A review of waste products utilized as supplements to I

Journal of Cleaner Production 121, 1-18 DOI: 10.1016/j.jclepro.2016.02.013

Citation Report

#	Article	IF	CITATIONS
1	Admixtures in Cement-Matrix Composites for Mechanical Reinforcement, Sustainability, and Smart Features. Materials, 2016, 9, 972.	1.3	13
2	Ecologically Safe and Techno Economically Efficient Reinforced Concrete Constructions of Equal Resistance. MATEC Web of Conferences, 2016, 73, 04020.	0.1	2
3	Performance of pavements incorporating waste glass: The current state of the art. Renewable and Sustainable Energy Reviews, 2016, 64, 211-236.	8.2	66
4	A review on fly ash characteristics – Towards promoting high volume utilization in developing sustainable concrete. Journal of Cleaner Production, 2017, 147, 546-559.	4.6	480
5	Is the CO2 emissions reduction from scale change, structural change or technology change? Evidence from non-metallic sector of 11 major economies in 1995–2009. Journal of Cleaner Production, 2017, 148, 148-157.	4.6	30
6	Engineering properties of lightweight aggregate concrete containing binary and ternary blended cement. Journal of Cleaner Production, 2017, 149, 976-988.	4.6	52
7	Properties of Concrete Containing Ground Waste Cockle and Clam Seashells. Procedia Engineering, 2017, 171, 658-663.	1.2	53
8	Overview of supplementary cementitious materials usage in lightweight aggregate concrete. Construction and Building Materials, 2017, 139, 403-418.	3.2	81
9	Evaluation of the Effect of Accelerated Carbonation in Cement–Bagasse Panels after Cycles of Wetting and Drying. Journal of Materials in Civil Engineering, 2017, 29, 04017018.	1.3	14
10	Granite quarry waste as a future eco-efficient supplementary cementitious material (SCM): Scientific and technical considerations. Journal of Cleaner Production, 2017, 148, 467-476.	4.6	98
11	Water treatment sludge and rice husk ash to sustainable geopolymer production. Journal of Cleaner Production, 2017, 149, 146-155.	4.6	109
12	Influence of steel fibers extracted from waste tires on shear behavior of reinforced concrete beams. Structural Concrete, 2017, 18, 589-596.	1.5	17
13	Sustainable decision-making through stochastic simulation: Transporting vs. recycling aggregates for Portland cement concrete in underground mining projects. Journal of Cleaner Production, 2017, 159, 1-10.	4.6	13
14	Properties improvement of fly ash cenosphere modified cement pastes using nano silica. Cement and Concrete Composites, 2017, 81, 35-48.	4.6	150
15	On the mechanical response of Hybrid Fiber Reinforced Concrete with Recycled and Industrial Steel Fibers. Construction and Building Materials, 2017, 147, 286-295.	3.2	122
16	Carbonated MgO concrete with improved performance: The influence of temperature and hydration agent on hydration, carbonation and strength gain. Cement and Concrete Composites, 2017, 82, 152-164.	4.6	120
17	Effect of sugar cane straw ash (SCSA) as solid precursor and the alkaline activator composition on alkali-activated binders based on blast furnace slag (BFS). Construction and Building Materials, 2017, 144, 214-224.	3.2	34
18	Plant biomass ashes in cement-based building materials. Feasibility as eco-efficient structural mortars and grouts. Sustainable Cities and Society, 2017, 31, 151-172.	5.1	48

#	Article	IF	CITATIONS
19	Characterization and use of an untreated Mexican sugarcane bagasse ash as supplementary material for the preparation of ternary concretes. Construction and Building Materials, 2017, 157, 83-95.	3.2	61
20	Study of synergy between a natural volcanic pozzolan and a granulated blast furnace slag in the production of geopolymeric pastes and mortars. Construction and Building Materials, 2017, 157, 151-160.	3.2	41
21	Sustainable infrastructure development through use of calcined excavated waste clay as a supplementary cementitious material. Journal of Cleaner Production, 2017, 168, 1180-1192.	4.6	95
22	Influence of incorporation of granulated blast furnace slag as replacement of fine aggregate on properties of concrete. Journal of Cleaner Production, 2017, 165, 468-476.	4.6	73
23	The innovation trajectory of eco-cement in the Netherlands: a co-evolution analysis. International Economics and Economic Policy, 2017, 14, 409-429.	1.0	18
24	Fiber-reinforced cementitious composites incorporating glass cenospheres – Mechanical properties and microstructure. Construction and Building Materials, 2017, 154, 529-538.	3.2	49
25	Potential large-volume beneficial use of low-grade fly ash in magnesia-phosphate cement based materials. Fuel, 2017, 209, 490-497.	3.4	65
26	Experimental and analytical selection of sustainable recycled concrete with ceramic waste aggregate. Construction and Building Materials, 2017, 154, 829-840.	3.2	111
27	Effectiveness of a hydrothermally produced alternative cementitious material on the physical and mechanical performance of concrete. Journal of Cleaner Production, 2017, 142, 3269-3280.	4.6	4
28	Aging and Curing Temperature Effects on Compressive Strength of Mortar Containing Lime Stone Quarry Dust and Industrial Granite Sludge. Materials, 2017, 10, 642.	1.3	24
29	Highâ€strength concrete based on ternary binder with high pozzolan content. Structural Concrete, 2018, 19, 1258-1267.	1.5	17
30	Ash blended cement composites: Eco-friendly and sustainable option for utilization of corncob ash. Journal of Cleaner Production, 2018, 175, 442-455.	4.6	55
31	Optimization of the SO3 content of an Algerian Portland cement: Study on the effect of various amounts of gypsum on cement properties. Construction and Building Materials, 2018, 164, 362-370.	3.2	47
32	The present state of the use of palm oil fuel ash (POFA) in concrete. Construction and Building Materials, 2018, 175, 26-40.	3.2	126
33	Durability and microstructure of coral sand concrete incorporating supplementary cementitious materials. Construction and Building Materials, 2018, 171, 44-53.	3.2	106
34	Effect of curing time on the fracture toughness of fly ash concrete composites. Composite Structures, 2018, 185, 105-112.	3.1	68
35	Immobilization of copper indium selenide solar module waste in concrete constructions. Cement and Concrete Composites, 2018, 85, 174-182.	4.6	6
36	Green concrete composite incorporating fly ash with high strength and fracture toughness. Journal of Cleaner Production, 2018, 172, 218-226.	4.6	131

#	Article	IF	CITATIONS
37	Education for sustainable use of cement based materials. Cement and Concrete Research, 2018, 114, 103-114.	4.6	27
38	Synthesis of nano cementitious additives from agricultural wastes for the production of sustainable concrete. Journal of Cleaner Production, 2018, 171, 1150-1160.	4.6	43
39	Effects of supplementary cementitious materials on mechanical and durability properties of high-performance non-shrinking grout (HPNSG). Journal of Sustainable Cement-Based Materials, 2018, 7, 38-56.	1.7	22
40	Microstructural characteristics, porosity and strength development in ceramic-laterized concrete. Cement and Concrete Composites, 2018, 86, 224-237.	4.6	63
41	Reduced alkali-silica reaction damage in recycled glass mortar samples with supplementary cementitious materials. Journal of Cleaner Production, 2018, 172, 3621-3633.	4.6	45
42	An overview and experimental study on hybrid binders containing date palm ash, fly ash, OPC and activator composites. Construction and Building Materials, 2018, 159, 567-577.	3.2	66
43	Use of DMDA method for production of heavyweight concrete. MATEC Web of Conferences, 2018, 219, 03011.	0.1	2
44	Feasibility of Eco-Friendly Binary and Ternary Blended Binders Made of Fly-Ash and Oil-Refinery Spent Catalyst in Ready-Mixed Concrete Production. Sustainability, 2018, 10, 3136.	1.6	28
45	Influence of the levels of replacement of portland cement by metakaolin and silica extracted from rice husk ash in the physical and mechanical characteristics of cement pastes. Cement and Concrete Composites, 2018, 94, 296-306.	4.6	22
46	Evaluation of the use of the CBPB production waste products for cement composites. Construction and Building Materials, 2018, 190, 1117-1123.	3.2	10
47	Excellent Carbonation Behavior of Rankinite Prepared by Calcining the C-S-H: Potential Recycling of Waste Concrete Powders for Prefabricated Building Products. Materials, 2018, 11, 1474.	1.3	20
48	Utilization of lithium slag by wet-grinding process to improve the early strength of sulphoaluminate cement paste. Journal of Cleaner Production, 2018, 205, 536-551.	4.6	182
49	The influence of different concrete additions on the properties of lightweight concrete evaluated using experimental and numerical approaches. Construction and Building Materials, 2018, 189, 314-322.	3.2	33
50	Valorization of wood chips ash as an eco-friendly mineral admixture in mortar mix design. Waste Management, 2018, 80, 89-100.	3.7	63
51	Substantiation of the parameters of the disk-knife working body and the study of its work. Research in Agricultural Engineering, 2018, 64, 195-201.	0.5	3
52	Optimizing recycled concrete containing high volume of fly ash in terms of the embodied energy and chloride ion resistance. Journal of Cleaner Production, 2018, 194, 735-750.	4.6	68
53	Environmentally Friendly Utilization of Wheat Straw Ash in Cement-Based Composites. Sustainability, 2018, 10, 1322.	1.6	53
54	Properties of fresh and hardened sustainable concrete due to the use of palm oil fuel ash as cement replacement. IOP Conference Series: Materials Science and Engineering, 2018, 342, 012035.	0.3	12

#	Article	IF	CITATIONS
55	The potential of raw sewage sludge in construction industry – A review. Journal of Cleaner Production, 2018, 200, 342-356.	4.6	123
56	Chelating Agent Treatment on Leaded Residuals from Glass Separated Urban Collection to Be Used in Cement Mortars. Waste and Biomass Valorization, 2018, 9, 2493-2501.	1.8	3
57	Influence of microwave oven calcination on the pozzolanicity of sugar cane bagasse ashes (SCBA) from the cogeneration industry. Construction and Building Materials, 2018, 187, 892-902.	3.2	19
58	Utilisation of industrial waste (Fly ash) in synthesis of copper based surface composite through friction stir processing route for wear applications. Journal of Cleaner Production, 2018, 196, 460-468.	4.6	51
59	Construction material properties of high temperature arc gasification slag as a portland cement replacement. Journal of Cleaner Production, 2018, 196, 1266-1272.	4.6	24
60	Sustainability Aspects in Mass Concrete. RILEM State-of-the-Art Reports, 2019, , 357-409.	0.3	2
61	Alternative Material to be Applied in Oil Well Cementing Subjected to High Temperatures to Avoid Compressive Strength Retrogression. , 2019, , .		1
62	EFFECT OF MECHANICAL ACTIVATION ON THE POZZOLANIC ACTIVITY OF MUSCOVITE. Clays and Clay Minerals, 2019, 67, 209-216.	0.6	23
63	Integrated sugarcane farming and sugar milling with selective fermentation: A simulation-based approach. Journal of Cleaner Production, 2019, 236, 117521.	4.6	8
64	Corrosion Resistance of Carbon Steel Reinforced Solidia Cement Concrete in corrosive waters: An Electrochemical Impedance Spectroscopy Study. International Journal of Electrochemical Science, 2019, , 6513-6521.	0.5	0
66	Current status and future perspectives for energy production from solid biomass in the European industry. Renewable and Sustainable Energy Reviews, 2019, 112, 960-977.	8.2	162
67	Green Concrete: By-Products Utilization and Advanced Approaches. Sustainability, 2019, 11, 5145.	1.6	75
68	Gravel wash mud, a quarry waste material as supplementary cementitious material (SCM). Cement and Concrete Research, 2019, 124, 105833.	4.6	26
69	Valorization of demolition ceramic wastes and lignite bottom ash for the production of ternary blended cements. Construction and Building Materials, 2019, 229, 116879.	3.2	18
70	Valorization of water treatment sludge waste by application as supplementary cementitious material. Construction and Building Materials, 2019, 223, 939-950.	3.2	53
71	Alkaline activation of high-calcium ash and iron ore tailings and their recycling potential in building materials. Ambiente ConstruÃdo, 2019, 19, 99-112.	0.2	19
72	Beneficiation of Sugarcane Bagasse Ash: Pozzolanic Activity and Leaching Behavior. Waste and Biomass Valorization, 2020, 11, 4393.	1.8	13
73	Recycling of biomass and coal fly ash as cement replacement material and its effect on hydration and carbonation of concrete. Waste Management, 2019, 94, 39-48.	3.7	83

#	Article	IF	CITATIONS
74	Supplementary cementitious materials: New sources, characterization, and performance insights. Cement and Concrete Research, 2019, 122, 257-273.	4.6	521
75	The influence of disposed fly ash on Ca2+ leaching and physico-mechanical properties of mortars. Journal of Cleaner Production, 2019, 226, 270-281.	4.6	18
76	A review on wastewater sludge valorisation and its challenges in the context of circular economy. Journal of Cleaner Production, 2019, 228, 244-263.	4.6	304
77	Leaching test procedure for assessing the compliance of the chemical and environmental requirements of hardened woody biomass fly ash cement mixtures. Waste Management, 2019, 90, 10-16.	3.7	7
78	Sustainable approaches for developing concrete and mortar using waste seashell. European Journal of Environmental and Civil Engineering, 2021, 25, 1874-1893.	1.0	23
79	Pozzolanic Potential and Mechanical Performance of Wheat Straw Ash Incorporated Sustainable Concrete. Sustainability, 2019, 11, 519.	1.6	30
80	Utilizing wood fiber produced with wood waste to reinforce autoclaved aerated concrete. Construction and Building Materials, 2019, 208, 242-249.	3.2	56
81	Production of bamboo leaf ash by auto-combustion for pozzolanic and sustainable use in cementitious matrices. Construction and Building Materials, 2019, 208, 369-380.	3.2	31
82	Alkali-activated binary concrete based on natural pozzolan; a real and eco-friendly alternative to the OPC concrete. MATEC Web of Conferences, 2019, 274, 05003.	0.1	0
83	Reusing Discarded Ballast Waste in Ecological Cements. Materials, 2019, 12, 3887.	1.3	7
84	The influence of microcrack width on the mechanical parameters in concrete with the addition of fly ash: Consideration of technological and ecological benefits. Construction and Building Materials, 2019, 197, 849-861.	3.2	74
85	Heterogeneity of industrial development and evolution of cleaner production: Bibliometric analysis based on JCLP. Journal of Cleaner Production, 2019, 212, 822-836.	4.6	18
86	Role of lime, fly ash, and slag in cement pastes containing recycled concrete fines. Construction and Building Materials, 2019, 201, 702-714.	3.2	49
87	The Potential Use of Oyster Shell Waste in New Value-Added By-Product. Resources, 2019, 8, 13.	1.6	104
88	Use of cellulose fibers from wheat straw for sustainable cement mortars. Journal of Sustainable Cement-Based Materials, 2019, 8, 161-179.	1.7	19
89	Ionic interaction and liquid absorption by wood in lignocellulose inorganic mineral binder composites. Journal of Cleaner Production, 2019, 206, 808-818.	4.6	3
90	Filler technology of adding granite dust to reduce cement content and increase strength of mortar. Powder Technology, 2019, 342, 388-396.	2.1	62
91	Exergetic analysis and pollutants emission from a rotary kiln system in a major cement manufacturing plant. Energy and Environment, 2019, 30, 601-616.	2.7	5

#	Article	IF	CITATIONS
92	Use of Coal Fly Ash or Glass Pozzolan Addition as a Mitigation Tool for Alkali-Silica Reactivity in Cement Mortars Amended with Recycled Municipal Solid Waste Incinerator Bottom Ash. Waste and Biomass Valorization, 2019, 10, 2733-2744.	1.8	14
93	Water Hyacinth–Cement Composites as Pollutant Element Fixers. Waste and Biomass Valorization, 2020, 11, 3833-3851.	1.8	2
94	Life cycle assessment of the reuse of fly ash from biomass combustion as secondary cementitious material in cement products. Journal of Cleaner Production, 2020, 245, 118937.	4.6	63
95	Production of supplementary cementitious material as a sustainable management strategy for water treatment sludge waste. Case Studies in Construction Materials, 2020, 12, e00329.	0.8	10
96	Relating water permeability to electrical resistivity and chloride penetrability of concrete containing different supplementary cementitious materials. Cement and Concrete Composites, 2020, 107, 103491.	4.6	45
97	Recovery of residual anhydrous clinker in finely ground recycled concrete. Resources, Conservation and Recycling, 2020, 155, 104640.	5.3	35
98	Reaching net-zero carbon emissions in construction supply chains – Analysis of a Swedish road construction project. Renewable and Sustainable Energy Reviews, 2020, 120, 109651.	8.2	74
99	Mechanical properties of self-compacting high-performance concrete with fly ash and silica fume. SN Applied Sciences, 2020, 2, 1.	1.5	25
100	UtilizingÂRice Husk Ash as Supplement to Cementitious Materials on Performance of Ultra High Performance Concrete: – A review. Materials Today Sustainability, 2020, 7-8, 100030.	1.9	39
101	Human exposure and risk assessment of recycling incineration bottom ash for land reclamation: A showcase coupling studies of leachability, transport modeling and bioaccumulation. Journal of Hazardous Materials, 2020, 385, 121600.	6.5	28
102	Zero-cement vs. cementitious mortars: An experimental comparative study on engineering and environmental properties. Journal of Building Engineering, 2020, 32, 101620.	1.6	16
103	Iron ore tailings as a supplementary cementitious material in the production of pigmented cements. Journal of Cleaner Production, 2020, 274, 123260.	4.6	55
104	Precipitation of calcium–alumino–silicate–hydrate gels: The role of the internal stress. Journal of Chemical Physics, 2020, 153, 014501.	1.2	12
105	Effect of Silica Fume as Cementitious Material and Waste Glass as Fine Aggregate Replacement Constituent on Selected Properties of Concrete. Silicon, 2020, , 1.	1.8	34
106	Current Sustainable Trends of Using Waste Materials in Concrete—A Decade Review. Sustainability, 2020, 12, 9622.	1.6	60
107	Natural Pozzolans a Comparative Study: A Review. IOP Conference Series: Materials Science and Engineering, 2020, 804, 012040.	0.3	30
108	Mercury intrusion porosimetry parameters for use in concrete penetrability qualification using the Katz-Thompson relationship. Construction and Building Materials, 2020, 263, 119834.	3.2	26
109	Identifying the Environmental Strategies in Construction Site for Malaysian Contractors in Johor. IOP Conference Series: Earth and Environmental Science, 2020, 498, 012108.	0.2	0

#	Article	IF	Citations
110	Sustainable regenerated binding materials (RBM) utilizing industrial solid wastes for soil and aggregate stabilization. Journal of Cleaner Production, 2020, 275, 122991.	4.6	35
111	A perspective on environmental sustainability in the cement industry. Waste Disposal & Sustainable Energy, 2020, 2, 161-164.	1.1	46
112	Influence of biogenic treatment in improving the durability properties of waste amended concrete: A review. Construction and Building Materials, 2020, 263, 120170.	3.2	27
113	Pressed recycled fly ash and carbide slag: Hydration of entirely waste-stream building components. Construction and Building Materials, 2020, 265, 120282.	3.2	8
114	Conchixes: organic scaffolds which resemble the size and shapes of mollusks shells, their isolation and potential multifunctional applications. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	20
115	Study of the Effects of the Addition of Fly Ash from Carwash Sludge in Lime and Cement Pastes. Sustainability, 2020, 12, 6451.	1.6	4
116	Characterization of Portland Cement Incorporated with FNS. Advances in Materials Science and Engineering, 2020, 2020, 1-9.	1.0	3
117	Manufacturing of Lightweight Aggregates as an Auspicious Method of Sewage Sludge Utilization. Materials, 2020, 13, 5635.	1.3	1
118	Recycling of concrete construction and demolition waste in alternative binders: Part 1 – Technical study. IOP Conference Series: Materials Science and Engineering, 2020, 951, 012008.	0.3	1
119	Solidification and Stabilization (S/S) of Toxic Waste: Potential Binder for Partial Cement Replacement Materials (PCRM). IOP Conference Series: Earth and Environmental Science, 2020, 549, 012060.	0.2	0
120	Study on the application mechanism and mechanics of steel slag in composite cementitious materials. SN Applied Sciences, 2020, 2, 1.	1.5	10
121	Rock â€~n' use of CO ₂ : carbon footprint of carbon capture and utilization by mineralization. Sustainable Energy and Fuels, 2020, 4, 4482-4496.	2.5	62
122	Green concrete: Using quarry waste of sandstone as fine aggregate with high levels of microfines. Materials Today: Proceedings, 2020, 32, 728-733.	0.9	9
123	Quaternary blends of portland cement, metakaolin, biomass ash and granite powder for production of self-compacting concrete. Journal of Cleaner Production, 2020, 266, 121666.	4.6	28
124	Utilization of By-Products and Wastes as Supplementary Cementitious Materials in Structural Mortar for Sustainable Construction. Sustainability, 2020, 12, 3888.	1.6	70
125	Combined effects of paper mill sludge and carbonation sludge on characteristics of fired clay bricks. Construction and Building Materials, 2020, 249, 118722.	3.2	40
126	Binding Properties of Mechanically Activated Nepheline Containing Mining Waste. Minerals (Basel,) Tj ETQq0 0 0	rgBT /Ove 0.8	rlgck 10 Tf 5

127	Thermal Performance of Concrete with Recycled Concrete Powder as Partial Cement Replacement and Recycled CDW Aggregate. Applied Sciences (Switzerland), 2020, 10, 4540.	1.3	22
-----	---	-----	----

#	Article	IF	CITATIONS
128	Utilization of Jarosite waste for the development of sustainable concrete by reducing the cement content. Journal of Cleaner Production, 2020, 272, 122546.	4.6	25
129	Machine Learning of Concrete Temperature Development for Quality Control of Field Curing. Journal of Computing in Civil Engineering, 2020, 34, .	2.5	9
130	Long-term behaviour of ceramic powder containing concrete for pavement blocks. International Journal of Pavement Engineering, 2020, , 1-8.	2.2	8
131	A review of ground waste glass as a supplementary cementitious material: A focus on alkali-silica reaction. Journal of Cleaner Production, 2020, 257, 120180.	4.6	71
132	Effect of partially replacing ordinary Portland cement with municipal solid waste incinerator ashes and rice husk ashes on pervious concrete quality. Environmental Science and Pollution Research, 2020, 27, 23742-23760.	2.7	23
133	Evaluation of Calcium Oxide Nanoparticles from Industrial Waste on the Performance of Hardened Cement Pastes: Physicochemical Study. Processes, 2020, 8, 401.	1.3	9
134	Genetic and Environmental Influences on First Rotation Shrub Willow (Salix spp.) Bark and Wood Elemental Composition. Bioenergy Research, 2020, 13, 797-809.	2.2	4
135	Alkali-silica reaction (ASR) in the alkali-activated cement (AAC) system: A state-of-the-art review. Construction and Building Materials, 2020, 252, 119105.	3.2	60
136	Low-Carbon Concrete Based on Binary Biomass Ash–Silica Fume Binder to Produce Eco-Friendly Paving Blocks. Materials, 2020, 13, 1534.	1.3	15
137	Alternative supplementary cementitious materials for sustainable concrete structures: a review on characterization and properties. Waste and Biomass Valorization, 2021, 12, 1219-1236.	1.8	37
138	Mechanical and gamma-ray shielding properties and environmental benefits of concrete incorporating GGBFS and copper slag. Journal of Building Engineering, 2021, 33, 101615.	1.6	26
139	Recycling use of sulfate-rich sewage sludge ash (SR-SSA) in cement-based materials: Assessment on the basic properties, volume deformation and microstructure of SR-SSA blended cement pastes. Journal of Cleaner Production, 2021, 282, 124511.	4.6	18
140	Effect of wet grinded lithium slag on compressive strength and hydration of sulphoaluminate cement system. Construction and Building Materials, 2021, 267, 120465.	3.2	66
141	Improving the utility of MIP analysis for cementitious systems through Gaussian process regression modeling to predict electrical resistivity. Cement and Concrete Composites, 2021, 116, 103870.	4.6	15
142	The potential use of drinking water sludge ash as supplementary cementitious material in the manufacture of concrete blocks. Resources, Conservation and Recycling, 2021, 168, 105291.	5.3	36
143	Infra lightweight concrete: A decade of investigation (a review). Structural Concrete, 2021, 22, E152.	1.5	18
144	Evaluating Biomass Ash Properties as Influenced by Feedstock and Thermal Conversion Technology towards Cement Clinker Production with a Lower Carbon Footprint. Waste and Biomass Valorization, 2021, 12, 4703-4719.	1.8	6
145	Machine Learning Enables Rapid Screening of Reactive Fly Ashes Based on Their Network Topology. ACS Sustainable Chemistry and Engineering, 2021, 9, 2639-2650.	3.2	24

#	Article	IF	CITATIONS
146	Slag uses in making an ecofriendly and sustainable concrete: A review. Construction and Building Materials, 2021, 272, 121942.	3.2	116
147	Performance of Green Concrete and Inorganic Coating Materials. Materials, 2021, 14, 832.	1.3	6
148	Role of expanded clay aggregate, metakaolin and silica fume on the of modified lightweight concrete properties. Geosystem Engineering, 0, , 1-12.	0.7	28
149	Rice Husk Ash-Based Concrete Composites: A Critical Review of Their Properties and Applications. Crystals, 2021, 11, 168.	1.0	72
150	Effect of Treated Sago Pith Waste Ash and Silica Fume to the Mechanical Properties of Fly Ash-Based Geopolymer Brick. Key Engineering Materials, 0, 879, 100-114.	0.4	0
151	From Unavoidable CO ₂ Source to CO ₂ Sink? A Cement Industry Based on CO ₂ 2 Mineralization. Environmental Science & amp; Technology, 2021, 55, 5212-5223.	4.6	59
152	Eco-efficient cement based on activated coal washing rejects with low content of kaolinite. Construction and Building Materials, 2021, 274, 122118.	3.2	13
153	Production of eco-friendly concrete incorporating rice husk ash and polypropylene fibres. Environmental Science and Pollution Research, 2021, 28, 39168-39184.	2.7	33
154	Influence of rice husk ash on the properties of cement mortar: a statistical approach. Proceedings of Institution of Civil Engineers: Waste and Resource Management, 0, , 1-12.	0.9	1
155	Characterization of different biomass ashes as supplementary cementitious material to produce coating mortar. Journal of Cleaner Production, 2021, 291, 125869.	4.6	24
156	Improving concrete underground mining pavements performance through the synergic effect of silica fume, nanosilica, and polypropylene fibers. Construction and Building Materials, 2021, 285, 122895.	3.2	19
157	Performance of square steel tubular stub columns in-filled with fly ash and silica fume self-compacting concrete under concentric loading. IOP Conference Series: Materials Science and Engineering, 2021, 1144, 012030.	0.3	2
158	Washed waste incineration bottom ash as a raw ingredient in cement production: Implications for lab-scale clinker behavior. Resources, Conservation and Recycling, 2021, 169, 105513.	5.3	22
159	Lignin-assisted construction of well-defined 3D graphene aerogel/PEG form-stable phase change composites towards efficient solar thermal energy storage. Solar Energy Materials and Solar Cells, 2021, 224, 111013.	3.0	52
160	Influence and mechanisms of active silica in solid waste on hydration of tricalcium aluminate in the resulting composite cement. Materials Today Communications, 2021, 27, 102262.	0.9	8
161	Characterization of Red Ceramic Waste for Application as Mineral Addition in Portland Cement. Journal of Materials in Civil Engineering, 2021, 33, .	1.3	6
162	Effect of coal ash and rice husk ash partial replacement in ordinary Portland cement on pervious concrete. Construction and Building Materials, 2021, 286, 122947.	3.2	61
163	Use of Mixture Design Approach for the Optimization and Performance of Cost-Effective Cementitious Quaternary System: Portland Cement–Fly Ash–Silica Fume–Phosphogypsum. Chemistry Africa, 2021, 4, 835-848.	1.2	4

#	Article	IF	CITATIONS
164	Importance and potential of cellulosic materials and derivatives in extrusion-based 3D concrete printing (3DCP): Prospects and challenges. Construction and Building Materials, 2021, 291, 123281.	3.2	22
165	Basalt powder as a supplementary cementitious material in cement paste for CCS wells: chemical and mechanical resistance of cement formulations for CO2 geological storage sites. International Journal of Greenhouse Gas Control, 2021, 109, 103337.	2.3	13
166	Sustainable use of municipal solid waste incinerator bottom ash and the treated industrial wastewater in self-compacting concrete. Construction and Building Materials, 2021, 297, 123814.	3.2	24
167	Reuse of Sintered Sludge from Municipal Sewage Treatment Plants for the Production of Lightweight Aggregate Building Mortar. Crystals, 2021, 11, 999.	1.0	5
168	Exploring sulphate resistance of coal mining waste blended cements through experiments and thermodynamic modelling. Cement and Concrete Composites, 2021, 121, 104086.	4.6	11
169	Red ceramic waste as supplementary cementitious material: Microstructure and mechanical properties. Construction and Building Materials, 2021, 296, 123653.	3.2	25
170	Sustainable use of palm oil fuel ash as a supplementary cementitious material: A comprehensive review. Journal of Building Engineering, 2021, 40, 102286.	1.6	36
171	Mechanical Properties and Durability of Sustainable Concrete Containing Various Industrial Solid Wastes. Transportation Research Record, 2021, 2675, 797-810.	1.0	8
172	Valorization of apatite mining flotation residues by the manufacture of artificial aggregates. Resources, Conservation and Recycling, 2021, 171, 105605.	5.3	5
173	Comportamiento de hormigones con adiciones puzolánicas y árido reciclado. Revista ALCONPAT, 2021, 11, .	0.2	0
174	Cementitious composites containing alum sludge ash: An investigation of microstructural features by an advanced nanoindentation technology. Construction and Building Materials, 2021, 299, 124286.	3.2	33
175	Supporting circular economy through the use of red ceramic waste as supplementary cementitious material in structural concrete. Journal of Material Cycles and Waste Management, 2021, 23, 2278-2296.	1.6	13
176	Recycling waste wood in cement mortars towards the regeneration of sustainable environment. Construction and Building Materials, 2021, 299, 123891.	3.2	28
177	A comprehensive review on performance of cementitious and geopolymeric concretes with recycled waste glass as powder, sand or cullet. Resources, Conservation and Recycling, 2021, 172, 105664.	5.3	101
178	Binary blended cement pastes and concrete using gravel wash mud (GWM) powders. Construction and Building Materials, 2021, 302, 124225.	3.2	4
179	Reactivity in cement pastes bearing fine fraction concrete and glass from construction and demolition waste: Microstructural analysis of viability. Cement and Concrete Research, 2021, 148, 106531.	4.6	33
180	Biochar as a Partial Cement Replacement Material for Developing Sustainable Concrete: An Overview. Journal of Materials in Civil Engineering, 2021, 33, .	1.3	25
181	Kinetics of component reactions in calcium looping appeared during the multistep thermal decomposition of Portland cement under various atmospheric conditions. Chemical Engineering Journal, 2022, 428, 131197.	6.6	19

#	Article	IF	CITATIONS
182	Challenges and prospective trends of various industrial and solid wastes incorporated with sustainable green concrete. , 2021, , 223-240.		2
183	Self-compacting concrete also standing for sustainable circular concrete. , 2021, , 439-480.		2
184	Experimental Investigation on Partial Replacement of Cement with Fly Ash and Glass Powder. Lecture Notes in Civil Engineering, 2020, , 73-82.	0.3	1
185	Fly Ash, Bottom Ash, and Dust. , 2017, , 253-264.		2
186	Reuse of drill cuttings in hot mix asphalt mixture: A study on the environmental and structure performance. Construction and Building Materials, 2020, 256, 119453.	3.2	21
187	Opportunities and challenges associated with using municipal waste incineration ash as a raw ingredient in cement production – a review. Resources, Conservation and Recycling, 2020, 160, 104888.	5.3	67
188	Assessing hydration disturbances from concrete aggregates with radiation shielding properties by isothermal calorimetry. Physical Review Accelerators and Beams, 2017, 20, .	0.6	11
189	POLYMER COMPOSITES MODIFIED BY WASTE MATERIALS CONTAINING WOOD FIBRES. Journal of Ecological Engineering, 2016, 17, 72-78.	0.5	2
190	Sustainable Concrete: A Review. International Journal of Structural and Civil Engineering Research, 2019, , 126-132.	0.1	7
191	Application of a clay-slag geopolymer matrix for repairing damaged concrete: Laboratory and industrial-scale experiments. Materialpruefung/Materials Testing, 2017, 59, 929-937.	0.8	6
192	Utilização de lodo tratado de indústria de produtos de limpeza em matrizes cimentÀias. Revista Materia, 2021, 26, .	0.1	0
193	Experimental Study on Engineering Properties of Cement Concrete Reinforced with Nylon and Jute Fibers. Buildings, 2021, 11, 454.	1.4	26
194	Magnesium industry waste and red mud to eco-friendly ternary binder: Producing more sustainable cementitious materials. Construction and Building Materials, 2021, 310, 125172.	3.2	13
195	OCENA MOŻLIWOŚCI ZAGOSPODAROWANIA ODPADÓW W SEKTORZE BUDOWLANYM. Journal of Civil Engineering, Environment and Architecture, 2016, , .	0.0	1
196	Supplementary Cementitious Materials (SCMs) in Cement Mortar. , 2017, , 293-325.		0
197	The Study of the Properties of Concrete Containing Waste Powder as a Fine Aggregate. , 0, , .		1
198	Uogólniona odpornoÅ>ć na pÄ™kanie betonu z popioÅ,ami lotnymi. MateriaÅy Budowlane, 2017, 1, 21-23.	0.0	0
199	Effect of Waste Materials on Performance of Self Compacting Concrete. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 2017, 20, 40-48.	0.0	1

~			~	
(CII	τάτι	ON	KEDU _b	Г
\sim			REFUR	

#	Article	IF	CITATIONS
200	Evaluation of material performance in vegetation base mixed with rice husk ash by root index. Journal of the Japanese Society of Revegetation Technology, 2018, 44, 21-26.	0.0	0
201	Characterization of sewage sludge ash as affected by different incineration temperature and time. , 2019, , .		0
202	Performance of ecological cement-based composites containing sugarcane bagasse ash – A review. , 0, , .		0
203	Evaluation of concrete deterioration under simulated acid rain environment. Selected Scientific Papers: Journal of Civil Engineering, 2019, 14, 47-54.	0.1	0
204	Effects of Steel Fibres on Fresh and Hardened Properties of Cement Concrete. Civil and Environmental Engineering Reports, 2020, 30, 186-199.	0.2	3
205	Compressive Strength, Hydration and Pore Structure of Alkali-Activated Slag Mortars Integrating with Recycled Concrete Powder as Binders. KSCE Journal of Civil Engineering, 2022, 26, 795-805.	0.9	19
206	Application of the C-S-H Phase Nucleating Agents to Improve the Performance of Sustainable Concrete Composites Containing Fly Ash for Use in the Precast Concrete Industry. Materials, 2021, 14, 6514.	1.3	62
207	Effect of alum sludge ash on the high-temperature resistance of mortar. Resources, Conservation and Recycling, 2022, 176, 105958.	5.3	24
208	Study on the Performance of Finely Ground Recycled Concretes in Cementitious Pastes. International Journal of Structural and Civil Engineering Research, 2020, , 269-272.	0.1	0
209	Influência do uso de lama de vidro na difusividade térmica de argamassas estruturais utilizando termografia. Revista Materia, 2020, 25, .	0.1	0
210	Technical and environmental potentialities of recycled steel fiber reinforced concrete for structural applications. Journal of Building Engineering, 2022, 45, 103579.	1.6	22
211	Upcycling of waste concrete in eco-friendly strain-hardening cementitious composites: Mixture design, structural performance, and life-cycle assessment. Journal of Cleaner Production, 2022, 330, 129911.	4.6	25
212	Effectiveness of different admixtures on Atterberg limit and compaction characteristics of stabilized soil. IOP Conference Series: Earth and Environmental Science, 2021, 920, 012025.	0.2	1
213	Palm Oil Fuel Ash-Based Eco-Friendly Concrete Composite: A Critical Review of the Long-Term Properties. Materials, 2021, 14, 7074.	1.3	21
214	Application of Fourier Transform infrared spectroscopy (FTIR) coupled with multivariate regression for calcium carbonate (CaCO3) quantification in cement. Construction and Building Materials, 2021, 313, 125413.	3.2	54
215	The influence of alkali activators on the properties of ternary blended cement incorporated with ferronickel slag. Construction and Building Materials, 2022, 318, 126174.	3.2	6
216	Critical assessment of rapid methods to qualify supplementary cementitious materials for use in concrete. Cement and Concrete Research, 2022, 153, 106709.	4.6	25
217	Sustainable Mixtures Using Waste Oyster Shell Powder and Slag Instead of Cement: Performance and Multi-Objective Optimization Design. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
218	Volcanic ash. , 2022, , 331-418.		1
219	Palm oil fuel ash (POFA). , 2022, , 279-330.		3
220	Variability of waste copper slag concrete and its effect on the seismic safety of reinforced concrete building: A case study. Frontiers of Structural and Civil Engineering, 2022, 16, 117-130.	1.2	5
221	Utilization of agricultural and industrial waste as replacement of cement in pavement quality concrete: a review. Environmental Science and Pollution Research, 2022, 29, 24504-24546.	2.7	23
222	Management of industrial waste and cost analysis. , 2022, , 595-614.		1
223	Sustainable waste management and circular economy. , 2022, , 545-554.		1
224	Experimental Investigation on Environmentally Sustainable Cement Composites Based on Wheat Straw and Perlite. Materials, 2022, 15, 453.	1.3	9
225	Self-healing concrete: application of monod's approach for modeling <i>Bacillus pseudofirmus</i> growth curves. European Journal of Environmental and Civil Engineering, 2022, 26, 8229-8241.	1.0	4
226	Utilization of wood waste ash in green concrete production. , 2022, , 419-450.		3
227	Hydrometallurgical Leaching Behavior and Kinetic Modeling of Blast Furnace Slag in Hydrochloric Acid. Journal of Sustainable Metallurgy, 2022, 8, 170-185.	1.1	3
228	Zeolite Application in Wastewater Treatment. Adsorption Science and Technology, 2022, 2022, .	1.5	46
229	The Influence of Fly Ash on the Mechanical Performance of Cementitious Materials Produced with Recycled Cement. Applied Sciences (Switzerland), 2022, 12, 2257.	1.3	10
230	Sustainability and mechanical property assessment of concrete incorporating eggshell powder and silica fume as binary and ternary cementitious materials. Environmental Science and Pollution Research, 2022, 29, 58685-58697.	2.7	13
231	The role of dissolved rice husk ash in the development of binary blast furnace slag-sewage sludge ash alkali-activated mortars. Journal of Building Engineering, 2022, 52, 104472.	1.6	3
232	Predictive modeling of compressive strength of sustainable rice husk ash concrete: Ensemble learner optimization and comparison. Journal of Cleaner Production, 2022, 348, 131285.	4.6	51
233	Sugarcane Industrial Byproducts as Challenges to Environmental Safety and Their Remedies: A Review. Water (Switzerland), 2021, 13, 3495.	1.2	22
234	Particle-Size Effect of Recycled Clay Brick Powder on the Pore Structure of Blended Cement Paste. SSRN Electronic Journal, 0, , .	0.4	0
235	Utilization of waste sludge in cementitious Matrix: A feasibility study. Materials Today: Proceedings, 2022, 65, 1375-1381.	0.9	6

#	Article	IF	CITATIONS
236	Mapping Research Knowledge on Rice Husk Ash Application in Concrete: A Scientometric Review. Materials, 2022, 15, 3431.	1.3	43
237	Estimation of the compressive strength of green concretes containing rice husk ash: a comparison of different machine learning approaches. European Journal of Environmental and Civil Engineering, 2023, 27, 961-983.	1.0	24
238	Sustainable transition towards biomass-based cement industry: A review. Renewable and Sustainable Energy Reviews, 2022, 163, 112503.	8.2	38
239	PVA increases efficiency of bacterially-induced self-healing in cement mortars. Cement and Concrete Composites, 2022, 131, 104593.	4.6	8
240	Effect of Seawater on Hydration and Sulfate Resistance of Noncement Mortars. Journal of Materials in Civil Engineering, 2022, 34, .	1.3	0
241	Influence of supplementary cementitious material and filler fineness on their reactivity in model systems and cementitious pastes. Materials and Structures/Materiaux Et Constructions, 2022, 55, .	1.3	9
242	A review on sustainable use of agricultural straw and husk biomass ashes: Transitioning towards low carbon economy. Science of the Total Environment, 2022, 838, 156407.	3.9	20
243	Evaluation of chlorides in fly ash for use in concrete. Cleaner Materials, 2022, 5, 100098.	1.9	3
244	Cement Kiln Dust (CKD): Potential Beneficial Applications and Eco-Sustainable Solutions. Sustainability, 2022, 14, 7022.	1.6	10
245	Assessment of wood chips ash as efficient admixture in foamed glass-MOC composites. Journal of Materials Research and Technology, 2022, 19, 2287-2300.	2.6	4
246	Recycled concrete and brick powders as supplements to Portland cement for more sustainable concrete. Journal of Cleaner Production, 2022, 364, 132651.	4.6	59
247	Design of a New Eco-Hybrid Cement for Concrete Pavement, Made with Processed Mixed Recycled Aggregates and Olive Biomass Bottom Ash as Supplementary Cement Materials. SSRN Electronic Journal, 0, , .	0.4	0
248	Efficiency of Jarosite in Pavement Quality Concrete. International Journal of Pavement Research and Technology, 0, , .	1.3	0
249	Particle-size effect of recycled clay brick powder on the pore structure of blended cement paste. Construction and Building Materials, 2022, 344, 128288.	3.2	23
250	Alkali-activated materials produced using high-calcium, high-carbon biomass ash. Cement and Concrete Composites, 2022, 132, 104646.	4.6	10
251	Recycling of municipal sewage sludge incineration fly ash based on (NH4) 2SO4 roasting-acid leaching and filling PP matrix process. Environmental Science and Pollution Research, 0, , .	2.7	0
252	Briquettes from sludge in sewage treatment plant: calorific power. Environmental Science and Pollution Research, 2022, 29, 91096-91104.	2.7	1
253	Modification of microstructure and physical properties of cement-based mortar made with limestone and alum sludge. Journal of Building Engineering, 2022, 58, 105000.	1.6	5

#	Article	IF	CITATIONS
254	Foundry Sand Waste and Residual Aggregate Evaluated as Pozzolans for Concrete. Sustainability, 2022, 14, 9055.	1.6	3
255	Direct Olivine Carbonation: Optimal Process Design for a Low-Emission and Cost-Efficient Cement Production. Industrial & amp; Engineering Chemistry Research, 2022, 61, 13177-13190.	1.8	2
256	Materiales cementantes suplementarios como alternativa para la disminución del fenómeno de corrosión en estructuras de concreto reforzado. Nova Scientia, 0, , .	0.0	0
257	Performance Monitoring on Using Reactive Perlis Rice Husk Ash as Partial Mortar Replacement. Key Engineering Materials, 0, 929, 213-219.	0.4	Ο
258	Using Recycled Concrete Powder, Waste Glass Powder, and Plastic Powder to Improve the Mechanical Properties of Compacted Concrete: Cement Elimination Approach. Advances in Civil Engineering, 2022, 2022, 1-12.	0.4	16
259	Sustainable mixtures using waste oyster shell powder and slag instead of cement: Performance and multi-objective optimization design. Construction and Building Materials, 2022, 348, 128642.	3.2	19
260	Recycling industrial wastes into self-healing concrete: A review. Environmental Research, 2022, 214, 113975.	3.7	12
261	Review of contemporary research on inorganic CO2 utilization via CO2 conversion into metal carbonate-based materials. Journal of Industrial and Engineering Chemistry, 2022, 116, 60-74.	2.9	16
262	Biomass conversion of agricultural waste residues for different applications: a comprehensive review. Environmental Science and Pollution Research, 2022, 29, 73622-73647.	2.7	24
263	Interpreting the Strength Activity Index of Fly Ash with Machine Learning. Advances in Civil Engineering Materials, 2022, 11, 587-602.	0.2	Ο
264	Quantification of CO2 emission from the preparation and utilization of solid waste-based sulphoaluminate cementitious materials. Journal of Cleaner Production, 2022, 376, 134054.	4.6	15
265	Sulfate erosion resistance of slag-fly ash based geopolymer stabilized soft soil under semi-immersion condition. Case Studies in Construction Materials, 2022, 17, e01506.	0.8	6
267	Design of a new eco-hybrid cement for concrete pavement, made with processed mixed recycled aggregates and olive biomass bottom ash as supplementary cement materials. Construction and Building Materials, 2022, 358, 129417.	3.2	9
268	The engineering performance of eco-friendly concretes containing diatomite fly ash and ground granulated blast furnace slag. Acta Polytechnica, 2022, 62, 505-521.	0.3	4
269	High-strength geopolymer concrete based on coal washing waste. Construction and Building Materials, 2023, 362, 129675.	3.2	4
270	Recycling of fines from waste concrete: Development of lightweight masonry blocks and assessment of their environmental benefits. Journal of Cleaner Production, 2023, 385, 135711.	4.6	6
271	Production of sustainable self-consolidating mortar with low environmental impact. Environmental Science and Pollution Research, 2023, 30, 31035-31059.	2.7	2
272	Impact of Curing Temperature on the Life Cycle Assessment of Sugarcane Bagasse Ash as a Partial Replacement of Cement in Mortars. Sustainability, 2023, 15, 142.	1.6	7

#	Article	IF	CITATIONS
273	Workability & mechanical properties of the single and hybrid basalt fiber reinforced volcanic ash-based cement mortars after freeze–thaw cycles. Structures, 2023, 48, 1537-1547.	1.7	13
274	Application of electric arc furnace slag as an alternative precursor to blast furnace slag in alkaline cements. Journal of Sustainable Cement-Based Materials, 2023, 12, 1081-1093.	1.7	1
275	Investigation on the reactivity of recycled brick powder. Cement and Concrete Composites, 2023, 139, 105042.	4.6	7
276	Hydration kinetics of cement–iron tailing powder composite cementitious materials and pore structure of hardened paste. Construction and Building Materials, 2023, 370, 130673.	3.2	5
277	The Durability of Concrete Made Up of Sugar Cane Bagasse Ash (SCBA) as a Partial Replacement of Cement: A Review. Arabian Journal for Science and Engineering, 2023, 48, 4195-4225.	1.7	10
278	Performance of High-Strength Concrete with the Effects of Seashell Powder as Binder Replacement and Waste Glass Powder as Fine Aggregate. Journal of Composites Science, 2023, 7, 92.	1.4	8
279	A comprehensive review of cementitious grouts: Composition, properties, requirements and advanced performance. Construction and Building Materials, 2023, 375, 130991.	3.2	9
280	Agro-industrial-based wastes as supplementary cementitious or alkali-activated binder material: a comprehensive review. Innovative Infrastructure Solutions, 2023, 8, .	1.1	8
281	Feasibility of Using Sugar Cane Bagasse Ash in Partial Replacement of Portland Cement Clinker. Buildings, 2023, 13, 843.	1.4	7
282	Supplementary Cementitious Materials in Building Blocks—Diagnosing Opportunities in Sub-Saharan Africa. Sustainability, 2023, 15, 5822.	1.6	1
283	The Influence of Recycled Cement, Fly Ash, and Magnesium Oxide on the Mechanical Performance of Sustainable Cementitious Materials. Materials, 2023, 16, 2760.	1.3	1
285	Construction Materials and Their Properties. , 2023, , 29-71.		0
286	Physical and Mechanical Behavior of New Ternary and Hybrid Eco-Cements Made from Construction and Demolition Waste. Materials, 2023, 16, 3093.	1.3	2
287	Compressive Strength Prediction of Rice Husk Ash Concrete Using a Hybrid Artificial Neural Network Model. Materials, 2023, 16, 3135.	1.3	6
289	Incorporation of Forest Biomass-Based Fly Ash in Cement for 3D Printing. , 2023, , 73-87.		0
290	Building Material in Circular Economy: The Suitability of Wood Waste in Bio-concrete Development. , 2023, , 111-126.		0
292	A Review on the Use of SCMs and Alternative By-Products in Eco-Efficient Concrete. Lecture Notes in Civil Engineering, 2023, , 1011-1019.	0.3	0
331	Predicting rare earth elements concentration in coal ashes with multi-task neural networks. Materials Horizons, 2024, 11, 1448-1464.	6.4	0

#	Article	IF	CITATIONS
333	Utilization of Synthetic Gyrolite in Ordinary Portland Cement. , 2024, , 211-261.		0