, 22689-22704.	2.6	5
602	An Empirical Model for 1-D Molecular Drift-Diffusion Communication Channels under Reflecting and Absorbing Boundary Conditions. , 2022, , .		1

#	ARTICLE	IF	CITATIONS
603	Diversity-Based Non-Coherent Signal Detector for Molecular Communication via Reaction-Diffusion. IEEE Transactions on Communications, 2023, 71, 2618-2631.	4.9	0
604	A Survey for Possible Technologies of Micro/Nanomachines Used for Molecular Communication Within 6G Application Scenarios. IEEE Internet of Things Journal, 2023, 10, 11240-11263.	5.5	6
605	Impact of Evanescence Process on Three-Dimensional Sub-Diffusion based Molecular Communication Channel. IEEE Transactions on Nanobioscience, 2023, , 1-1.	2.2	0
606	Temporal Convolutional Network Based Signal Detection for Magnetotactic Bacteria Communication System. IEEE Transactions on Nanobioscience, 2023, , 1-1.	2.2	3
607	The Development of a Biocompatible Testbed for Molecular Communication With Magnetic Nanoparticles. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2023, 9, 179-190.	1.4	2
608	A generalized space shift keying modulation for molecular MIMO systems. Journal of Engineering, 2023, 2023, .	0.6	0
609	Nanonetworking in the Terahertz Band and Beyond. IEEE Nanotechnology Magazine, 2023, 17, 21-31.	0.9	1
610	Realizing Molecular Machine Learning Through Communications for Biological AI. IEEE Nanotechnology Magazine, 2023, 17, 10-20.	0.9	0
612	Experimental Research in Synthetic Molecular Communications – Part I. IEEE Nanotechnology Magazine, 2023, 17, 42-53.	0.9	6
616	The Advancements in 6G Technology based on its Applications, Research Challenges and Problems: A Review. , 2023, , .		0
620	Estimation of Source Direction with Spherical Array Receiver in Molecular Communication. , 2023, , .		0
624	A Deep Learning Based Receiver for Wireless Communications Systems With Unknown Channel Models. , 2023, , .		0
625	A Probabilistic Constellation Shaping Scheme for Molecular Communications. , 2023, , .		0
627	A Microfluidic Platform for Modeling Molecular Communication. , 2023, , .		0
630	Investigating the Impact of Distance on the Reception in Molecular Communication. Lecture Notes in Networks and Systems, 2023, , 143-155.	0.5	0
641	Deterministic Identification for MC Binomial Channel. , 2023, , .		4
642	On Novel ISI-Reducing Channel Codes for Molecular Communication via Diffusion. , 2023, , .		1
643	Codes Over Absorption Channels. , 2023, , .		1

#	Article	IF	CITATIONS
644	Towards Practical and Scalable Molecular Networks. , 2023, , .		0
646	Stochastic Chemical Reaction Networks for MAP Detection in Cellular Receivers. , 2023, , .		Ο
647	Interfacial instability of liquid interphase improves molecular communication density. , 2023, , .		0
648	Frequency Analysis of a Redox-Based Molecular-Electrical Communication Channel. , 2023, , .		0
649	Decoding Multiple Interfering Signals in a Macroscopic Air-based Molecular Communication System. , 2023, , .		0
650	Optimizing Relay Node Deployments for Molecular Communication via Diffusion with Unknown Location Receiver. , 2023, , .		0
653	Signal Transmission Through Human Body viaÂHuman Oxygen Saturation Detection. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2023, , 190-199.	0.2	0
654	Range Expansion inÂNeuro-Spike Synaptic Communication: Error Performance Analysis. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2023, , 210-223.	0.2	0
655	Distance Estimation Based on the Triple-spike Transmission in Diffusion-based Molecular Communication Systems. , 2023, , .		0
661	Deterministic Identification for MC ISI-Poisson Channel. , 2023, , .		6
662	Diffusive Molecular Communication with a Spheroidal Receiver for Organ-on-Chip Systems. , 2023, , .		2
664	Plant-Environment Interactions: The Dynamics of the Skill and Beyond. Environmental Science and Engineering, 2023, , 1-14.	0.1	0
669	Advancements and Challenges in Networking Technologies: A Comprehensive Survey. , 2023, , .		13
671	Analysis of Layer's Tasks in Molecular Communication: Application, Transport, Network, and Link Layers. , 2024, , 13-61.		0
672	Analysis of the Molecular Physical Layer's Tasks. , 2024, , 63-166.		0
677	Statistical Physical Model for Rise and Fall Time Analysis of DMNC System. , 2023, , .		0
680	Bio-Inspired Nano System: Assessing Channel Reliability in the Presence of Environmental Noise. , 2023, ,		0

.